Wharton’s Jelly Hydrogel: An Innovative Artificial Ovary for Xenotransplantation of Isolated Human Ovarian Follicles
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Experimental Design
2.3. WJ ECM Hydrogel
2.4. Characterization of the Decellularized WJ
2.5. Production of dWJ/Alg and Alg Hydrogels
2.6. Vitrification of Human Ovarian Tissue
2.7. Isolation of Human Ovarian Follicles
2.8. Evaluation of Follicular Viability
2.9. Artificial Ovary Xenotransplantation
2.10. Histological and Immunohistochemistry (IHC) Analyses
2.11. Hormonal Analysis
2.12. Statistical Analysis
3. Results
3.1. Assessment of Decellularized WJ
3.2. Human Ovarian Follicle Isolation
3.3. Xenotransplanted Artificial Ovaries
3.4. Histological Evaluation
3.5. Immunofluorescence Staining
3.6. Hormonal Analysis
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arzmi, M.H.; PP Abdul Majeed, A.; Muazu Musa, R.; Mohd Razman, M.A.; Gan, H.S.; Mohd Khairuddin, I.; Ab. Nasir, A.F. Epidemiology, Detection and Management of Cancer: An Overview. In Deep Learning in Cancer Diagnostics; SpringerBriefs in Applied Sciences and Technology; Springer: Singapore, 2023; Volume 19, pp. 1–7. [Google Scholar] [CrossRef]
- Hoogendijk, R.; van der Lugt, J.; van Vuurden, D.; Kremer, L.; Wesseling, P.; Hoving, E.; Karin-Kos, H.E. Survival rates of children and young adolescents with CNS tumors improved in the Netherlands since 1990: A population-based study. Neuro-Oncol. Adv. 2022, 4, 183. [Google Scholar] [CrossRef]
- Khattak, H.; Amorim, C.A. What are my options? Fertility preservation methods for young girls and women. Fertil. Steril. 2022, 117, 1277–1278. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.P.; Chan, D.Y.; Song, Y.; Ng, E.Y.; Law, T.S.; Ng, K.; Leung, M.B.; Wang, S.; Wan, H.M.; Li, J.J.; et al. Implementation of ovarian tissue cryopreservation in Hong Kong. Hong Kong Med. J. 2023, 29, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, M.M.; Von Wolff, M.; Poirot, C.; Diaz-Garcia, C.; Cacciottola, L.; Boissel, N.; Liebenthron, J.; Pellicer, A.; Donnez, J.; Andersen, C.Y. Transplantation of cryopreserved ovarian tissue in a series of 285 women: A review of five leading European centers. Fertil. Steril. 2021, 115, 1102–1115. [Google Scholar] [CrossRef] [PubMed]
- Chiti, M.C.; Dolmans, M.-M.; Hobeika, M.; Cernogoraz, A.; Donnez, J.; Amorim, C.A. A modified and tailored human follicle isolation procedure improves follicle recovery and survival. J. Ovarian Res. 2017, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, Z.; Aliakbari, F.; Yazdekhasti, H. Female fertility preservation, clinical and experimental options. J. Reprod. Infertil. 2018, 19, 125–132. [Google Scholar]
- Ghezelayagh, Z.; Khoshdel-Rad, N.; Ebrahimi, B. Human ovarian tissue in-vitro culture: Primordial follicle activation as a new strategy for female fertility preservation. Cytotechnology 2022, 74, 1–15. [Google Scholar] [CrossRef]
- Malo, C.; Oliván, S.; Ochoa, I.; Shikanov, A. In Vitro Growth of Human Follicles: Current and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 1510. [Google Scholar] [CrossRef]
- Salama, M.; Woodruff, T.K. From bench to bedside: Current developments and future possibilities of artificial human ovary to restore fertility. Acta Obstet. Gynecol. Scand. 2019, 98, 659–664. [Google Scholar] [CrossRef]
- Wang, W.; Pei, C.; Isachenko, E.; Zhou, Y.; Wang, M.; Rahimi, G.; Liu, W.; Mallmann, P.; Isachenko, V. Automatic Evaluation for Bioengineering of Human Artificial Ovary: A Model for Fertility Preservation for Prepubertal Female Patients with a Malignant Tumor. Int. J. Mol. Sci. 2022, 23, 12419. [Google Scholar] [CrossRef]
- Peng, X.; Cheng, C.; Zhang, X.; He, X.; Liu, Y. Design and Application Strategies of Natural Polymer Biomaterials in Artificial Ovaries. Ann. Biomed. Eng. 2023, 51, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Fisch, B.; Abir, R. Female fertility preservation: Past, present and future. Reproduction 2018, 156, F11–F27. [Google Scholar] [CrossRef] [PubMed]
- Chiti, M.C.; Donnez, J.; Amorim, C.A.; Dolmans, M.-M. From isolation of human ovarian follicles to the artificial ovary: Tips and tricks. Minerva Ginecol. 2018, 70, 444–455. [Google Scholar] [CrossRef]
- Cho, E.; Kim, Y.Y.; Noh, K.; Ku, S.Y. A new possibility in fertility preservation: The artificial ovary. J. Tissue Eng. Regen. Med. 2019, 13, 1294–1315. [Google Scholar] [CrossRef]
- Kim, J.; Perez, A.S.; Claflin, J.; David, A.; Zhou, H.; Shikanov, A. Synthetic hydrogel supports the function and regeneration of artificial ovarian tissue in mice. NPJ Regen. Med. 2016, 1, 16010. [Google Scholar] [CrossRef] [PubMed]
- Gosden, R.G. Restitution of fertility in sterilized mice by transferring primordial ovarian follicles. Hum. Reprod. 1990, 5, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.; Gosden, R.G. Physiology: Transplantation of frozen-thawed mouse primordial follicles. Hum. Reprod. 1993, 8, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Telfer, E.; Torrance, C.; Gosden, R.G. Morphological study of cultured preantral ovarian follicles of mice after transplantation under the kidney capsule. Reproduction 1990, 89, 565–571. [Google Scholar] [CrossRef]
- Vanacker, J.; Dolmans, M.-M.; Luyckx, V.; Donnez, J.; Amorim, C.A. First transplantation of isolated murine follicles in alginate. Regen. Med. 2014, 9, 609–619. [Google Scholar] [CrossRef]
- Rios, P.D.; Kniazeva, E.; Lee, H.C.; Xiao, S.; Oakes, R.S.; Saito, E.; Jeruss, J.S.; Shikanov, A.; Woodruff, T.K.; Shea, L.D. Retrievable hydrogels for ovarian follicle transplantation and oocyte collection. Biotechnol. Bioeng. 2018, 115, 2075–2086. [Google Scholar] [CrossRef]
- Laronda, M.M.; Rutz, A.L.; Xiao, S.; Whelan, K.A.; Duncan, F.E.; Roth, E.W.; Woodruff, T.K.; Shah, R.N. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat. Commun. 2017, 8, 15261. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, A.; Talaei-Khozani, T.; Kargar-Abarghouei, E.; Razban, V.; Vojdani, Z. Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res. Ther. 2018, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Buckenmeyer, M.J.; Sukhwani, M.; Iftikhar, A.; Nolfi, A.L.; Xian, Z.; Dadi, S.; Case, Z.W.; Steimer, S.R.; D’Amore, A.; Orwig, K.E.; et al. Bioengineering an in situ ovary (ISO) for fertility preservation. J. Tissue Eng. 2023, 14, 20417314231197282. [Google Scholar] [CrossRef] [PubMed]
- Eivazkhani, F.; Abtahi, N.S.; Tavana, S.; Mirzaeian, L.; Abedi, F.; Ebrahimi, B.; Montazeri, L.; Valojerdi, M.R.; Fathi, R. Evaluating two ovarian decellularization methods in three species. Mater. Sci. Eng. C 2019, 102, 670–682. [Google Scholar] [CrossRef]
- Dolmans, M.-M.; Yuan, W.Y.; Camboni, A.; Torre, A.; Van Langendonckt, A.; Martinez-Madrid, B.; Donnez, J. Development of antral follicles after xenografting of isolated small human preantral follicles. Reprod. Biomed. Online 2008, 16, 705–711. [Google Scholar] [CrossRef]
- Dolmans, M.-M.; Martinez-Madrid, B.; Gadisseux, E.; Guiot, Y.; Yuan, W.Y.; Torre, A.; Camboni, A.; Van Langendonckt, A.; Donnez, J. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction 2007, 134, 253–262. [Google Scholar] [CrossRef]
- Paulini, F.; Vilela, J.M.; Chiti, M.C.; Donnez, J.; Jadoul, P.; Dolmans, M.-M.; Amorim, C.A. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod. Biomed. Online 2016, 33, 425–432. [Google Scholar] [CrossRef]
- Pors, S.; Ramløse, M.; Nikiforov, D.; Lundsgaard, K.; Cheng, J.; Andersen, C.Y.; Kristensen, S.G. Initial steps in reconstruction of the human ovary: Survival of pre-antral stage follicles in a decellularized human ovarian scaffold. Hum. Reprod. 2019, 34, 1523–1535. [Google Scholar] [CrossRef]
- Dadashzadeh, A.; Moghassemi, S.; Peaucelle, A.; Lucci, C.M.; Amorim, C.A. Mind the mechanical strength: Tailoring a 3D matrix to encapsulate isolated human preantral follicles. Hum. Reprod. Open 2023, 2023, hoad004. [Google Scholar] [CrossRef]
- Wu, T.; Huang, K.-C.; Yan, J.-F.; Zhang, J.-J.; Wang, S.-X. Extracellular matrix-derived scaffolds in constructing artificial ovaries for ovarian failure: A systematic methodological review. Hum. Reprod. Open 2023, 2023, hoad014. [Google Scholar] [CrossRef]
- Chen, J.; Torres-de la Roche, L.A.; Kahlert, U.D.; Isachenko, V.; Huang, H.; Hennefründ, J.; Yan, X.; Chen, Q.; Shi, W.; Li, Y. Artificial ovary for young female breast cancer patients. Front. Med. 2022, 17, 837022. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, K.; Małkowski, A.; Bańkowski, E.; Jaworski, S. Wharton’s jelly as a reservoir of peptide growth factors. Placenta 2005, 26, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Kehtari, M.; Beiki, B.; Zeynali, B.; Hosseini, F.S.; Soleimanifar, F.; Kaabi, M.; Soleimani, M.; Enderami, S.E.; Kabiri, M.; Mahboudi, H. Decellularized Wharton’s jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. J. Cell. Biochem. 2019, 120, 6683–6697. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Liu, S.; Bai, Y.; Lu, S.; Peng, J.; Zhang, L.; Huang, J.; Zhao, B.; Xu, W.; Guo, Q. hWJECM-derived oriented scaffolds with autologous chondrocytes for rabbit cartilage defect repairing. Tissue Eng. Part A 2018, 24, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Zand, E.; Rajablou, E.; Siadat, S.F.; Beiki, B.; Akbarinejad, V.; Amorim, C.A.; Rezazadeh Valojerdi, M.; Tahaei, L.A.; Fathi, R. Successful 3D culture and transplantation of mouse isolated preantral follicles in hydrogel of bioengineered Wharton’s jelly. PLoS ONE 2023, 18, e0290095. [Google Scholar] [CrossRef]
- Abtahi, N.S.; Ebrahimi, B.; Fathi, R.; Khodaverdi, S.; Kashi, A.M.; Valojerdi, M.R. An introduction to the royan human ovarian tissue bank. Int. J. Fertil. Steril. 2016, 10, 261. [Google Scholar] [CrossRef]
- Smitz, J.; Cortvrindt, R.G. The earliest stages of folliculogenesis in vitro. Reproduction 2002, 123, 185–202. [Google Scholar] [CrossRef]
- Pirtea, P.; Ayoubi, J.M.; Desmedt, S.; T’Sjoen, G. Ovarian, breast, and metabolic changes induced by androgen treatment in transgender men. Fertil. Steril. 2021, 116, 936–942. [Google Scholar] [CrossRef]
- Ikeda, K.; Baba, T.; Noguchi, H.; Nagasawa, K.; Endo, T.; Kiya, T.; Saito, T. Excessive androgen exposure in female-to-male transsexual persons of reproductive age induces hyperplasia of the ovarian cortex and stroma but not polycystic ovary morphology. Hum. Reprod. 2013, 28, 453–461. [Google Scholar] [CrossRef]
- Mouloungui, E.; Zver, T.; Roux, C.; Amiot, C. A protocol to isolate and qualify purified human preantral follicles in cases of acute leukemia, for future clinical applications. J. Ovarian Res. 2018, 11, 4. [Google Scholar] [CrossRef]
- Vanacker, J.; Amorim, C.A. Alginate: A versatile biomaterial to encapsulate isolated ovarian follicles. Ann. Biomed. Eng. 2017, 45, 1633–1649. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xu, Y.; Li, Y.; Gong, X.; Wei, M.; Zhang, W.; Zhang, X.; Xu, Y. Nanofibrous Wharton’s jelly scaffold in combination with adipose-derived stem cells for cartilage engineering. Mater. Des. 2020, 186, 108216. [Google Scholar] [CrossRef]








| Steps | Materials | pH | Time (Hour) |
|---|---|---|---|
| 1 | 10 mM Tris + 0.1% EDTA 1 | 8 | 16 |
| 2 | 10 mM base TBS 2 + 0.03% SDS 3 + 0.1% EDTA | 7.6 | 24 |
| 3 | Washing with Tris | - | - |
| 4 | 50 mM Tris-HCl + 10 mM MgCl2 | 7.5 | 3 |
| 5 | Washing with PBS | 2 times, and each time 2 h | |
| Washing with PBS + DNase/RNase | 3 h | ||
| Washing with PBS | 4–5 times, each time 2–3 h, and at least 2-overnight | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajbakhsh, F.; Tavana, S.; Kazemi Ashtiani, M.; Moini, A.; Amorim, C.A.; Fathi, R. Wharton’s Jelly Hydrogel: An Innovative Artificial Ovary for Xenotransplantation of Isolated Human Ovarian Follicles. Biology 2025, 14, 1340. https://doi.org/10.3390/biology14101340
Tajbakhsh F, Tavana S, Kazemi Ashtiani M, Moini A, Amorim CA, Fathi R. Wharton’s Jelly Hydrogel: An Innovative Artificial Ovary for Xenotransplantation of Isolated Human Ovarian Follicles. Biology. 2025; 14(10):1340. https://doi.org/10.3390/biology14101340
Chicago/Turabian StyleTajbakhsh, Farnaz, Somayeh Tavana, Mohammad Kazemi Ashtiani, Ashraf Moini, Christiani Andrade Amorim, and Rouhollah Fathi. 2025. "Wharton’s Jelly Hydrogel: An Innovative Artificial Ovary for Xenotransplantation of Isolated Human Ovarian Follicles" Biology 14, no. 10: 1340. https://doi.org/10.3390/biology14101340
APA StyleTajbakhsh, F., Tavana, S., Kazemi Ashtiani, M., Moini, A., Amorim, C. A., & Fathi, R. (2025). Wharton’s Jelly Hydrogel: An Innovative Artificial Ovary for Xenotransplantation of Isolated Human Ovarian Follicles. Biology, 14(10), 1340. https://doi.org/10.3390/biology14101340

