Osteosarcoma: A Comprehensive Morphological and Molecular Review with Prognostic Implications
Simple Summary
Abstract
1. Introduction
2. Macroscopic Features
3. Radiological Features
4. Histopathology
5. Differential Diagnosis
6. Immunohistochemistry
7. Molecular Pathology and Tumor Microenvironment
7.1. Genetic Alterations
7.2. Tumor Microenvironment
8. Survivorship
9. Prognostic Biological Factors
9.1. Established Prognostic Factors
9.2. Controversial/Novel Factors
9.3. Emerging Molecular and Immune Markers
10. Considerations and Perspectives
11. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OS | Osteosarcoma |
GSDMD | Gasdermin D |
ctDNA | Circulating tumor DNA |
LDH | Lactate dehydrogenase |
ALP | Alkaline phosphatase |
TAM | Tumor associated macrophages |
TIL | Tumor infiltrating lymphocytes |
UPR | Unfolded protein response |
IHC | Immunohistochemistry |
WHO | World health organization |
References
- Bashir, A.; Ismail, A.; Mavadia, A.; Ghose, A.; Ovsepian, S.V.; Boussios, S. Pathobiology and Molecular Pathways Implicated in Osteosarcoma Lung Metastasis: A Scoping Review. Technol. Cancer Res. Treat. 2025, 24, 15330338251359716. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, E.; Bocchi, M.B.; Giuli, C.; Farine, F.; Di Costa, D.; Maccauro, G.; Vitiello, R. Roles and Applications of Circulating Tumor-Derived RNAs in Sarcoma Patients: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 11715. [Google Scholar] [CrossRef]
- Beird, H.C.; Bielack, S.S.; Flanagan, A.M.; Gill, J.; Heymann, D.; Janeway, K.A.; Livingston, J.A.; Roberts, R.D.; Strauss, S.J.; Gorlick, R. Osteosarcoma. Nat. Rev. Dis. Primer 2022, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, P.S.; Helman, L.J. New Horizons in the Treatment of Osteosarcoma. N. Engl. J. Med. 2021, 385, 2066–2076. [Google Scholar] [CrossRef]
- Bai, G.; Fu, H.; Zhang, J.; Yang, Y.; Xu, J.; Sun, L.; Zhang, L.; Chen, W. Survival profiles and associated factors for overall and cancer specific survival in patients with chondroblast and fibroblastic osteosarcoma. Sci. Rep. 2025, 15, 24310. [Google Scholar] [CrossRef]
- Ferreira, I.V.; Cattan, M.E.S.; Chone, C.T.; Antolini, A.; Abu Egal, E.S.; Altemani, A.; Mariano, F.V. Radiation-induced osteosarcoma in the head and neck region: Case report and literature review. Oral Oncol. 2025, 162, 107216. [Google Scholar] [CrossRef]
- Mavrogenis, A.F.; Pala, E.; Guerra, G.; Ruggieri, P. Post-radiation sarcomas. Clinical outcome of 52 Patients. J. Surg. Oncol. 2012, 105, 570–576. [Google Scholar] [CrossRef]
- Mirabello, L.; Zhu, B.; Koster, R.; Karlins, E.; Dean, M.; Yeager, M.; Gianferante, M.; Spector, L.G.; Morton, L.M.; Karyadi, D.; et al. Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients With Osteosarcoma. JAMA Oncol. 2020, 6, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Mangham, D.C.; Davie, M.W.; Grimer, R.J. Sarcoma arising in Paget’s disease of bone: Declining incidence and increasing age at presentation. Bone 2009, 44, 431–436. [Google Scholar] [CrossRef]
- Poudel, B.H.; Koks, S. The whole transcriptome analysis using FFPE and fresh tissue samples identifies the molecular fingerprint of osteosarcoma. Exp. Biol. Med. Maywood NJ 2024, 249, 10161. [Google Scholar] [CrossRef]
- Ho, X.D.; Nguyen, H.G.; Trinh, L.H.; Reimann, E.; Prans, E.; Kõks, G.; Maasalu, K.; Le, V.Q.; Nguyen, V.H.; Le, N.T.N.; et al. Analysis of the Expression of Repetitive DNA Elements in Osteosarcoma. Front. Genet. 2017, 8, 193. [Google Scholar] [CrossRef]
- Brar, G.S.; Schmidt, A.A.; Willams, L.R.; Wakefield, M.R.; Fang, Y. Osteosarcoma: Current insights and advances. Explor. Target. Anti-Tumor Ther. 2025, 6, 1002324. [Google Scholar] [CrossRef]
- Hauben, E.I.; Weeden, S.; Pringle, J.; Van Marck, E.A.; Hogendoorn, P.C.W. Does the histological subtype of high-grade central osteosarcoma influence the response to treatment with chemotherapy and does it affect overall survival? A study on 570 patients of two consecutive trials of the European Osteosarcoma Intergroup. Eur. J. Cancer Oxf. Engl. 1990 2002, 38, 1218–1225. [Google Scholar] [CrossRef]
- Klein, M.J.; Siegal, G.P. Osteosarcoma: Anatomic and histologic variants. Am. J. Clin. Pathol. 2006, 125, 555–581. [Google Scholar] [CrossRef]
- Cai, Z.D.; Liu, J.-J.; Liu, S.; Wang, J.-G.; Zhu, W.; Hua, Y.-Q.; Sun, W. Telangiectatic osteosarcoma: A review of literature. OncoTargets Ther. 2013, 6, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, M.S.; Perisano, C.; Della Rocca, C.; Hardes, J.; Barone, C.; Fabbriciani, C.; Maccauro, G. A case of parosteal osteosarcoma with a rare complication of myositis ossificans. World J. Surg. Oncol. 2012, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Mirabello, L.; Troisi, R.J.; Savage, S.A. Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the Surveillance, Epidemiology, and End Results Program. Cancer 2009, 115, 1531–1543. [Google Scholar] [CrossRef]
- Yarmish, G.; Klein, M.J.; Landa, J.; Lefkowitz, R.A.; Hwang, S. Imaging characteristics of primary osteosarcoma: Nonconventional subtypes. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc. 2010, 30, 1653–1672. [Google Scholar] [CrossRef] [PubMed]
- Harper, K.; Sathiadoss, P.; Saifuddin, A.; Sheikh, A. A review of imaging of surface sarcomas of bone. Skeletal Radiol. 2021, 50, 9–28. [Google Scholar] [CrossRef]
- Staals, E.L.; Bacchini, P.; Bertoni, F. High-grade surface osteosarcoma: A review of 25 cases from the Rizzoli Institute. Cancer 2008, 112, 1592–1599. [Google Scholar] [CrossRef]
- Andresen, K.J.; Sundaram, M.; Unni, K.K.; Sim, F.H. Imaging features of low-grade central osteosarcoma of the long bones and pelvis. Skeletal Radiol. 2004, 33, 373–379. [Google Scholar] [CrossRef]
- Zhu, J.; Yuan, J.; Arya, S.; Du, Z.; Liu, X.; Jia, J. Exploring the immune microenvironment of osteosarcoma through T cell exhaustion-associated gene expression: A study on prognosis prediction. Front. Immunol. 2023, 14, 1265098. [Google Scholar] [CrossRef]
- Tang, H.; Liu, S.; Luo, X.; Sun, Y.; Li, X.; Luo, K.; Liao, S.; Li, F.; Liang, J.; Zhan, X.; et al. A novel molecular signature for predicting prognosis and immunotherapy response in osteosarcoma based on tumor-infiltrating cell marker genes. Front. Immunol. 2023, 14, 1150588. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, B.; Feng, C.; Li, C.; Wang, H.; Zhang, H.; Liu, P.; Li, Z.; He, S.; Tu, C. Molecular characterization of immunogenic cell death indicates prognosis and tumor microenvironment infiltration in osteosarcoma. Front. Immunol. 2022, 13, 1071636. [Google Scholar] [CrossRef] [PubMed]
- Geller, D.S.; Gorlick, R. Osteosarcoma: A review of diagnosis, management, and treatment strategies. Clin. Adv. Hematol. Oncol. HO 2010, 8, 705–718. [Google Scholar]
- Crombé, A.; Simonetti, M.; Longhi, A.; Hauger, O.; Fadli, D.; Spinnato, P. Imaging of Osteosarcoma: Presenting Findings, Metastatic Patterns, and Features Related to Prognosis. J. Clin. Med. 2024, 13, 5710. [Google Scholar] [CrossRef]
- Nguyen, J.C.; Baghdadi, S.; Pogoriler, J.; Guariento, A.; Rajapakse, C.S.; Arkader, A. Pediatric Osteosarcoma: Correlation of Imaging Findings with Histopathologic Features, Treatment, and Outcome. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc. 2022, 42, 1196–1213. [Google Scholar] [CrossRef] [PubMed]
- Setiawati, R.; Novariyanto, B.; Rahardjo, P.; Mustokoweni, S.; Guglielmi, G. Characteristic of Apparent Diffusion Coefficient and Time Intensity Curve Analysis of Dynamic Contrast Enhanced MRI in Osteosarcoma Histopathologic Subtypes. Int. J. Med. Sci. 2023, 20, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Rydzyk, M.M.; Barba, L.; Malucelli, E.; Palamà, M.E.F.; Gentili, C.; Mastrogiacomo, M.; Cedola, A.; Mancini, L.; Salomé, M.; et al. Insights into the osteosarcoma microenvironment: Multiscale analysis of structural and mineral heterogeneity. Acta Biomater. 2025, 199, 193–201. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Soft Tissue and Bone Tumours; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- Choi, J.H.; Ro, J.Y. The 2020 WHO Classification of Tumors of Bone: An Updated Review. Adv. Anat. Pathol. 2021, 28, 119. [Google Scholar] [CrossRef]
- Green, J.T.; Mills, A.M. Osteogenic tumors of bone. Semin. Diagn. Pathol. 2014, 31, 21–29. [Google Scholar] [CrossRef]
- Riggi, N.; Suvà, M.L.; Stamenkovic, I. Ewing’s Sarcoma. N. Engl. J. Med. 2021, 384, 154–164. [Google Scholar] [CrossRef]
- Kovacs, S.K.; Manassaporn, A.; Nielsen, G.P.; Hung, Y.P. Molecular and immunohistochemical testing of bone tumours: Review and update. Histopathology 2023, 82, 794–811. [Google Scholar] [CrossRef]
- Aran, V.; Devalle, S.; Meohas, W.; Heringer, M.; Caruso, A.C.; Aguiar, D.P.; Duarte, M.E.L.; Neto, V.M. Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit. Rev. Oncol. Hematol. 2021, 162, 103340. [Google Scholar] [CrossRef] [PubMed]
- Weinschenk, R.C.; Wang, W.-L.; Lewis, V.O. Chondrosarcoma. J. Am. Acad. Orthop. Surg. 2021, 29, 553–562. [Google Scholar] [CrossRef]
- Evola, F.R.; Costarella, L.; Pavone, V.; Caff, G.; Cannavò, L.; Sessa, A.; Avondo, S.; Sessa, G. Biomarkers of Osteosarcoma, Chondrosarcoma, and Ewing Sarcoma. Front. Pharmacol. 2017, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.E.; Taylor, M.; Schallert, E.K.; Rosenfeld, S.; King, K.Y. Brodie Abscess in Children: A 10-Year Single Institution Retrospective Review. Pediatr. Infect. Dis. J. 2019, 38, e32–e34. [Google Scholar] [CrossRef] [PubMed]
- McCarville, M.B.; Chen, J.Y.; Coleman, J.L.; Li, Y.; Li, X.; Adderson, E.E.; Neel, M.D.; Gold, R.E.; Kaufman, R.A. Distinguishing Osteomyelitis from Ewing Sarcoma on Radiography and MRI. AJR Am. J. Roentgenol. 2015, 205, 640–650; quiz 651. [Google Scholar] [CrossRef]
- Coleman, R.E.; Croucher, P.I.; Padhani, A.R.; Clézardin, P.; Chow, E.; Fallon, M.; Guise, T.; Colangeli, S.; Capanna, R.; Costa, L. Bone metastases. Nat. Rev. Dis. Primer 2020, 6, 83. [Google Scholar] [CrossRef]
- Atesok, K.I.; Alman, B.A.; Schemitsch, E.H.; Peyser, A.; Mankin, H. Osteoid osteoma and osteoblastoma. J. Am. Acad. Orthop. Surg. 2011, 19, 678–689. [Google Scholar] [CrossRef]
- Restrepo, R.; Zahrah, D.; Pelaez, L.; Temple, H.T.; Murakami, J.W. Update on aneurysmal bone cyst: Pathophysiology, histology, imaging and treatment. Pediatr. Radiol. 2022, 52, 1601–1614. [Google Scholar] [CrossRef]
- Montgomery, C.; Couch, C.; Emory, C.L.; Nicholas, R. Giant Cell Tumor of Bone: Review of Current Literature, Evaluation, and Treatment Options. J. Knee Surg. 2019, 32, 331–336. [Google Scholar] [CrossRef]
- Sun, H.-H.; Chen, X.-Y.; Cui, J.-Q.; Zhou, Z.-M.; Guo, K.-J. Prognostic factors to survival of patients with chondroblastic osteosarcoma. Medicine 2018, 97, e12636. [Google Scholar] [CrossRef]
- Fanburg, J.C.; Rosenberg, A.E.; Weaver, D.L.; Leslie, K.O.; Mann, K.G.; Taatjes, D.J.; Tracy, R.P. Osteocalcin and osteonectin immunoreactivity in the diagnosis of osteosarcoma. Am. J. Clin. Pathol. 1997, 108, 464–473. [Google Scholar] [CrossRef]
- Sharma, A.E.; Pytel, P.; Cipriani, N.A. SOX9 and SATB2 immunohistochemistry cannot reliably distinguish between osteosarcoma and chondrosarcoma on biopsy material. Hum. Pathol. 2022, 121, 56–64. [Google Scholar] [CrossRef]
- Yoshida, A.; Ushiku, T.; Motoi, T.; Shibata, T.; Beppu, Y.; Fukayama, M.; Tsuda, H. Immunohistochemical analysis of MDM2 and CDK4 distinguishes low-grade osteosarcoma from benign mimics. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc. 2010, 23, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Ushiku, T.; Motoi, T.; Beppu, Y.; Fukayama, M.; Tsuda, H.; Shibata, T. MDM2 and CDK4 immunohistochemical coexpression in high-grade osteosarcoma: Correlation with a dedifferentiated subtype. Am. J. Surg. Pathol. 2012, 36, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Hirose, T.; Kudo, E.; Hizawa, K.; Usui, M.; Ishii, S. Immunophenotypic heterogeneity in osteosarcomas. Hum. Pathol. 1991, 22, 583–590. [Google Scholar] [CrossRef]
- Eghtedari, A.R.; Vaezi, M.A.; Safari, E.; Salimi, V.; Safizadeh, B.; Babaheidarian, P.; Abiri, A.; Mahdinia, E.; Mirzaei, A.; Mokhles, P.; et al. The expression changes of PD-L1 and immune response mediators are related to the severity of primary bone tumors. Sci. Rep. 2023, 13, 20474. [Google Scholar] [CrossRef] [PubMed]
- Reimann, E.; Kõks, S.; Ho, X.D.; Maasalu, K.; Märtson, A. Whole exome sequencing of a single osteosarcoma case—Integrative analysis with whole transcriptome RNA-seq data. Hum. Genom. 2014, 8, 20. [Google Scholar]
- Jiang, Y.; Wang, J.; Sun, M.; Zuo, D.; Wang, H.; Shen, J.; Jiang, W.; Mu, H.; Ma, X.; Yin, F.; et al. Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment. Nat. Commun. 2022, 13, 7207. [Google Scholar] [CrossRef]
- Wunder, J.S.; Gokgoz, N.; Parkes, R.; Bull, S.B.; Eskandarian, S.; Davis, A.M.; Beauchamp, C.P.; Conrad, E.U.; Grimer, R.J.; Healey, J.H.; et al. TP53 mutations and outcome in osteosarcoma: A prospective, multicenter study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Chen, L.; Huang, D.; Ge, J.; Qiu, Y.; Hao, L. Meta-analysis of alkaline phosphatase and prognosis for osteosarcoma. Eur. J. Cancer Care 2017, 26, e12536. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, K.; Moon, S.; Jang, J.; Kim, H.S.; Suh, J.; Yang, W. Reassessment of alkaline phosphatase as serum tumor marker with high specificity in osteosarcoma. Cancer Med. 2017, 6, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Paolillo, A.; Tesser-Gamba, F.; Alves, M.T.S.; Filho, R.J.G.; Oliveira, R.; Petrilli, A.S.; Toledo, S.R.C. Pharmacogenetics of the Primary and Metastatic Osteosarcoma: Gene Expression Profile Associated with Outcome. Int. J. Mol. Sci. 2023, 24, 5607. [Google Scholar] [CrossRef]
- Calderón, S.A.L.; Garbutt, C.; Kim, J.B.; Lietz, C.E.B.; Chen, Y.-L.; Bernstein, K.; Chebib, I.; Nielsen, G.P.; Deshpande, V.; Rubio, R.B.; et al. Clinical and Molecular Analysis of Pathologic Fracture-associated Osteosarcoma: MicroRNA profile Is Different and Correlates with Prognosis. Clin. Orthop. 2019, 477, 2114–2126. [Google Scholar] [CrossRef]
- Manara, M.; Baldini, N.; Serra, M.; Lollini, P.-L.; De Giovanni, C.; Vaccari, M.; Argnani, A.; Benini, S.; Maurici, D.; Picci, P.; et al. Reversal of malignant phenotype in human osteosarcoma cells transduced with the alkaline phosphatase gene. Bone 2000, 26, 215–220. [Google Scholar] [CrossRef]
- Zucchini, C.; Bianchini, M.; Valvassori, L.; Perdichizzi, S.; Benini, S.; Manara, M.C.; Solmi, R.; Strippoli, P.; Picci, P.; Carinci, P.; et al. Identification of candidate genes involved in the reversal of malignant phenotype of osteosarcoma cells transfected with the liver/bone/kidney alkaline phosphatase gene. Bone 2004, 34, 672–679. [Google Scholar] [CrossRef]
- Mensali, N.; Köksal, H.; Joaquina, S.; Wernhoff, P.; Casey, N.P.; Romecin, P.; Panisello, C.; Rodriguez, R.; Vimeux, L.; Juzeniene, A.; et al. ALPL-1 is a target for chimeric antigen receptor therapy in osteosarcoma. Nat. Commun. 2023, 14, 3375. [Google Scholar] [CrossRef] [PubMed]
- Orrapin, S.; Moonmuang, S.; Udomruk, S.; Yongpitakwattana, P.; Pruksakorn, D.; Chaiyawat, P. Unlocking the tumor-immune microenvironment in osteosarcoma: Insights into the immune landscape and mechanisms. Front. Immunol. 2024, 15, 1394284. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, D.; Yang, Q.; Lv, X.; Huang, W.; Zhou, Z.; Wang, Y.; Zhang, Z.; Yuan, T.; Ding, X.; et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 2020, 11, 6322. [Google Scholar] [CrossRef]
- Ho, X.D.; Phung, P.; Le, V.Q.; Nguyen, V.H.; Reimann, E.; Prans, E.; Kõks, G.; Maasalu, K.; Le, N.T.; Trinh, L.H.; et al. Whole transcriptome analysis identifies differentially regulated networks between osteosarcoma and normal bone samples. Exp. Biol. Med. Maywood NJ 2017, 242, 1802–1811. [Google Scholar] [CrossRef]
- Cascini, C.; Chiodoni, C. The Immune Landscape of Osteosarcoma: Implications for Prognosis and Treatment Response. Cells 2021, 10, 1668. [Google Scholar] [CrossRef]
- Cersosimo, F.; Lonardi, S.; Bernardini, G.; Telfer, B.; Mandelli, G.E.; Santucci, A.; Vermi, W.; Giurisato, E. Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int. J. Mol. Sci. 2020, 21, 5207. [Google Scholar] [CrossRef]
- Heymann, M.-F.; Lézot, F.; Heymann, D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell. Immunol. 2019, 343, 103711. [Google Scholar] [CrossRef] [PubMed]
- Bacci, G.; Bertoni, F.; Longhi, A.; Ferrari, S.; Forni, C.; Biagini, R.; Bacchini, P.; Donati, D.; Manfrini, M.; Bernini, G.; et al. Neoadjuvant chemotherapy for high-grade central osteosarcoma of the extremity. Histologic response to preoperative chemotherapy correlates with histologic subtype of the tumor. Cancer 2003, 97, 3068–3075. [Google Scholar] [CrossRef]
- Patel, N.; Werenski, J.O.; Gonzalez, M.R.; Clunk, M.J.; McCadden, M.R.; Richard, A.; Chebib, I.; Hung, Y.P.; Nielsen, G.P.; Lozano-Calderon, S.A. Tumor necrosis drives prognosis in osteosarcoma: No difference in chemotherapy response and survival between chondroblastic and osteoblastic osteosarcoma. Surg. Oncol. 2024, 57, 102155. [Google Scholar] [CrossRef]
- Smeland, S.; Bielack, S.S.; Whelan, J.; Bernstein, M.; Hogendoorn, P.; Krailo, M.D.; Gorlick, R.; Janeway, K.A.; Ingleby, F.C.; Anninga, J.; et al. Survival and prognosis with osteosarcoma: Outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer Oxf. Engl. 1990 2019, 109, 36–50. [Google Scholar] [CrossRef]
- Lee, S.J.; Lans, J.; Cook, S.D.; Chebib, I.; Schwab, J.H.; Raskin, K.A.; Lozano-Calderón, S. Surface osteosarcoma: Predictors of outcomes. J. Surg. Oncol. 2021, 124, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, T.; Yang, Y.; Wang, K.; Wei, J.; Shi, J.-H.; Zhang, D.; Sheng, X.; Zhang, Y.; Zhou, J.; et al. Integrated analysis of single-cell and bulk transcriptomics reveals cellular subtypes and molecular features associated with osteosarcoma prognosis. BMC Cancer 2025, 25, 280. [Google Scholar] [CrossRef] [PubMed]
- Dutour, A.; Pasello, M.; Farrow, L.; Amer, M.H.; Entz-Werlé, N.; Nathrath, M.; Scotlandi, K.; Mittnacht, S.; Gomez-Mascard, A. Microenvironment matters: Insights from the FOSTER consortium on microenvironment-driven approaches to osteosarcoma therapy. Cancer Metastasis Rev. 2025, 44, 44. [Google Scholar] [CrossRef]
- He, F.; Zhang, W.; Shen, Y.; Yu, P.; Bao, Q.; Wen, J.; Hu, C.; Qiu, S. Effects of resection margins on local recurrence of osteosarcoma in extremity and pelvis: Systematic review and meta-analysis. Int. J. Surg. Lond. Engl. 2016, 36, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Bacci, G.; Longhi, A.; Versari, M.; Mercuri, M.; Briccoli, A.; Picci, P. Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer 2006, 106, 1154–1161. [Google Scholar] [CrossRef]
- Sever, N.; Şimşek, F.; Onur, İ.D.; Arvas, H.; Guliyev, T.; Şakalar, T.; Çiçek, C.M.; Orman, S.; Çetin, E.B.; Kayaş, K.; et al. Prognostic Factors in High Grade Osteosarcoma Patients Who Received Neoadjuvant Therapy and Subsequently Underwent Surgery: Data from the Turkish Oncology Group. J. Clin. Med. 2025, 14, 2024. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xie, Z. The presence of a fat layer after neoadjuvant chemotherapy as an indicator of prognosis in osteosarcoma. Front. Oncol. 2025, 15, 1514560. [Google Scholar] [CrossRef]
- Miwa, S.; Takeuchi, A.; Shirai, T.; Taki, J.; Yamamoto, N.; Nishida, H.; Hayashi, K.; Tanzawa, Y.; Kimura, H.; Igarashi, K.; et al. Prognostic value of radiological response to chemotherapy in patients with osteosarcoma. PLoS ONE 2013, 8, e70015. [Google Scholar] [CrossRef]
- Bielack, S.S.; Kempf-Bielack, B.; Delling, G.; Exner, G.U.; Flege, S.; Helmke, K.; Kotz, R.; Salzer-Kuntschik, M.; Werner, M.; Winkelmann, W.; et al. Prognostic Factors in High-Grade Osteosarcoma of theExtremities or Trunk: An Analysis of 1,702 Patients Treatedon Neoadjuvant Cooperative Osteosarcoma Study GroupProtocols. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 4323–4337. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Athanasiadou, K.I.; Markozannes, G.; Tzotzola, V.; Bouka, E.; Baka, M.; Moschovi, M.; Polychronopoulou, S.; Hatzipantelis, E.; Galani, V.; et al. Prognostic factors in high-grade pediatric osteosarcoma among children and young adults: Greek Nationwide Registry for Childhood Hematological Malignancies and Solid Tumors (NARECHEM-ST) data along with a systematic review and meta-analysis. Cancer Epidemiol. 2024, 90, 102551. [Google Scholar] [CrossRef]
- Tirtei, E.; Michelsen, S.W.; Haveman, L.M.; Meazza, C.; Oliveira, J.F.; Rasool, A.; Palmerini, E.; Wilson, W.; Gaspar, N.; Strauss, S.J.; et al. Prognostic Factors in Newly Diagnosed High-Grade Osteosarcoma—A Systematic Review. Cancer Med. 2025, 14, e71044. [Google Scholar] [CrossRef]
- Dong, C.; Sun, Y.; Zhang, Y.; Qin, B.; Lei, T. Construction of Molecular Subtype and Prognosis Prediction Model of Osteosarcoma Based on Aging-Related Genes. J. Oncol. 2022, 2022, 8177948. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Wang, Y.; Cheng, J.; Pan, B.; Zang, X.; Liu, R.; Deng, Y. Single-cell RNA-seq reveals T cell exhaustion and immune response landscape in osteosarcoma. Front. Immunol. 2024, 15, 1362970. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Wei, H.; Wang, S.; Huang, Z.; Chen, H.; Zhang, S.; Lin, J.; Zhong, G. Gasdermin D expression and clinicopathologic outcome in primary osteosarcoma patients. Int. J. Clin. Exp. Pathol. 2020, 13, 3149–3157. [Google Scholar] [PubMed]
- Palmerini, E.; Sapienza, M.R.; Pileri, S.A.; Frega, G.; Righi, A.; Parafioriti, A.; Franchi, A.; Agostinelli, C.; Righi, S.; Meazza, C.; et al. Tumor Immune Microenvironment-Associated Prognostic and Mifamurtide-Response Gene Signatures for Localized Osteosarcoma: A Correlative Study of the ISG/OS-2 Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2025, 31, 3932–3943. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Grimison, P.; Fernandez, K.; Choi, V.; Bhadri, V. Real-World Clinical Utility of Tumor Next-Generation Sequencing in Adolescent and Young Adult Patients With Sarcoma. JCO Precis. Oncol. 2025, 9, e2500228. [Google Scholar] [CrossRef]
- D’aMbrosio, L.; Sbaraglia, M.; Merlini, A.; Rabino, M.; Grignani, G.; Appolloni, V.; Badalamenti, G.; Baldi, G.G.; Bellan, E.; Benelli, M.; et al. Extended molecular profiling in mesenchymal tumors: A consensus paper from the Italian Sarcoma Group. Crit. Rev. Oncol. Hematol. 2025, 216, 104960. [Google Scholar] [CrossRef]
Subtype | Prevalence | Grade | Matrix Type | Typical Age | Site | Prognosis |
---|---|---|---|---|---|---|
Osteoblastic | 68–70% | High | Osteoid | Adolescents | Long bone metaphysis | Intermediate–poor |
Chondroblastic | 10–19% | High | Cartilage | Adolescents | Long bones | Similar to conventional |
Fibroblastic | 6–9% | High | Collagen/osteoid | Adolescents | Long bones | Similar to conventional |
Telangiectatic | 0.4–6% | High | Blood-filled cysts | Adolescents | Long bones | Similar to conventional |
Parosteal | ~2% | Low | Mature bone | Adults | Posterior distal femur | Good |
Periosteal | ~0.6% | Intermediate | Cartilaginous | Young adults | Tibia | Intermediate |
High-grade surface | <1% | High | Osteoid | Young adults | Diaphysis | Poor |
Secondary | 5–7% | High | Osteoblastic | Old adults | Axial skeleton | Poor |
Pathology | Clinical Features | Radiologic Features | Histopathologic Features |
---|---|---|---|
OS | Pain, swelling, often in adolescents; may have pathologic fracture | Mixed lytic/sclerotic lesion, aggressive periosteal reaction (sunburst, Codman triangle), soft-tissue mass | Malignant cells producing osteoid matrix |
Ewing sarcoma | Pain, swelling, fever, systemic symptoms; children/adolescents | Diaphyseal lytic lesion, “moth-eaten” appearance, onion-skin periosteal reaction, soft-tissue mass | Sheets of small round blue cells, MIC2/CD99+, EWSR1 translocation |
Chondrosarcoma | Pain, swelling; adults | Lytic lesion with chondroid matrix calcification, endosteal scalloping | Malignant cartilage cells, chondroid matrix |
Osteomyelitis (incl. Brodie abscess) | Pain, fever, systemic symptoms; any age | Lytic lesion, possible sequestrum/involucrum, periosteal reaction, Brodie abscess: well-defined lytic lesion with sclerotic rim | Necrotic bone, inflammatory infiltrate, no malignant cells |
Bone metastases | Pain, history of primary malignancy; adults | Lytic or blastic lesions, multiple sites, less aggressive periosteal reaction | Tumor cells from primary site (e.g., carcinoma) |
Osteoid osteoma | Nocturnal pain relieved by NSAIDs; young adults | Small (<2 cm) radiolucent nidus with surrounding sclerosis | Well-circumscribed nidus of woven bone, benign osteoblasts |
Osteoblastoma | Pain, not typically nocturnal; young adults | Larger (>2 cm) lytic lesion, less sclerosis than osteoid osteoma | Similar to osteoid osteoma but larger, benign osteoblasts |
Aneurysmal bone cyst | Pain, swelling; children/young adults | Expansile, lytic lesion, fluid-fluid levels on MRI | Blood-filled cystic spaces, septa with giant cells |
Giant cell tumor of bone | Pain, swelling; skeletally mature adults | Eccentric, lytic lesion abutting articular surface | Numerous osteoclast-like giant cells, mononuclear stromal cells |
Primary bone lymphoma | Pain, swelling, possible systemic symptoms; adults | Lytic lesion, soft-tissue mass, vertebral involvement | Sheets of atypical lymphoid cells, CD45+ |
Acute leukemia (skeletal involvement) | Bone pain, systemic symptoms (anemia, bleeding, fever) | Diffuse osteopenia, metaphyseal bands, lytic lesions | Leukemic infiltration of marrow, blasts |
Marker | Expression in OS | Diagnostic Use | Prognostic Value |
---|---|---|---|
SATB2 | Positive | Confirms osteoblastic lineage | None established |
Osteocalcin/ Osteonectin | Positive | Confirms bone production | None |
MDM2/CDK4 | Positive in low-grade OS | Differentiate from benign lesions | Unclear |
S100/SOX10 | Negative | Excludes chondroid/neural tumors | — |
CD31/CD45 | Negative | Excludes vascular or hematopoietic tumors | — |
ZFP36 | Downregulated | — | Poor prognosis when low |
GBP2 | Variable | — | Immune activation/tumor suppression |
Gene/Pathway | Role in OS | Diagnostic/Therapeutic Potential |
---|---|---|
TP53 | Tumor suppressor loss | Diagnostic (Li-Fraumeni); limited therapy |
RB1 | Cell cycle control | Genetic risk; poor prognosis |
MDM2 Amplification | Seen in low-grade OS | Diagnostic in parosteal OS |
WNT/β-catenin | Aberrant signaling | Research phase |
miRNAs (e.g., miR-21, miR-29b) | Expression dysregulated | Prognostic |
TERT | Associated with proliferation | Prognostic; limited therapy |
ALPL | Expression dysregulated | Prognostic; therapy |
Subtype | 5-Year Survival | 10-Year Survival |
---|---|---|
Parosteal | 90–97% | 97% |
Periosteal | 80–90% | ~80% |
High-grade surface | 50–60% | 40–50% |
Conventional (overall) | 60–71% | 59–60% |
Osteoblastic | 62% | Not specified |
Chondroblastic | 60% | Not specified |
Fibroblastic | 83% | Not specified |
Telangiectatic | 75–80% | Not specified |
Unspecified conventional | 67–71% | Not specified |
Factor | Prognostic Implication | Strength of Evidence | References |
---|---|---|---|
Metastasis at diagnosis | Poor (<30% 5-yr survival) | Strong | Meltzer, NEJM, 2021 [4]; Bielack, JCOOJASCO, 2023 [78] |
Tumor size/location | Larger or axial = worse | Strong | Bielack, JCOOJASCO, 2023 [78] |
Age (older/very young) | Poor | Moderate | Bielack, JCOOJASCO, 2023 [78]; Papakonstantinou, Cancer Epidemiol, 2024 [79] |
Chemotherapy response | >90% necrosis = good; residual viable cells = poor | Strong | Meltzer, NEJM, 2021 [4]; Bielack, JCOOJASCO, 2023 [78] |
Surgical margins | Incomplete resection = poor | Strong | He, IJSLE, 2016 [73] |
Serum ALP/LDH | High = worse | Moderate | Bacci, Cancer, 2006 [74]; Sever, JCM, 2025 [75] |
Gene expression models | Risk stratification (e.g., GBP2, PLEKHO2) | Emerging | Meltzer, NEJM, 2021 [4] |
Tumor purity | High = worse (aggressiveness) | Emerging (bioinformatic) | Meltzer, NEJM, 2021 [4] |
Imaging biomarkers | PET/CT and MRI predict response | Emerging | Huang, Front Oncol, 2025 [76]; Miwa PloS One, 2013 [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Motassime, A.; Vitiello, R.; Comodo, R.M.; Capece, G.; Bocchino, G.; Bocchi, M.B.; Maccauro, G.; Meschini, C. Osteosarcoma: A Comprehensive Morphological and Molecular Review with Prognostic Implications. Biology 2025, 14, 1407. https://doi.org/10.3390/biology14101407
El Motassime A, Vitiello R, Comodo RM, Capece G, Bocchino G, Bocchi MB, Maccauro G, Meschini C. Osteosarcoma: A Comprehensive Morphological and Molecular Review with Prognostic Implications. Biology. 2025; 14(10):1407. https://doi.org/10.3390/biology14101407
Chicago/Turabian StyleEl Motassime, Alessandro, Raffaele Vitiello, Rocco Maria Comodo, Giacomo Capece, Guido Bocchino, Maria Beatrice Bocchi, Giulio Maccauro, and Cesare Meschini. 2025. "Osteosarcoma: A Comprehensive Morphological and Molecular Review with Prognostic Implications" Biology 14, no. 10: 1407. https://doi.org/10.3390/biology14101407
APA StyleEl Motassime, A., Vitiello, R., Comodo, R. M., Capece, G., Bocchino, G., Bocchi, M. B., Maccauro, G., & Meschini, C. (2025). Osteosarcoma: A Comprehensive Morphological and Molecular Review with Prognostic Implications. Biology, 14(10), 1407. https://doi.org/10.3390/biology14101407