Molecular Phylogenetics of Seven Cyprinidae Distant Hybrid Lineages: Genetic Variation, 2nNCRC Convergent Evolution, and Germplasm Implications
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Statement on Animal Subjects
2.2. Samples
2.3. DNA Extraction, PCR Amplification, Cloning and Sequencing
2.4. Genetic Variation and Genetic Distance
2.5. Phylogenetic and Haplotype Network Analysis
3. Results
3.1. Nucleotide Composition and Variable Sites
3.2. Gentic Distance
3.3. Phylogenetic Analysis
3.4. Haplotype Network Analysis
4. Discussion
4.1. Distant Hybridization in Cyprinidae: Mitochondrial Conservation and Nuclear Gene Co-Adaptation
4.2. Cytonuclear Topological Congruence and Genetic Distance: Unique Convergent Evolution of 2nNCRC in Cyprinidae
4.3. Align Cyprinidae Hybrid Core Traits: Stabilize Lineages
4.4. Implications for Germplasm Resource Management in Hybrid Breeding
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meier, J.I.; Marques, D.A.; Mwaiko, S.; Wagner, C.E.; Excoffier, L.; Seehausen, O. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 2017, 8, 14363. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.R.; Grant, B.R. Hybridization increases population variation during adaptive radiation. Proc. Natl. Acad. Sci. USA 2019, 116, 23216–23224. [Google Scholar] [CrossRef]
- Taylor, S.A.; Larson, E.L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 2019, 3, 170–177. [Google Scholar] [CrossRef]
- D’Angiolo, M.; De Chiara, M.; Yue, J.X.; Irizar, A.; Stenberg, S.; Persson, K.; Llored, A.; Barré, B.; Schacherer, J.; Marangoni, R.; et al. A yeast living ancestor reveals the origin of genomic introgressions. Nature 2020, 587, 420–425. [Google Scholar] [CrossRef]
- Gu, Q.H.; Wang, S.; Zhong, H.; Yuan, H.; Yang, J.L.; Yang, C.H.; Huang, X.X.; Xu, X.W.; Wang, Y.D.; Wei, Z.H.; et al. Phylogeographic relationships and the evolutionary history of the Carassius auratus complex with a newly born homodiploid raw fish (2nNCRC). BMC Genom. 2022, 23, 242. [Google Scholar] [CrossRef]
- Rosser, N.; Seixas, F.; Queste, L.M.; Cama, B.; Mori-Pezo, R.; Kryvokhyzha, D.; Nelson, M.; Waite-Hudson, R.; Goringe, M.; Costa, M.; et al. Hybrid speciation driven by multilocus introgression of ecological traits. Nature 2024, 628, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Lamichhaney, S.; Han, F.; Webster, M.T.; Andersson, L.; Grant, B.R.; Grant, P.R. Rapid hybrid speciation in Darwin’s finches. Science 2018, 359, 224–227. [Google Scholar] [CrossRef]
- Wang, S.; Tang, C.C.; Tao, M.; Qin, Q.B.; Zhang, C.; Luo, K.K.; Zhao, R.R.; Wang, J.; Ren, L.; Xiao, J.; et al. Establishment and application of distant hybridization technology in fish. Sci. China Life Sci. 2019, 62, 22–45. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, S.; Liu, Q.; Wu, C.; Zhou, Y.; Tao, M.; Zhang, C.; Qin, Q.; Luo, K. The Research Advances in Animal Distant Hybridization and Polyploid Organisms. In Fish Distant Hybridization; Liu, S., Ed.; Springer Nature: Singapore, 2022; pp. 1–37. [Google Scholar]
- Liu, S.J.; Qin, Q.B.; Xiao, J.; Lu, W.T.; Shen, J.M.; Li, W.; Liu, J.F.; Duan, W.; Zhang, C.; Tao, M.; et al. The formation of the polyploid hybrids from different subfamily fish crossings and its evolutionary significance. Genetics 2007, 176, 1023–1034. [Google Scholar] [CrossRef]
- Qin, Q.B.; Wang, Y.D.; Wang, J.; Dai, J.; Xiao, J.; Hu, F.Z.; Luo, K.K.; Tao, M.; Zhang, C.; Liu, Y.; et al. The Autotetraploid Fish Derived from Hybridization of Carassius auratus red var. (Female) × Megalobrama amblycephala (Male). Biol. Reprod. 2014, 91, 93. [Google Scholar] [CrossRef]
- Wang, S.; Ye, X.L.; Wang, Y.D.; Chen, Y.T.; Lin, B.W.; Yi, Z.F.; Mao, Z.W.; Hu, F.Z.; Zhao, R.R.; Wang, J.; et al. A new type of homodiploid fish derived from the interspecific hybridization of female common carp × male blunt snout bream. Sci. Rep. 2017, 7, 4189. [Google Scholar] [CrossRef]
- Fricke, R.; Eschmeyer, W.N.; Van der Laan, R. (Eds.) Eschmeyer’s Catalog of Fishes: Genera, Species, References. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed on 16 September 2025).
- Kwan, Y.S.; Ko, M.H.; Jeon, Y.S.; Kim, H.J.; Won, Y.J. Bidirectional mitochondrial introgression between Korean cobitid fish mediated by hybridogenetic hybrids. Ecol. Evol. 2019, 9, 1244–1254. [Google Scholar] [CrossRef]
- Sotola, V.A.; Ruppel, D.S.; Bonner, T.H.; Nice, C.C.; Martin, N.H. Asymmetric introgression between fishes in the Red River basin of Texas is associated with variation in water quality. Ecol. Evol. 2019, 9, 2083–2095. [Google Scholar] [CrossRef]
- Hughes, L.C.; Cardoso, Y.P.; Sommer, J.A.; Cifuentes, R.; Cuello, M.; Somoza, G.M.; González-Castro, M.; Malabarba, L.R.; Cussac, V.; Habit, E.M.; et al. Biogeography, habitat transitions and hybridization in a radiation of South American silverside fishes revealed by mitochondrial and genomic RAD data. Mol. Ecol. 2020, 29, 738–751. [Google Scholar] [CrossRef]
- Irisarri, I.; Singh, P.; Koblmuller, S.; Torres-Dowdall, J.; Henning, F.; Franchini, P.; Fischer, C.; Lemmon, A.R.; Lemmon, E.M.; Thallinger, G.G.; et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 2018, 9, 3159. [Google Scholar] [CrossRef] [PubMed]
- Svardal, H.; Quah, F.X.; Malinsky, M.; Ngatunga, B.P.; Miska, E.A.; Salzburger, W.; Genner, M.J.; Turner, G.F.; Durbin, R. Ancestral Hybridization Facilitated Species Diversification in the Lake Malawi Cichlid Fish Adaptive Radiation. Mol. Biol. Evol. 2020, 37, 1100–1113. [Google Scholar] [CrossRef] [PubMed]
- Fricke, R.; Eschmeyer, W.N.; Fong, J.D. Species by Family/Subfamily. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (accessed on 16 September 2025).
- Chen, Y.Y. Fauna Sinica, Osteichthyes, Cypriniformes (II); Science Press: Beijing, China, 1998. [Google Scholar]
- Ren, L.; Li, W.H.; Qin, Q.B.; Dai, H.; Han, F.M.; Xiao, J.; Gao, X.; Cui, J.L.; Wu, C.; Yan, X.J.; et al. The subgenomes show asymmetric expression of alleles in hybrid lineages of Megalobrama amblycephala × Culter alburnus. Genome Res. 2019, 29, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Gao, X.; Cui, J.L.; Zhang, C.; Dai, H.; Luo, M.X.; He, S.F.; Qin, Q.B.; Luo, K.K.; Tao, M.; et al. Symmetric subgenomes and balanced homoeolog expression stabilize the establishment of allopolyploidy in cyprinid fish. BMC Biol. 2022, 20, 200. [Google Scholar] [CrossRef]
- Liu, Q.Z.; Wang, S.; Tang, C.C.; Tao, M.; Zhang, C.; Zhou, Y.; Qin, Q.B.; Luo, K.K.; Wu, C.; Hu, F.Z.; et al. The Research Advances in Distant Hybridization and Gynogenesis in Fish. Rev. Aquac. 2015, 17, e12972. [Google Scholar] [CrossRef]
- Liu, Q.F.; Qi, Y.H.; Liang, Q.L.; Xu, X.J.; Hu, F.Z.; Wang, J.; Xiao, J.; Wang, S.; Li, W.H.; Tao, M.; et al. The chimeric genes in the hybrid lineage of Carassius auratus cuvieri (f) × Carassius auratus red var. (o). Sci. China Life Sci. 2018, 61, 1079–1089. [Google Scholar] [CrossRef]
- Luo, K.K.; Xiao, J.; Liu, S.J.; Wang, J.; He, W.G.; Hu, J.; Qin, Q.B.; Zhang, C.; Tao, M.; Liu, Y. Massive Production of All-female Diploids and Triploids in the Crucian Carp. Int. J. Biol. Sci. 2011, 7, 487–495. [Google Scholar] [CrossRef]
- Yu, P.F.; Zhong, H.T.; Chen, H.; Liu, M.L.; Zhou, Y.; Cao, X.N.; Wu, C.; Sun, Y.; Wang, S.; Gong, D.B.; et al. Study of biological characteristics of an improved Japanese white crucian carp lineage derived from Carassius cuvieri (♀) × Megalobrama amblycephala (♂). Aquaculture 2023, 577, 739955. [Google Scholar] [CrossRef]
- Sambrook, C. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2016; Volume 3. [Google Scholar]
- Zardoya, R.; Doadrio, I. Phylogenetic relationships of Iberian cyprinids: Systematic and biogeographical implications. Proc. R. Soc. B-Biol. Sci. 1998, 265, 1365–1372. [Google Scholar] [CrossRef]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D.N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B-Biol. Sci. 2005, 360, 1847–1857. [Google Scholar] [CrossRef]
- Palumbi, S.R. Nucleic acids II: The polymerase chain reaction. In Molecular Systematics; Sinauer: Sunderland, MA, USA, 1996; pp. 205–247. [Google Scholar]
- Huang, Z.; Xu, X.; Tang, J.; Zhang, J.; Zheng, J.; Li, G.; He, J. Application and primer design of mitochondrial DNA D-loop of freshwater fishes. Zhongshan Daxue Xuebao/Acta Sci. Natralium Univ. Sunyatseni 2009, 48, 84–88. [Google Scholar]
- Shen, X.X.; Liang, D.; Feng, Y.J.; Chen, M.Y.; Zhang, P. A Versatile and Highly Efficient Toolkit Including 102 Nuclear Markers for Vertebrate Phylogenomics, Tested by Resolving the Higher Level Relationships of the Caudata. Mol. Biol. Evol. 2013, 30, 2235–2248. [Google Scholar] [CrossRef]
- Lovejoy, N.R.; Collette, B.B. Phylogenetic Relationships of New World Needlefishes (Teleostei: Belonidae) and the Biogeography of Transitions between Marine and Freshwater Habitats. Copeia 2001, 2001, 324–338. [Google Scholar] [CrossRef]
- Liu, S.Q.; Mayden, R.L.; Zhang, J.B.; Yu, D.; Tang, Q.Y.; Deng, X.; Liu, H.Z. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution. Gene 2012, 508, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.; Biosciences, I.; Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull Biosci 2011, 2, 60–61. [Google Scholar]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Tao, W.J.; Yang, L.; Mayden, R.L.; He, S.P. Phylogenetic relationships of Cypriniformes and plasticity of pharyngeal teeth in the adaptive radiation of cyprinids. Sci. China Life Sci. 2019, 62, 553–565. [Google Scholar] [CrossRef]
- Xia, X.; Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 2001, 92, 371–373. [Google Scholar] [CrossRef]
- Wilgenbusch, J.C.; Swofford, D. Inferring evolutionary trees with PAUP*. In Current Protocols in Bioinformatics; John Wiley & Sons: Hoboken, NJ, USA, 2003; Chapter 6, Unit 6.4. [Google Scholar]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol.Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D.; Nakagawa, S. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar]
- Templeton, A.R.; Crandall, K.A.; Sing, C.F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 1992, 132, 619–633. [Google Scholar] [CrossRef]
- Zhou, C.Y.; He, J.H.; Huang, H.H.; Wang, H.D.; Chu, Z.J.; Zhao, B.; Guo, S.R. Phylogeny of Neolissochilus and studies on intergeneric kinship geography of Cyprinidae. Hydrobiologia 2024, 851, 4739–4759. [Google Scholar] [CrossRef]
- Shadel, G.S.; Clayton, D.A. Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 1997, 66, 409–435. [Google Scholar] [CrossRef]
- Sajjad, A.; Jabeen, F.; Ali, M.; Zafar, S. DNA barcoding and phylogenetics of Wallago attu using mitochondrial COI gene from the River Indus. J. King. Saud. Univ. Sci. 2023, 35, 102725. [Google Scholar] [CrossRef]
- Wang, Y.J.; Lu, J.H.; Liu, Z.; Zhang, J.P. Genetic diversity of Gymnocypris chilianensis (Cypriniformes, Cyprinidae) unveiled by the mitochondrial DNA D-loop region. Mitochondrial DNA Part B-Resour. 2021, 6, 1292–1297. [Google Scholar] [CrossRef]
- Ma, Q.Z.; He, K.; Wang, X.D.; Jiang, J.P.; Zhang, X.Y.; Song, Z.B. Better Resolution for Cytochrome b than Cytochrome c Oxidase Subunit I to Identify Schizothorax Species (Teleostei: Cyprinidae) from the Tibetan Plateau and Its Adjacent Area. DNA Cell Biol. 2020, 39, 579–598. [Google Scholar] [CrossRef]
- Hao, C.L.; Liu, Y.J.; Wei, N.W.; Arken, K.; Shi, C.X.; Yue, C. The complete mitochondrial genomes of the Leuciscus baicalensis and Rutilus rutilus: A detailed genomic comparison among closely related species of the Leuciscinae subfamily. Gene 2023, 877, 147535. [Google Scholar] [CrossRef]
- Bufalino, A.P.; Mayden, R.L. Molecular phylogenetics of North American phoxinins (Actinopterygii: Cypriniformes: Leuciscidae) based on RAG1 and S7 nuclear DNA sequence data. Mol. Phylogenet. Evol. 2010, 55, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Waap, S.; Amaral, A.R.; Gomes, B.; Coelho, M.M. Multi-locus species tree of the chub genus Squalius (Leuciscinae: Cyprinidae) from western Iberia: New insights into its evolutionary history. Genetica 2011, 139, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Peng, L.Y.; Hu, X.J.; Zhao, Y.L.; Liu, S.J.; Hong, Y.H. Transcriptional quiescence of paternal mtDNA in cyprinid fish embryos. Sci. Rep. 2016, 6, 28571. [Google Scholar] [CrossRef]
- Wagner, A.; Kosnacova, H.; Chovanec, M.; Jurkovicova, D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int. J. Mol. Sci. 2022, 23, 7897. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Vaghjiani, V.; Jayasekara, W.S.N.; Cain, J.E.; St John, J.C. The degree of mitochondrial DNA methylation in tumor models of glioblastoma and osteosarcoma. Clin. Epigenet. 2018, 10, 157. [Google Scholar] [CrossRef]
- Wang, J. Hybridization contributes to reproductive isolation. Nat. Ecol. Evol. 2025, 9, 756–757. [Google Scholar] [CrossRef]
- Shi, X.; Ma, C.; Chen, N.; Xu, M.M.; Kambal, S.; Cai, Z.F.; Yang, Q.; Adeola, A.C.; Liu, L.S.; Wang, J.; et al. Selection Increases Mitonuclear DNA Discordance but Reconciles Incompatibility in African Cattle. Mol. Biol. Evol. 2025, 42, msaf039. [Google Scholar] [CrossRef]
- Kiktev, D.A.; Sheng, Z.; Lobachev, K.S.; Petes, T.D. GC content elevates mutation and recombination rates in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2018, 115, E7109–E7118. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Stoeckle, M.Y.; Zemlak, T.S.; Francis, C.M. Identification of Birds through DNA Barcodes. PLoS Biol. 2004, 2, e312. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Ratnasingham, S.; deWaard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.L.; Yu, D.; Sun, N.; Wang, C.; Chen, W.J.; Ding, Z.F.; He, S.P.; Yang, L.D. DNA barcoding and cryptic diversity in fishes from the Ili River Valley in China, Xinjiang. Ecol. Evol. 2024, 14, 12. [Google Scholar] [CrossRef]
- Chen, W.T.; Hubert, N.; Li, Y.F.; Xiang, D.G.; Cai, X.W.; Zhu, S.L.; Yang, J.P.; Zhou, C.J.; Li, X.H.; Li, J. Large-scale DNA barcoding of the subfamily Culterinae (Cypriniformes: Xenocyprididae) in East Asia unveils a geographical scale effect, taxonomic warnings and cryptic diversity. Mol. Ecol. 2022, 31, 3871–3887. [Google Scholar] [CrossRef]
- Saitoh, K.; Sado, T.; Mayden, R.L.; Hanzawa, N.; Nakamura, K.; Nishida, M.; Miya, M. Mitogenomic evolution and interrelationships of the cypriniformes (Actinopterygii: Ostariophysi): The first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences. J. Mol. Evol. 2006, 63, 826–841. [Google Scholar] [CrossRef]
- Suzuki, T.; Yano, K.; Ohba, S.Y.; Kawano, K.; Sekiné, K.; Bae, Y.J.; Tojo, K. Genome-wide molecular phylogenetic analyses and mating experiments which reveal the evolutionary history and an intermediate stage of speciation of a giant water bug. Mol. Ecol. 2021, 30, 5179–5195. [Google Scholar] [CrossRef] [PubMed]
- Kvist, S.; Earl, I.; Kink, E.; Oceguera-Figueroa, A.; Trontelj, P. Phylogenetic relationships and species delimitation in Haemopis (Annelida: Hirudinea: Haemopidae). Mol. Phylogenet. Evol. 2023, 178, 107648. [Google Scholar] [CrossRef]
- Chen, W.J.; Mayden, R.L. Molecular systematics of the Cyprinoidea (Teleostei: Cypriniformes), the world’s largest clade of freshwater fishes: Further evidence from six nuclear genes. Mol. Phylogenet. Evol. 2009, 52, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, N.V.; Sanda, R.; Zogaris, S.; Vukic, J. Evolutionary history of the Pelasgus minnows (Teleostei: Leuciscidae), an ancient endemic genus from the Balkan Peninsula. Mol. Phylogenet. Evol. 2021, 164, 107274. [Google Scholar] [CrossRef]
- Schonhuth, S.; Vukic, J.; Sanda, R.; Yang, L.; Mayden, R.L. Phylogenetic relationships and classification of the Holarctic family Leuciscidae (Cypriniformes: Cyprinoidei). Mol. Phylogenet. Evol. 2018, 127, 781–799. [Google Scholar] [CrossRef]
- Peng, L.; Wen, M.; Liu, Q.; Peng, J.; Tang, S.; Hong, Y.; Liu, S.; Xiao, Y. Persistence and Transcription of Paternal mtDNA Dependent on the Delivery Strategy Rather than Mitochondria Source in Fish Embryos. Cell. Physiol. Biochem. 2018, 47, 1898–1908. [Google Scholar] [CrossRef]
- Ren, L.; Luo, M.X.; Cui, J.L.; Gao, X.; Zhang, H.; Wu, P.; Wei, Z.H.; Tai, Y.K.; Li, M.D.; Luo, K.K.; et al. Variation and Interaction of Distinct Subgenomes Contribute to Growth Diversity in Intergeneric Hybrid Fish. Genom. Proteom. Bioinform. 2024, 22, qzae055. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, H.; Li, H.; Nakagawa, A.; Lin, J.L.; Lee, E.S.; Harry, B.L.; Skeen-Gaar, R.R.; Suehiro, Y.; William, D.; et al. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science 2016, 353, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Bravo, L.; Perdices, A.; De Miguel, R.J.; Lambea-Camblor, Á.; Penney, C.; Meloro, C.; Martinez-Cruz, B.; Brown, R.P. Hybridization and invasive species in a threatened freshwater fish community under environmental pressures: Morphometric and molecular evidence. Aquat. Conserv. Mar. Freshw. Ecosyst. 2024, 34, e4046. [Google Scholar] [CrossRef]
- Ketmaier, V.; Bianco, P. Understanding and conserving genetic diversity in a world dominated by alien introductions and native transfers: The case study of primary and peripheral freshwater fishes in southern Europe. In Conservation of Freshwater Fishes; Closs, G., Krkosek, M., Olden, J., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 506–534. [Google Scholar]
- Quilodrán, C.S.; Currat, M.; Montoya-Burgos, J.I. Effect of hybridization with genome exclusion on extinction risk. Conserv. Biol. 2018, 32, 1139–1149. [Google Scholar] [CrossRef]
- Curto, M.; Morgado-Santos, M.; Alexandre, C.M.; Alves, M.J.; Gante, H.F.; Gkenas, C.; Medeiros, J.P.; Pinheiro, P.J.; Almeida, P.R.; Magalhães, M.F.; et al. Widespread hybridization between invasive bleak (Alburnus alburnus) and Iberian chub Squalius spp.: A neglected conservation threat. Fishes 2022, 7, 247. [Google Scholar] [CrossRef]
- Sousa-Santos, C.; Gante, H.F.; Robalo, J.I.; Proença Cunha, P.; Martins, A.; Arruda, M.; Alves, M.J.; Almada, V. Evolutionary history and population genetics of a cyprinid fish (Iberochondrostoma olisiponensis) endangered by introgression from a more abundant relative. Conserv. Genet. 2014, 15, 665–677. [Google Scholar] [CrossRef]





| Species/Strains | Abbreviation | Female Parent | Male Parent | 
|---|---|---|---|
| Cyprinus carpio haematopterus | KOC | KOC | KOC | 
| gold fish (Carassius auratus) | GF | GF | GF | 
| Carassius cuvieri × Carassius auratus red var. | WR | WCC | RCC | 
| triploid C. auratus × Carassius auratus red var. | 3N × RCC | 3N | RCC | 
| triploid C. auratus × C. carpio | 3N × COC | 3N | COC | 
| Carassius auratus red var. × C. carpio | RCC × COC | RCC | COC | 
| new common carp-like homodiploid fish | 2nNCOC | COC | BSB | 
| new crucian carp-like homodiploid fish | 2nNCRC | COC | BSB | 
| improved Carassius cuvieri | WCC-L | WCC | BSB | 
| Genes | Forward Primers | Reverse Primers | Annealing (°C) | Time (s) | 
|---|---|---|---|---|
| Cytb [28] | Glu-F, 5′-CACGARACRGGRTCNAAYAA-3′ | Thr-R 5′-ACCTCCRATCTYCGGATTACA-3′ | 55 | 30 | 
| COI [29] | FishF1,5′-TCAACCAACCACAAAGACATTGGCAC-3′ | FishR2, 5′-ACTTCAGGGTGACCGAAGAATCAGAA-3′ | 55 | 30 | 
| 16S rRNA [30] | 16SarL, 5′-CGCCTGTTTATCAAAAACAT-3′ | 16SbrH, 5′-CCGGTCTGAACTCAGATCACG-3′ | 55 | 30 | 
| D-loop [31] | MitDl-F, 5′-CACCCYTRRCTCCCAAAGCYA-3′ | MitDl-R, 5′- GGTGCGGRKACTTGCATGTRTAA-3′ | 56 | 30 | 
| RAG1 [32] | RAG1_F, 5′-CTGAGCTGCAGTCAGTACCATAAGATGT-3′ | RAG1_R, 5′-TGAGCCTCCATGAACTTCTG AAGRTAYTT-3′ | 53 | 40 | 
| RAG2 [33] | RAG2-f2, 5′-ARACGCTCMTGTCCMACTGG-3′ | RAG2-R6, 5′-TGRTCCARGCAGAAGTACTTG-3′ | 58 | 30 | 
| EGR2b [34] | E2B287Fd, 5′-TTGACTCSCAGTATCCAGGTAAC-3′ | E2B1117Rb, 5′-AGGTGGATTTTGGTGTGTCTYTT-3′ | 52 | 60 | 
| IRBP2 [32] | IRBP2_F, 5′-AACTACTGCTCRCCAGAAAARC-3′ | IRBP2_R, 5′-GGAAATGCATAGTTGTCTGCAA-3′ | 55 | 30 | 
| RH2 [32] | RH_F, 5′-CTAATCCAGATCCTAACTTGCAAAG-3′ | RH_R, 5′-CAGTCCAGAGACGTCCGGCGTGGTCT-3′ | 58 | 40 | 
| Genes | Model | lnL | AIC | BIC | 
|---|---|---|---|---|
| COI | TIM + I + G | 18,866.729 | 37,749.457 | 37,771.133 | 
| 16S rRNA | GTR + I + G | 12,142.850 | 24,305.699 | 24,332.703 | 
| Cytb | GTR + I + G | 14,400.396 | 28,820.793 | 28,841.537 | 
| D-loop | HKY + G | 15,332.923 | 30,675.859 | 30,688.414 | 
| EGR2B | HKY + I + G | 6834.516 | 13,681.033 | 13,697.397 | 
| IRBP2 | TrNef + I + G | 7511.037 | 15,030.073 | 15,040.494 | 
| RH2 | HKY + I + G | 6834.517 | 13,681.033 | 13,697.398 | 
| RAG1 | SYM + I + G | 11,766.768 | 23,547.535 | 23,567.047 | 
| RAG2 | TVMef + I + G | 10,893.170 | 21,796.318 | 21,813.203 | 
| Genes | Total (bp) | Average Content (%) | ||||||
|---|---|---|---|---|---|---|---|---|
| T | C | A | G | A + T | G + C | |||
| Distant hybrids | COI | 681 | 28.5 | 28.0 | 26.2 | 17.3 | 54.7 | 45.3 | 
| Cytb | 1148 | 28.2 | 28.7 | 28.6 | 14.6 | 56.8 | 43.3 | |
| 16S rRNA | 1147 | 20.1 | 23.0 | 37.3 | 19.6 | 57.4 | 42.6 | |
| D-loop | 1000 | 32.7 | 20.5 | 32.5 | 14.3 | 65.2 | 34.8 | |
| EGR2b | 830 | 17.1 | 38.4 | 21.1 | 23.5 | 38.2 | 61.9 | |
| IRBP2 | 872 | 24.4 | 24.4 | 27.6 | 23.5 | 52.0 | 47.9 | |
| RAG1 | 930 | 25.6 | 22.7 | 24.9 | 26.9 | 50.5 | 49.6 | |
| RAG2 | 1055 | 23.4 | 26.4 | 24.1 | 26.1 | 47.5 | 52.5 | |
| RH2 | 872 | 26.9 | 30.8 | 17.9 | 24.4 | 44.8 | 55.2 | |
| Cyprinidae | COI | 681 | 29.3 | 25.7 | 27.6 | 17.4 | 56.9 | 43.1 | 
| Cytb | 1148 | 28.3 | 27.8 | 29.9 | 14.0 | 58.2 | 41.8 | |
| 16S rRNA | 1147 | 20.2 | 23.3 | 36.7 | 19.8 | 56.9 | 43.1 | |
| D-loop | 1000 | 32.7 | 20.1 | 34.2 | 13.0 | 66.9 | 33.1 | |
| EGR2b | 830 | 17.3 | 39.0 | 20.6 | 23.1 | 37.9 | 62.1 | |
| IRBP2 | 872 | 24.4 | 24.7 | 27.4 | 23.5 | 51.8 | 48.2 | |
| RAG1 | 930 | 24.0 | 24.3 | 25.5 | 26.2 | 49.5 | 50.5 | |
| Rag2 | 1055 | 24.1 | 27.0 | 23.4 | 25.4 | 47.5 | 52.4 | |
| RH2 | 872 | 24.4 | 33.0 | 16.9 | 25.7 | 41.3 | 58.7 | |
| Genes | Conserved Sites (C, %) | Variable Sites (V, %) | Parsimony Informative Sites (PIC, %) | Single Nucleotide Variant (SNV, %) | |
|---|---|---|---|---|---|
| Distant hybrids | COI | 540 (79.30%) | 140 (20.56%) | 138 (20.26%) | 2 (0.29%) | 
| Cytb | 866 (75.44%) | 279 (24.3%) | 269 (23.43%) | 10 (0.87%) | |
| 16S rRNA | 999 (87.10%) | 136 (11.86%) | 127 (11.07%) | 9 (0.87%) | |
| D-loop | 689 (68.90%) | 275 (27.50%) | 273 (27.30%) | 1 (0.10%) | |
| EGR2b | 755 (90.96%) | 75 (9.04%) | 66 (7.95%) | 9 (1.08%) | |
| IRBP2 | 686 (78.67%) | 175 (20.07%) | 165 (18.92%) | 10 (1.15%) | |
| RAG1 | 802 (86.24%) | 120 (12.9%) | 106 (11.4%) | 14 (1.51%) | |
| RAG2 | 783 (74.22%) | 267 (25.31%) | 191 (18.1%) | 75 (7.11%) | |
| RH2 | 713 (81.77%) | 156 (17.89%) | 144 (16.51%) | 12 (1.38%) | |
| Cyprinidae | COI | 303 (16.31%) | 1265 (68.08%) | 643 (34.61%) | 616 (33.15%) | 
| Cytb | 611 (53.50%) | 531 (46.50%) | 495 (43.35%) | 35 (3.06%) | |
| 16S rRNA | 1094 (62.41%) | 638 (36.39%) | 540 (30.80%) | 98 (5.59%) | |
| D-loop | 966 (50.00%) | 959 (49.64%) | 915 (47.36%) | 44 (2.28%) | |
| EGR2b | 653 (78.86%) | 175 (21.14%) | 131 (15.82%) | 44 (5.31%) | |
| IRBP2 | 488 (57.48%) | 306 (36.04%) | 300 (35.34%) | 61 (7.18%) | |
| RAG1 | 997 (63.30%) | 531 (33.71%) | 415 (26.35%) | 116 (7.37%) | |
| RAG2 | 776 (60.44%) | 505 (39.33%) | 332 (25.86%) | 173 (13.47%) | |
| RH2 | 620 (70.06%) | 253 (28.59%) | 215 (24.29%) | 38 (4.29%) | |
| C. auratus | BSB | COC | KOC | WCC-L | GF | RCC × COC | 2nNCRC | 2nNCOC | 3N × COC | 3N × RCC | 3N | WR | WCC | RCC | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C. auratus | 0 | ||||||||||||||
| BSB | 0.1602 | 0 | |||||||||||||
| COC | 0.1209 | 0.1481 | 0 | ||||||||||||
| KOC | 0.1185 | 0.1462 | 0.0029 | 0 | |||||||||||
| WCC-L | 0.0514 | 0.1715 | 0.1269 | 0.1232 | 0 | ||||||||||
| GF | 0.0124 | 0.1558 | 0.1255 | 0.1255 | 0.0561 | 0.001 | |||||||||
| RCC × COC | 0.0119 | 0.1552 | 0.1249 | 0.1249 | 0.0556 | 0.0005 | 0 | ||||||||
| 2nNCRC | 0.0119 | 0.1552 | 0.1249 | 0.1249 | 0.0556 | 0.0005 | 0 | 0 | |||||||
| 2nNCOC | 0.1191 | 0.1462 | 0.0015 | 0.0015 | 0.125 | 0.1236 | 0.1231 | 0.1231 | 0 | ||||||
| 3N × COC | 0.0049 | 0.1584 | 0.1197 | 0.1197 | 0.0492 | 0.0094 | 0.0089 | 0.0089 | 0.1179 | 0 | |||||
| 3N × RCC | 0.0049 | 0.1584 | 0.1197 | 0.1197 | 0.0492 | 0.0094 | 0.0089 | 0.0089 | 0.1179 | 0 | 0 | ||||
| 3N | 0.0049 | 0.1584 | 0.1197 | 0.1197 | 0.0492 | 0.0094 | 0.0089 | 0.0089 | 0.1179 | 0 | 0 | 0 | |||
| WR | 0.0514 | 0.1715 | 0.1269 | 0.1232 | 0 | 0.0561 | 0.0556 | 0.0556 | 0.125 | 0.0492 | 0.0492 | 0.0492 | 0 | ||
| WCC | 0.0519 | 0.1721 | 0.1274 | 0.1238 | 0.0005 | 0.0566 | 0.0561 | 0.0561 | 0.1256 | 0.0497 | 0.0497 | 0.0497 | 0.0005 | 0 | |
| RCC | 0.0074 | 0.1584 | 0.1191 | 0.1191 | 0.0497 | 0.0099 | 0.0094 | 0.0094 | 0.1173 | 0.0054 | 0.0054 | 0.0054 | 0.0497 | 0.0503 | 0 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Sun, Y.; Liao, T.; Zhong, H.; Gu, Q.; Luo, K. Molecular Phylogenetics of Seven Cyprinidae Distant Hybrid Lineages: Genetic Variation, 2nNCRC Convergent Evolution, and Germplasm Implications. Biology 2025, 14, 1527. https://doi.org/10.3390/biology14111527
Wang Z, Sun Y, Liao T, Zhong H, Gu Q, Luo K. Molecular Phylogenetics of Seven Cyprinidae Distant Hybrid Lineages: Genetic Variation, 2nNCRC Convergent Evolution, and Germplasm Implications. Biology. 2025; 14(11):1527. https://doi.org/10.3390/biology14111527
Chicago/Turabian StyleWang, Ziyi, Yaxian Sun, Ting Liao, Hui Zhong, Qianhong Gu, and Kaikun Luo. 2025. "Molecular Phylogenetics of Seven Cyprinidae Distant Hybrid Lineages: Genetic Variation, 2nNCRC Convergent Evolution, and Germplasm Implications" Biology 14, no. 11: 1527. https://doi.org/10.3390/biology14111527
APA StyleWang, Z., Sun, Y., Liao, T., Zhong, H., Gu, Q., & Luo, K. (2025). Molecular Phylogenetics of Seven Cyprinidae Distant Hybrid Lineages: Genetic Variation, 2nNCRC Convergent Evolution, and Germplasm Implications. Biology, 14(11), 1527. https://doi.org/10.3390/biology14111527
 
        


 
                         
       