Multi-Omics Analysis and Comparison of the Developmental Characteristics of Muscle Fiber Types Between Huainan and Large White Pigs in Early Postnatal Period
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Experimental Animals and Collection of Samples
2.2. ATPase Staining of Longissimus Dorsi Muscle and Muscle Fiber Cross-Sectional Area Analysis
2.3. Analysis of Transcriptome Sequencing Data
2.3.1. RNA Extraction, Library Construction, and Sequencing
2.3.2. Screening and Functional Annotation of Differentially Expressed Genes
2.4. Analysis of Metabolome Sequencing Data
2.5. qRT-PCR Validates Accuracy of Sequencing Data
3. Results
3.1. Morphological Changes in the Longissimus Dorsi Muscle Fibers at Different Developmental Stages
3.2. Dynamic Transcriptome Changes in Longissimus Dorsi Muscle at Four Developmental Stages in Huainan and Large White Pigs
3.2.1. Sequencing Data Quality Control
3.2.2. Differential Transcriptome Analysis Across Four Developmental Stages
3.2.3. Differential Analysis of Transcriptome Between Huainan Pigs and Large White Pigs
3.2.4. Expression Analysis of Different Muscle Fiber Type Marker Genes
3.2.5. Screening of Key Genes for Muscle Fiber Development
3.2.6. Validation of Transcriptome Sequencing Results by qRT-PCR
3.2.7. Functional Enrichment Analysis of Differentially Expressed Genes
3.3. Dynamic Metabolome Changes in Longissimus Dorsi Muscle at Four Developmental Stages in Huainan and Large White Pigs
3.3.1. Statistical Analysis of Differential Metabolites
3.3.2. Functional Enrichment Analysis of Differential Metabolites
4. Discussion
4.1. Difference Analysis and Significance of Muscle Fiber Types
4.2. Regulation of Co-Differentially Expressed Genes
4.3. Changes in Metabolites and Their Relationship with Muscle Fiber Types
4.4. Correlative Analysis of Transcriptome and Metabolome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATPase | Adenosine triphosphatase |
DEGs | Differentially expressed genes |
DHA | Docosahexaenoic acid |
FPKM | Fragments per kilobase of exon model per million mapped fragments |
GO | Gene ontology |
HN pig | Huainan pig |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KLF4 | KLF transcription factor 4 |
LW pig | Large White pigs |
MTA | 5′-Methylthioadenosine |
MYH1 | Myosin heavy chain 1 |
MYH4 | Myosin heavy chain 4 |
MYH7 | Myosin heavy chain 7 |
MyoD | Myogenic differentiation |
NO | Nitric oxide |
NOS1 | Nitric oxide synthase 1 |
OPLS-DA | Orthogonal partial least squares discriminant analysis |
PCA | Principal component analysis |
PCs | Principal components |
PGC-1α | PPARG coactivator 1 alpha |
PPARα | Peroxisome proliferator activated receptor alpha |
QC | Quality control |
qRT-PCR | Quantitative real-time PCR |
RSD | Relative standard deviation |
SH3KBP1 | SH3 domain containing kinase-binding protein 1 |
THRSP | Thyroid hormone responsive |
TRARG1 | Trafficking regulator of GLUT4 1 |
UMP | Uridine 5′-monophosphate |
References
- Sosnicki, A.; Gonzalez, J.; Fields, B.; Knap, P.A. Review of porcine skeletal muscle plasticity and implications for genetic improvement of carcass and meat quality. Meat Sci. 2025, 219, 109676. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gao, H.; Fu, Y.; Chen, Y.; Song, G.; Jin, Z.; Zhang, Y.; Yin, J.; Yin, Y.; Xu, K. Comprehensive characterization of the differences in metabolites, lipids, and volatile flavor compounds between Ningxiang and Berkshire pigs using multi-omics techniques. Food Chem. 2024, 457, 139807. [Google Scholar] [CrossRef]
- Deng, L.; Li, W.; Liu, W.; Liu, Y.; Xie, B.; Groenen, M.A.M.; Madsen, O.; Yang, X.; Tang, Z. Integrative metabolomic and transcriptomic analysis reveals difference in glucose and lipid metabolism in the longissimus muscle of Luchuan and Duroc pigs. Front. Genet. 2023, 14, 1128033. [Google Scholar] [CrossRef]
- Tecku, P.K.M.; Chen, D.; Wang, K.; Yu, S.; Chen, J.; Tang, G. Identification of key genes influencing carcass and meat quality traits in Neijiang and Large White pigs using gene co-expression analysis. Anim. Biosci. 2025. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Jia, M.; Li, J.; Lan, X.; Yuan, L.; Xing, B.; Pan, C.; Lu, Q.; Wang, J. Transcriptomics characteristics and differentiation of subcutaneous adipose tissue among Huainan pigs and its hybrid genetic populations. Front. Vet. Sci. 2025, 12, 1545694. [Google Scholar] [CrossRef]
- Park, J.; Moon, S.S.; Song, S.; Cheng, H.; Im, C.; Du, L.; Kim, G.D. Comparative review of muscle fiber characteristics between porcine skeletal muscles. J. Anim. Sci. Technol. 2024, 66, 251–265. [Google Scholar] [CrossRef]
- Weng, K.; Huo, W.; Li, Y.; Zhang, Y.; Zhang, Y.; Chen, G.; Xu, Q. Fiber characteristics and meat quality of different muscular tissues from slow- and fast-growing broilers. Poult. Sci. 2022, 101, 101537. [Google Scholar] [CrossRef]
- Guo, J.; Shan, T.; Wu, T.; Zhu, L.N.; Ren, Y.; An, S.; Wang, Y. Comparisons of different muscle metabolic enzymes and muscle fiber types in Jinhua and Landrace pigs. J. Anim. Sci. 2011, 89, 185–191. [Google Scholar] [CrossRef]
- Huang, Y.N.; Ao, Q.W.; Jiang, Q.Y.; Guo, Y.F.; Lan, G.Q.; Jiang, H.S. Comparisons of different myosin heavy chain types, AMPK, and PGC-1α gene expression in the longissimus dorsi muscles in Bama Xiang and Landrace pigs. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Li, L.; Huang, Y.; Tang, X.; Shu, Y.; Cui, D.; Yu, C.; Hu, Y.; Ma, J.; Xiao, S.; et al. Investigation on muscle fiber types and meat quality and estimation of their heritability and correlation coefficients with each other in four pig populations. Anim. Sci. J. 2024, 95, e13915. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, X.; Chu, M.; Guo, X.; Pei, J.; Xiong, L.; Ma, X.; Bao, P.; Liang, C.; Yan, P. Whole transcriptome analyses and comparison reveal the metabolic differences between oxidative and glycolytic skeletal muscles of yak. Meat Sci. 2022, 194, 108948. [Google Scholar] [CrossRef]
- Ma, M.T.; Cai, B.L.; Zhou, Z.; Kong, S.F.; Zhang, J.; Xu, H.P.; Zhang, X.Q.; Nie, Q.H. LncRNA-TBP mediates TATA-binding protein recruitment to regulate myogenesis and induce slow-twitch myofibers. Cell Commun. Signal 2023, 21, 7. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Wu, W.J.; Hou, L.M.; Chen, H.X.; Zuo, B.; Xiong, Y.Z.; Yang, J.Z. Skeletal muscle-specific overexpression of PGC-1α induces fiber-type conversion through enhanced mitochondrial respiration and fatty acid oxidation in mice and pigs. Int. J. Biol. Sci. 2017, 13, 1152–1162. [Google Scholar] [CrossRef]
- Goron, A.; Lamarche, F.; Blanchet, S.; Delangle, P.; Schlattner, U.; Fontaine, E.; Moinard, C. Citrulline stimulates muscle protein synthesis, by reallocating ATP consumption to muscle protein synthesis. J. Cachexia Sarcopenia Muscle 2019, 10, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Y.; Jiang, Z.Y.; Lin, Y.C.; Zheng, C.T.; Zhou, G.L. Dietary supplementation with carnosine improves antioxidant capacity and meat quality of finishing pigs. J. Anim. Physiol. Anim. Nutr. 2010, 94, e286–e295. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, M.; Yamaguchi, T.; Ishida, A.; Ashihara, A. Changes in muscle fiber type and expression of mRNA of myosin heavy chain isoforms in porcine muscle during pre- and postnatal development. Anim. Sci. J. 2017, 88, 364–371. [Google Scholar] [CrossRef]
- Núñez, Y.; Radović, Č.; Savić, R.; García-Casco, J.M.; Čandek-Potokar, M.; Benítez, R.; Radojković, D.; Lukić, M.; Gogić, M.; Muñoz, M.; et al. Muscle transcriptome analysis teveals molecular pathways related to oxidative phosphorylation, antioxidant defense, fatness and growth in Mangalitsa and Moravka pigs. Animals 2021, 11, 844. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wu, J.J.; Li, Y.J.; Zhou, J.W.; Zhang, Y.; Qiao, M.; Feng, Y.; Sun, H.; Li, Z.P.; Li, L.H.; et al. A single-cell atlas of porcine skeletal muscle reveals mechanisms that regulate intramuscular adipogenesis. Int. J. Mol. Sci. 2024, 25, 12935. [Google Scholar] [CrossRef]
- Mao, H.G.; Yin, Z.Z.; Wang, M.T.; Zhang, W.W.; Raza, S.H.A.; Althobaiti, F.; Qi, L.; Wang, J.B. Expression of DGAT2 gene and its associations with intramuscular fat content and breast muscle fiber characteristics in Domestic pigeons (Columba livia). Front. Vet. Sci. 2022, 9, 847363. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Yang, F.; Huang, Y.L.; He, L.Q.; Li, Y.Y.; Wan, Y.C.E.; Ding, Y.Z.; Chan, K.M.; Xie, T.; Sun, H.; et al. ATF3 induction prevents precocious activation of skeletal muscle stem cell by regulating H2B expression. Nat. Commun. 2023, 14, 4978. [Google Scholar] [CrossRef]
- Wang, L.; Tong, X.; Gu, F.; Zhang, L.; Chen, W.; Cheng, X.W.; Xie, L.W.; Chang, Y.S.; Zhang, H.B. The KLF14 transcription factor regulates hepatic gluconeogenesis in mice. J. Biol. Chem. 2017, 292, 21631–21642. [Google Scholar] [CrossRef]
- Kong, S.F.; Cai, B.L.; Nie, Q.H. PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis. Mol. Genet. Genom. 2022, 297, 621–633. [Google Scholar] [CrossRef]
- Taherkhani, S.; Valaei, K.; Arazi, H.; Suzuki, K. An overview of physical exercise and antioxidant supplementation influences on skeletal muscle oxidative stress. Antioxidants 2021, 10, 1528. [Google Scholar] [CrossRef] [PubMed]
- Guiraud, A.; Couturier, N.; Christin, E.; Castellano, L.; Daura, M.; Kretz-Remy, C.; Janin, A.; Ghasemizadeh, A.; Del Carmine, P.; Monteiro, L.; et al. SH3KBP1 promotes skeletal myofiber formation and functionality through ER/SR architecture integrity. EMBO Rep. 2025, 26, 2166–2191. [Google Scholar] [CrossRef] [PubMed]
- Tegeler, A.P.; Ford, H.R.; Fiallo-Diez, J.F.; Michelotti, T.C.; Johnson, B.J.; Benitez, O.J.; Woerner, D.R.; Strieder-Barboza, C. transcriptome and cellular evidence of depot-specific function in beef cattle intramuscular, subcutaneous, and visceral adipose tissues. Biology 2025, 14, 848. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, X.D.; Liu, Y.; Shen, Y.; Qu, H.; Zhao, Q.S.; Leng, Y.; Huang, S. Activation of SIK1 by phanginin A regulates skeletal muscle glucose uptake by phosphorylating HADC4/5/7 and enhancing GLUT4 expression and translocation. Nat. Prod. Bioprospect. 2025, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Cha, H.N.; Shin, M.G.; Park, S.; Kim, Y.; Kim, M.S.; Shin, K.H.; Thoudam, T.; Lee, E.J.; Wolfe, R.R.; et al. Inhibitory Regulation of FOXO1 in PPARδ expression drives mitochondrial dysfunction and insulin resistance. Diabetes 2024, 73, 1084–1098. [Google Scholar] [CrossRef]
- Hu, G.H.; Wang, Z.; Zhang, R.M.; Sun, W.P.; Chen, X.Y. The role of apelin/apelin receptor in energy metabolism and water homeostasis: A comprehensive narrative review. Front. Physiol. 2021, 12, 632886. [Google Scholar] [CrossRef]
- Nakashima, M.; Suga, N.; Yoshikawa, S.; Matsuda, S. Caveolin and NOS in the development of muscular dystrophy. Int. J. Mol. Sci. 2024, 25, 8771. [Google Scholar] [CrossRef]
- Liu, S.S.; Fu, S.; Wang, G.D.; Cao, Y.; Li, L.L.; Li, X.M.; Yang, J.; Li, N.; Shan, Y.B.; Cao, Y.; et al. Glycerol-3-phosphate biosynthesis regenerates cytosolic NAD+ to alleviate mitochondrial disease. Cell Metab. 2021, 33, 1974–1987.e9. [Google Scholar] [CrossRef]
- Aldini, G.; de Courten, B.; Regazzoni, L.; Gilardoni, E.; Ferrario, G.; Baron, G.; Altomare, A.; D’Amato, A.; Vistoli, G.; Carini, M. Understanding the antioxidant and carbonyl sequestering activity of carnosine: Direct and indirect mechanisms. Free Radic. Res. 2021, 55, 321–330. [Google Scholar] [CrossRef]
- Tsuchida, K.; Sakiyama, N. Blue light-induced lipid oxidation and the antioxidant property of hypotaurine: Evaluation via measuring ultraweak photon emission. Photochem. Photobiol. Sci. 2023, 22, 345–356. [Google Scholar] [CrossRef]
- Yin, J.; Li, Y.X.; Tian, Y.; Zhou, F.; Ma, J.; Xia, S.T.; Yang, T.; Ma, L.B.; Zeng, Q.H.; Liu, G.; et al. Obese Ningxiang pig-derived microbiota rewires carnitine metabolism to promote muscle fatty acid deposition in lean DLY pigs. Innovation 2023, 4, 100486. [Google Scholar] [CrossRef]
- Abudupataer, M.; Zou, W.; Zhang, W.; Ding, S.; Zhou, Z.; Chen, J.; Li, H.; Zhang, Z.; Wang, C.; Ge, J.; et al. Histamine deficiency delays ischaemic skeletal muscle regeneration via inducing aberrant inflammatory responses and repressing myoblast proliferation. J. Cell. Mol. Med. 2019, 23, 8392–8409. [Google Scholar] [CrossRef]
- Lincoln, T.M.; Dey, N.; Sellak, H. Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: From the regulation of tone to gene expression. J. Appl. Physiol. (1985) 2001, 91, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Dobrzyn, A.; Ntambi, J.M. The role of stearoyl-CoA desaturase in the control of metabolism. Prostaglandins Leukot. Essent. Fat. Acids 2005, 73, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Mo, M.J.; Zhang, Z.H.; Wang, X.T.; Shen, W.J.; Zhang, L.; Lin, S.D. Molecular mechanisms underlying the impact of muscle fiber types on meat quality in livestock and poultry. Front. Vet. Sci. 2023, 10, 1284551. [Google Scholar] [CrossRef]
- Han, P.P.; Li, P.H.; Zhou, W.D.; Fan, L.J.; Wang, B.B.; Liu, H.; Gao, C.; Du, T.R.; Pu, G.; Wu, C.W.; et al. Effects of various levels of dietary fiber on carcass traits, meat quality and myosin heavy chain I, IIa, IIx and IIb expression in muscles in Erhualian and Large White pigs. Meat Sci. 2020, 169, 108160. [Google Scholar] [CrossRef]
- Mebrahtu, A.; Smith, I.C.; Liu, S.; Abusara, Z.; Leonard, T.R.; Joumaa, V.; Herzog, W. Reconsidering assumptions in the analysis of muscle fibre cross-sectional area. J. Exp. Biol. 2024, 227, jeb248187. [Google Scholar] [CrossRef]
- Fuerniss, L.K.; Johnson, B.J. Semi-automated technique for bovine skeletal muscle fiber cross-sectional area and myosin heavy chain determination. J. Anim. Sci. 2023, 101, skad205. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.F.; Wang, X.Y.; Xu, R.; Liang, Z.Y.; Zhu, Q.; Chen, M.L.; Lin, Z.H.; Li, C.G.; Duo, T.Q.; Tong, X.; et al. KLF4 regulates skeletal muscle development and regeneration by directly targeting P57 and Myomixer. Cell Death Dis. 2023, 14, 612. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.R.; Tian, L.; Zhang, M.; Sun, B.; Chen, L.M. SGLT2 inhibitor canagliflozin reduces visceral adipose tissue in db/db mice by modulating AMPK/KLF4 signaling and regulating mitochondrial dynamics to induce browning. Mol. Cell. Endocrinol. 2024, 592, 112320. [Google Scholar] [CrossRef]
- Fontes, M.T.; Costa, T.J.; de Paula, R.B.; Araújo, F.A.; Barros, P.R.; Townsend, P.; Butler, L.; Velazquez, K.T.; Hollis, F.; Bomfim, G.F.; et al. A skeletal muscle-mediated anticontractile response on vascular tone: Unraveling the lactate-AMPK-NOS1 pathway in femoral arteries. Function 2024, 5, zqae042. [Google Scholar] [CrossRef]
- Sermersheim, T.J.; Phillips, L.J.; Evans, P.L.; Kahn, B.B.; Welc, S.S.; Witczak, C.A. Regulation of injury-induced skeletal myofiber regeneration by glucose transporter 4 (GLUT4). Skelet. Muscle 2024, 14, 33. [Google Scholar] [CrossRef]
- Chadt, A.; Al-Hasani, H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 2020, 472, 1273–1298. [Google Scholar] [CrossRef]
- Li, Y.J.; Xu, K.; Zhou, A.; Xu, Z.; Wu, J.J.; Peng, X.W.; Mei, S.Q.; Chen, H.B. Integrative transcriptomics and proteomics analysis reveals THRSP’s role in lipid metabolism. Genes 2024, 15, 1562. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Kiersztan, A.; Drozak, J. Biosynthesis of carnosine and related dipeptides in vertebrates. Curr. Protein Pept. Sci. 2018, 19, 771–789. [Google Scholar] [CrossRef] [PubMed]
- Wolfgang, M.J. Remodeling glycerophospholipids affects obesity-related insulin signaling in skeletal muscle. J. Clin. Investig. 2021, 131, e148176. [Google Scholar] [CrossRef]
- Inoue, M.; Kubota, A.; Takazawa, Y.; Nakagawara, K.; Ishige, K.; Suzuki, Y. 5’-UMP inhibited muscle atrophy due to detraining: A randomized, double-blinded, placebo-controlled, parallel-group comparative study. Front. Sports Act. Living 2024, 6, 1403215. [Google Scholar] [CrossRef]
- Mäntyselkä, S.; Kolari, K.; Baumert, P.; Ylä-Outinen, L.; Kuikka, L.; Lahtonen, S.; Permi, P.; Wackerhage, H.; Kalenius, E.; Kivelä, R.; et al. Serine synthesis pathway enzyme PHGDH is critical for muscle cell biomass, anabolic metabolism, and mTORC1 signaling. Am. J. Physiol. Endocrinol. Metab. 2024, 326, E73–E91. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.H.; Ouyang, S.X.; Zhang, G.Y.; Cao, Q.; Xin, R.; Yin, H.; Wu, J.W.; Zhang, Y.; Zhang, Z.; Liu, Y.; et al. GSDME promotes MASLD by regulating pyroptosis, Drp1 citrullination-dependent mitochondrial dynamic, and energy balance in intestine and liver. Cell Death Differ. 2024, 31, 1467–1486. [Google Scholar] [CrossRef] [PubMed]
- Massenet, J.; Gardner, E.; Chazaud, B.; Dilworth, F.J. Epigenetic regulation of satellite cell fate during skeletal muscle regeneration. Skelet. Muscle 2021, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Ishihara, T.; Ichimura, A.; Ishihara, N. Mitochondrial dynamics define muscle fiber type by modulating cellular metabolic pathways. Cell Rep. 2023, 42, 112434. [Google Scholar] [CrossRef]
Gene | Primer Sequences (5′-3′) | Product Length/bp |
---|---|---|
PPP1R15A | F: TGAGGAGGAAGAGGATGGGG | 95 |
R: GATACATCTGGTCCCTGCGG | ||
CCN1 | F: GTGAAGAAGTACCGGCCCAA | 124 |
R: CGTTCTTGGCAAACGTCTCC | ||
IGF1R | F: ACAGAGAACCACGAGTGCTG | 97 |
R: CGTAGTAGTAGTGGCGGCAG | ||
SIX4 | F: GGGTCTACCTCCCAGGATGT | 90 |
R: AGTACTGGGGCTGTAGGAGG | ||
MYOD1 | F: AACTGTTCCGACGGCATGAT | 156 |
R: CACGATGCTGGACAGACAGT | ||
MSTN | F: TGAGACCCGTCAAGACTCCT | 123 |
R: CAGTGCCTGGGTTCATGTCA | ||
GAPDH | F: ACCAGGTTGTGTCCTGTGAC | 94 |
R: AGCTTGACGAAGTGGTCGTT |
Breed | 0 d | 7 d | 14 d | 21 d |
---|---|---|---|---|
Huainan (um2) | 96.45 ± 3.86 | 273.90 ± 8.91 | 362.90 ± 10.21 | 612.80 ± 15.43 |
Large White (um2) | 74.47 ± 2.42 | 271.20 ± 8.28 | 376.30 ± 13.26 | 554.30 ± 19.74 |
p-value | 0.86 | 0.83 | 0.99 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Jia, M.; Zhang, H.; Guo, Y.; Zhang, Q.; Yan, X.; Lu, Q.; Zhang, S.; Xing, B. Multi-Omics Analysis and Comparison of the Developmental Characteristics of Muscle Fiber Types Between Huainan and Large White Pigs in Early Postnatal Period. Biology 2025, 14, 1409. https://doi.org/10.3390/biology14101409
Wang J, Jia M, Zhang H, Guo Y, Zhang Q, Yan X, Lu Q, Zhang S, Xing B. Multi-Omics Analysis and Comparison of the Developmental Characteristics of Muscle Fiber Types Between Huainan and Large White Pigs in Early Postnatal Period. Biology. 2025; 14(10):1409. https://doi.org/10.3390/biology14101409
Chicago/Turabian StyleWang, Jing, Mingyang Jia, Hanbing Zhang, Yaping Guo, Qi Zhang, Xiangzhou Yan, Qingxia Lu, Sihuan Zhang, and Baosong Xing. 2025. "Multi-Omics Analysis and Comparison of the Developmental Characteristics of Muscle Fiber Types Between Huainan and Large White Pigs in Early Postnatal Period" Biology 14, no. 10: 1409. https://doi.org/10.3390/biology14101409
APA StyleWang, J., Jia, M., Zhang, H., Guo, Y., Zhang, Q., Yan, X., Lu, Q., Zhang, S., & Xing, B. (2025). Multi-Omics Analysis and Comparison of the Developmental Characteristics of Muscle Fiber Types Between Huainan and Large White Pigs in Early Postnatal Period. Biology, 14(10), 1409. https://doi.org/10.3390/biology14101409