Efficient Bioproduction of p-Hydroxybenzaldehyde β-Glucoside from p-Hydroxybenzaldehyde by Glycosyltransferase Mutant UGTBL1-Δ60
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Full-Plasmid PCR Mutagenesis of Glycosyltransferase
2.3. Cultivation of Engineered Bacteria and Enzyme Expression
2.4. Optimization of Whole-Cell Reaction Conditions
2.5. Homology Modeling and Molecular Docking Analysis
2.6. HPLC and High-Resolution Mass Spectrometry Analysis Methods
3. Results and Discussion
3.1. Construction of the Mutant Library of Glycosyltransferase and Protein Expression
3.2. Screening of Glycosyltransferase Mutants
3.3. Molecular Docking Results
3.4. Analysis of the Reaction Products
3.5. The Effect of Glucose Concentration on the Reaction System
3.6. Effects of Reaction Temperature and pH on the Glycosylation System
3.7. The Impact of Bacterial Load on Reaction Outcomes
3.8. Effects of Substrate Concentration on Biocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Tang, Z.; Koffi, P.A.Y.; Tang, W.; Fan, B.; He, Y.-C. Promoted lignocellulose fractionation and improved enzymatic hydrolysis of corn stalks through cationic surfactant combined with deep eutectic solvent pretreatment. Int. J. Biol. Macromol. 2024, 282, 137150. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Ni, J.; He, Y.-C.; Ye, J. Chemoenzymatic catalytic synthesis of furfurylamine from hemicellulose in biomasses. Int. J. Biol. Macromol. 2022, 222, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Batista-García, R.A.; del Rayo Sánchez-Carbente, M.; Talia, P.; Jackson, S.A.; O’Leary, N.D.; Dobson, A.D.W.; Folch-Mallol, J.L. From lignocellulosic metagenomes to lignocellulolytic genes: Trends, challenges and future prospects. Biofuels Bioprod. Biorefin. 2016, 10, 864–882. [Google Scholar] [CrossRef]
- Wu, M.; Di, J.; Gong, L.; He, Y.-C.; Ma, C.; Deng, Y. Enhanced adipic acid production from sugarcane bagasse by a rapid room temperature pretreatment. Chem. Eng. J. 2023, 452, 139320. [Google Scholar] [CrossRef]
- Yang, Q.; Fan, B.; He, Y.-C. Combination of solid acid and solvent pretreatment for co-production of furfural, xylooligosaccharide and reducing sugars from Phyllostachys edulis. Bioresour. Technol. 2024, 395, 130398. [Google Scholar] [CrossRef]
- D’Arrigo, P.; Rossato, L.A.M.; Strini, A.; Serra, S. From waste to value: Recent insights into producing vanillin from lignin. Molecules 2024, 29, 442. [Google Scholar] [CrossRef]
- Jyoti; Dwivedi, P.; Negi, P.; Chauhan, R.; Gosavi, S.W.; Mishra, B.B. Alkaline hydrolysis of spent aromatic biomass for production of phenolic aldehydes, lignin, and cellulose. Bioresour. Technol. 2023, 387, 129659. [Google Scholar] [CrossRef]
- Sun, Q.; Fu, X.; Wang, P.; Li, K.; Wei, L.; Zhai, S.; An, Q. Selective production of p-hydroxybenzaldehyde in the oxidative depolymerization of alkali lignin catalyzed by copper-containing imidazolium-based ionic liquids. J. Mol. Liq. 2023, 385, 122378. [Google Scholar] [CrossRef]
- Li, Y.-X.; Zhu, J.-P.; Zhang, Z.-J.; Qu, Y.-S. Preparation of Syringaldehyde from Lignin by Catalytic Oxidation of Perovskite-Type Oxides. ACS Omega 2020, 5, 2107–2113. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Yi, L.; Zhang, G.; Ye, B. Yeast-based whole-cell factory for the ecofriendly synthesis of yanillylamine as a critical step toward capsaicin production. ACS Sustain. Chem. Eng. 2023, 11, 7683–7691. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, S.; Yang, J.; Ye, N.; Gao, F.; Gallou, F.; Gao, L.; Lei, X. Chemoenzymatic synthesis of 2-aryl thiazolines from 4-hydroxybenzaldehydes using vanillyl alcohol oxidases. Angew. Chem. Int. Ed. 2024, 63, e202405833. [Google Scholar] [CrossRef]
- Harmandar, K.; Giray, G.; Önal, E.; Sengul, I.F.; Özdemir, S.; Atilla, D. New AB3-type porphyrins with piperidine and morpholine motifs; synthesis and photo-physicochemical and biological properties. Dalton Trans. 2023, 52, 2672–2683. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Zhou, Z.; Qi, W.; Jiang, S.; Yang, B.; Zhong, Z.; Jia, Y.; Li, X.; Xiong, L.; Nie, L. Antidepressant effect of helicid in chronic unpredictable mild stress model in rats. Int. Immunopharmacol. 2019, 67, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, H.; Gele, T.; Hu, C.; Liu, C.; Song, W.; Wei, L.; Song, D.; Jin, M.; Tang, Y.; et al. Helicid: A novel anti-staphylococcus aureus adjuvant. Biochimie 2025, 231, 46–60. [Google Scholar] [CrossRef]
- Wen, H.; Lin, C.; Que, L.; Ge, H.; Ma, L.; Cao, R.; Wan, Y.; Peng, W.; Wang, Z.; Song, H. Synthesis and biological evaluation of helicid analogues as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem. 2008, 43, 166–173. [Google Scholar] [CrossRef]
- He, X.-Q.; Li, H.-B.; Li, T.; Chen, X.-Y.; Wang, Z.-Z.; Yao, X.-S.; Xiao, W.; Yu, Y. One undescribed glycoside benzofuran derivative and a new p-hydroxybenzoate glycoside from the leaves of Illicium dunnianum Tutcher. Nat. Prod. Res. 2024, 38, 3130–3139. [Google Scholar] [CrossRef]
- Yi, W.; Cao, R.; Wen, H.; Yan, Q.; Zhou, B.; Wan, Y.; Ma, L.; Song, H. Synthesis and biological evaluation of helicid analogues as mushroom tyrosinase inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 6490–6493. [Google Scholar] [CrossRef]
- Ali, M.Y.; Liaqat, F.; Khazi, M.I.; Sethupathy, S.; Zhu, D. Utilization of glycosyltransferases as a seamless tool for synthesis and modification of the oligosaccharides—A review. Int. J. Biol. Macromol. 2023, 249, 125916. [Google Scholar] [CrossRef]
- Guidi, C.; Biarnés, X.; Planas, A.; De Mey, M. Controlled processivity in glycosyltransferases: A way to expand the enzymatic toolbox. Biotechnol. Adv. 2023, 63, 108081. [Google Scholar] [CrossRef]
- Madavi, T.B.; Chauhan, S.; Keshri, A.; Alavilli, H.; Choi, K.-Y.; Pamidimarri, S.D.V.N. Whole-cell biocatalysis: Advancements toward the biosynthesis of fuels. Biofuels Bioprod. Biorefin. 2022, 16, 859–876. [Google Scholar] [CrossRef]
- Ezugwu, J.A.; Okoro, U.C.; Ezeokonkwo, M.A.; Hariprasad, K.S.; Rudrapal, M.; Gogoi, N.; Chetia, D.; Ugwu, D.I.; Eze, F.U.; Onyeyilim, L.E.; et al. Design, Synthesis, Molecular Docking, Drug-Likeness/ADMET and Molecular Dynamics Studies of Thiazolyl Benzenesulfonamide Carboxylates as Antimalarial Agents. Chem. Afr. 2024, 7, 2353–2368. [Google Scholar] [CrossRef]
- Fan, B.; Dong, W.; Chen, T.; Chu, J.; He, B. Switching glycosyltransferase UGTBL1 regioselectivity toward polydatin synthesis using a semi-rational design. Org. Biomol. Chem. 2018, 16, 2464–2469. [Google Scholar] [CrossRef]
- Wang, X.; Hatta, S.; Matsui, D.; Imamura, H.; Wakayama, M. Expression and characterization of c-terminal truncated mutants of γ-glutamyltranspeptidase II (PaGGTII) from pseudomonas aeruginosa PAO1. Protein Expr. Purif. 2023, 210, 106321. [Google Scholar] [CrossRef]
- Tu, M.; Feng, L.; Wang, Z.; Qiao, M.; Shahidi, F.; Lu, W.; Du, M. Sequence analysis and molecular docking of antithrombotic peptides from casein hydrolysate by trypsin digestion. J. Funct. Foods 2017, 32, 313–323. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, J.; Chen, Z. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Comput. Math. Methods Med. 2018, 2018, 3502514. [Google Scholar] [CrossRef]
- Guo, J.; Kong, L.; Tian, L.; Han, Y.; Teng, C.; Ma, H.; Tao, B. Molecular docking and mutation sites of CYP57A1 enzyme with Fomesafen. Pestic. Biochem. Physiol. 2025, 209, 106328. [Google Scholar] [CrossRef]
- Yang, Q.; Tang, Z.; Xiong, J.; He, Y. Sustainable chemoenzymatic cascade transformation of corncob to furfuryl alcohol with rice husk-based heterogeneous catalyst UST-Sn-RH. Catalysts 2023, 13, 37. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, J.; Yang, D.; Xu, D.; Huang, M.; He, Y. Production of furfuryl alcohol from corncob catalyzed by CCZU-KF cell via chemoenzymatic approach. Acad. J. Sci. Technol. 2023, 6, 132–138. [Google Scholar] [CrossRef]
- Fan, B.; Lin, R.; Gu, X.; Cui, R.; Yang, R.; He, Y.-C. Synthesis of biobased alcohols from biomass-derived aldehydes through the biocatalysis with E. coli KPADH in deep eutectic solvent ChCl:Glycerol-water. Mol. Catal. 2025, 584, 115305. [Google Scholar] [CrossRef]
- Yang, S.; Yan, T.; Zhao, L.; Wu, H.; Du, Z.; Yan, T.; Xiao, Q. Effects of temperature on activities of antioxidant enzymes and Na+/K+-ATPase, and hormone levels in Schizothorax prenanti. J. Therm. Biol. 2018, 72, 155–160. [Google Scholar] [CrossRef]
- McLeod, M.J.; Barwell, S.A.E.; Holyoak, T.; Thorne, R.E. A structural perspective on the temperature dependent activity of enzymes. Structure 2025, 33, 924–934.e922. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.F.; Ju, L.-K. On optimization of enzymatic processes: Temperature effects on activity and long-term deactivation kinetics. Process Biochem. 2023, 130, 734–746. [Google Scholar] [CrossRef]
- Tijskens, L.M.M.; Greiner, R.; Biekman, E.S.A.; Konietzny, U. Modeling the effect of temperature and pH on activity of enzymes: The case of phytases. Biotechnol. Bioeng. 2001, 72, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, L.; Ma, C.; He, Y.-C. Chemobiocatalytic transfromation of biomass into furfurylamine with mixed amine donor in an eco-friendly medium. Bioresour. Technol. 2023, 387, 129638. [Google Scholar] [CrossRef]
- Liang, J.; Ji, L.; He, J.; Tang, S.; He, Y. Chemoenzymatic conversion of biomass-derived D-Xylose to furfuryl alcohol with corn stalk-based solid acid catalyst and reductase biocatalyst in a deep eutectic solvent–water system. Processes 2022, 10, 113. [Google Scholar] [CrossRef]
- Gomes e Silva, N.C.; de Albuquerque, T.L.; Neto, C.A.G.; Gonçalves, L.R.B.; Rocha, M.V.P.; Fernandez-Lafuente, R. Effect of biocatalysts β-galactosidase loading in their performance in the kinetically controlled synthesis of lactulose. Process Biochem. 2024, 146, 169–175. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Q.; Di, J.; Ma, C.; He, Y.-C. An efficient chemoenzymatic cascade strategy for transforming biomass into furfurylamine with lobster shell-based chemocatalyst and mutated ω-transaminase biocatalyst in methyl isobutyl ketone-water. Bioresour. Technol. 2023, 369, 128424. [Google Scholar] [CrossRef]
- Li, Q.; Jing, N.; Leng, X.; Liu, W.; Li, Q.; Yang, K.; Wang, X.; Yao, J. Substrate inhibition of the highly efficient PET hydrolase. Appl. Biochem. Microbiol. 2024, 60, 280–286. [Google Scholar] [CrossRef]
- Le, H.M.; Do, Q.T.; Doan, M.H.; Vu, Q.T.; Nguyen, M.A.; Vu, T.H.; Nguyen, H.D.; Duong, N.T.; Tran, M.H.; Chau, V.M.; et al. Chemical composition and biological activities of metabolites from the marine fungi penicillium sp. isolated from sediments of co to island, vietnam. Molecules 2019, 24, 3830. [Google Scholar] [CrossRef]
- Wang, N.; Xu, A.; Liu, K.; Zhao, Z.; Li, H.; Gao, X. Performance of green solvents in microwave-assisted pretreatment of lignocellulose. Chem. Eng. J. 2024, 482, 148786. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Yagoub, A.E.-G.A.; Chen, L.; Zhou, C. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Ind. Crops Prod. 2020, 149, 112357. [Google Scholar] [CrossRef]
- Capetti, C.C.D.M.; Pellegrini, V.O.A.; Espirito Santo, M.C.; Cortez, A.A.; Falvo, M.; Curvelo, A.A.D.S.; Campos, E.; Filgueiras, J.G.; Guimaraes, F.E.G.; de Azevedo, E.R.; et al. Enzymatic production of xylooligosaccharides from corn cobs: Assessment of two different pretreatment strategies. Carbohydr. Polym. 2023, 299, 120174. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Yang, Y.; Tu, P.; Chen, J.Y. Value-added utilization of wheat straw: From cellulose and cellulose nanofiber to all-cellulose nanocomposite film. Membranes 2022, 12, 475. [Google Scholar] [CrossRef]
- Avanthi, A.; Kumar, S.; Sherpa, K.C.; Banerjee, R. Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: An attempt to utilize pentose sugars. Biofuels 2017, 8, 431–444. [Google Scholar] [CrossRef]
- Chibrikov, V.; Pieczywek, P.M.; Cybulska, J.; Zdunek, A. The effect of hemicelluloses on biosynthesis, structure and mechanical performance of bacterial cellulose-hemicellulose hydrogels. Sci. Rep. 2024, 14, 21671. [Google Scholar] [CrossRef]
- Ekielski, A.; Mishra, P.K. Lignin for Bioeconomy: The Present and Future Role of Technical Lignin. Int. J. Mol. Sci. 2021, 22, 63. [Google Scholar] [CrossRef]
- Figueiredo, P.; Lintinen, K.; Hirvonen, J.T.; Kostiainen, M.A.; Santos, H.A. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 2018, 93, 233–269. [Google Scholar] [CrossRef]
- Li, L.; Ye, L.; Lin, Y.; Zhang, W.; Liao, X.; Liang, S. Enhancing the substrate tolerance of DszC by a combination of alanine scanning and site-directed saturation mutagenesis. J. Ind. Microbiol. Biotechnol. 2020, 47, 395–402. [Google Scholar] [CrossRef]
- Dong, T.-T.; Gong, J.-S.; Gu, B.-C.; Zhang, Q.; Li, H.; Lu, Z.-M.; Lu, M.-L.; Shi, J.-S.; Xu, Z.-H. Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization. Bioresour. Technol. 2017, 244, 1104–1110. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, Q.; Zhou, J.-H.; Xu, G. Enhanced activity and substrate tolerance of 7α-hydroxysteroid dehydrogenase by directed evolution for 7-ketolithocholic acid production. Appl. Microbiol. Biotechnol. 2019, 103, 2665–2674. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, B.; Fu, S.; Zhu, Y.; Tang, W.; He, Y. Efficient Bioproduction of p-Hydroxybenzaldehyde β-Glucoside from p-Hydroxybenzaldehyde by Glycosyltransferase Mutant UGTBL1-Δ60. Biology 2025, 14, 1358. https://doi.org/10.3390/biology14101358
Fan B, Fu S, Zhu Y, Tang W, He Y. Efficient Bioproduction of p-Hydroxybenzaldehyde β-Glucoside from p-Hydroxybenzaldehyde by Glycosyltransferase Mutant UGTBL1-Δ60. Biology. 2025; 14(10):1358. https://doi.org/10.3390/biology14101358
Chicago/Turabian StyleFan, Bo, Shunuan Fu, Yijun Zhu, Wei Tang, and Yucai He. 2025. "Efficient Bioproduction of p-Hydroxybenzaldehyde β-Glucoside from p-Hydroxybenzaldehyde by Glycosyltransferase Mutant UGTBL1-Δ60" Biology 14, no. 10: 1358. https://doi.org/10.3390/biology14101358
APA StyleFan, B., Fu, S., Zhu, Y., Tang, W., & He, Y. (2025). Efficient Bioproduction of p-Hydroxybenzaldehyde β-Glucoside from p-Hydroxybenzaldehyde by Glycosyltransferase Mutant UGTBL1-Δ60. Biology, 14(10), 1358. https://doi.org/10.3390/biology14101358

