Dynamics of Pathomorphological and Pathophysiological Alterations in Rainbow Trout (Oncorhynchus mykiss) During Acute Aeromonas salmonicida Infection
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Housing Conditions
2.2. Ethics Statement
2.3. Bacterial Isolation, Physiological and Biochemical Tests
2.4. Genome Sequencing
2.5. Genome Assembly and Bioinformatics Analysis
2.6. Experimental Infection
2.7. Blood Sampling and Hematological Study
2.8. Bacterial Load Assessment
2.9. Blood Biochemical Parameters
2.10. Histological Study
2.11. Histomorphometric Analysis
2.12. Statistical Analysis
3. Results
3.1. Characterization of the A. salmonicida Isolate
3.2. Genome Characteristics and Taxonomic Analysis
3.3. Virulence Factors
3.4. Antimicrobial Resistance Genes
3.5. LD50 Determination and Clinical Picture of Acute Infection
3.6. Clinical Picture in Prolonged Experiment
3.7. Bacterial Load
3.8. Hematological Parameters
3.9. Blood Biochemistry
3.10. Histology of Muscle Tissue at the Injection Site
3.11. Histology of the Hindgut
3.12. Liver Histology
3.13. Histology of the Trunk Kidney
3.14. Histology of the Spleen
4. Discussion
4.1. Strain A. salmonicida SL0n
4.2. Acute Experiment and Virulence of Strain A. salmonicida SL0n
4.3. First Stage of Pathogenesis (1–2 DPI)
4.4. Second Stage of Pathogenesis (4 DPI)
4.5. Third Stage of Pathogenesis (6 DPI)
4.6. Dynamics of Physiological and Pathological Disorders Induced by A. salmonicida SL0n
5. Conclusions
- Early stage (1–2 DPI): Systemic spread of bacteria in the fish’s body and activation of a nonspecific immune response (leukocytosis, neutrophilia).
- Acute stage (4 DPI): Peak septicemia accompanied by severe clinical signs, anemia, and maximum organ damage (indicated by peak AST, ALT, and creatinine levels).
- Recovery stage (6 DPI): Partial regression of pathological changes and activation of regenerative processes, while maintaining pronounced organ dysfunction.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olivier, G. Getting to know your enemy. In Furunculosis: Multidisciplinary Fish Disease Research; Bernoth, E.-M., Ellis, A.E., Midtlyng, P.J., Olivier, G., Smith, P., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 233–234. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A. Aeromonadaceae representatives (Aeromonas salmonicida). In Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, 6th ed.; Springer: Cham, Switzerland, 2016; pp. 215–321. [Google Scholar] [CrossRef]
- Dallaire-Dufresne, S.; Tanaka, K.H.; Trudel, M.V.; Lafaille, A.; Charette, S.J. Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet. Microbiol. 2014, 169, 1–7. [Google Scholar] [CrossRef]
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef] [PubMed]
- Alghabshi, A.; Austin, B.; Crumlish, M. Aeromonas salmonicida isolated from wild and farmed fish and invertebrates in Oman. Int. Aquat. Res. 2018, 10, 145–152. [Google Scholar] [CrossRef]
- Thomas, J.; Jerobin, J.; Seelan, T.S.J.; Thanigaivel, S.; Vijayakumar, S.; Mukherjee, A.; Chandrasekaran, N. Studies on pathogenicity of Aeromonas salmonicida in catfish Clarias batrachus and control measures by neem nanoemulsion. Aquaculture 2013, 396–399, 71–75. [Google Scholar] [CrossRef]
- Treasurer, J.W.; Birkbeck, T.H.; Laidler, L.A.; Cox, D.I. Atypical Aeromonas salmonicida infection in naturally- and laboratory-challenged farmed haddock, Melanogrammus aeglefinus (L.). J. Fish Dis. 2007, 30, 313–318. [Google Scholar] [CrossRef]
- Bakiyev, S.; Smekenov, I.; Zharkova, I.; Kobegenova, S.; Sergaliyev, N.; Absatirov, G.; Bissenbaev, A. Characterization of atypical pathogenic Aeromonas salmonicida isolated from a diseased Siberian sturgeon (Acipenser baerii). Heliyon 2023, 9, e17775. [Google Scholar] [CrossRef]
- Pereiro, P.; Falcó, A.; Fernández-Oliver, M.; Paladea-Rojo, R.; Bonet-García, R.; Yuste, J.E.; Novoa, B. Identification of taurine as a resistance-associated metabolite against Aeromonas salmonicida and its protective, immune-regulatory, and microbiota-shaping effects in turbot (Scophthalmus maximus). Aquaculture 2025, 592, 742721. [Google Scholar] [CrossRef]
- Menanteau-Ledouble, S.; Kumar, G.; Saleh, M.; El-Matbouli, M. Aeromonas salmonicida: Updates on an old acquaintance. Dis. Aquat. Org. 2016, 120, 49–68. [Google Scholar] [CrossRef]
- Guo, Y.; Zheng, C.; Wang, Y.; Dang, Y.; Li, R.; Tao, Y.; Yang, Y.; Sun, X.; Song, Z.; Sun, P.; et al. Study on the role and pathological and immune responses of silver nanoparticles against two Aeromonas salmonicida subsp. salmonicida strains at different virulence levels in rainbow trout (Oncorhynchus mykiss). Fishes 2025, 10, 29. [Google Scholar] [CrossRef]
- Boulanger, Y.; Lallier, R.; Cousineau, G. Isolation of enterotoxigenic Aeromonas from fish. Can. J. Microbiol. 1977, 23, 1161–1164. [Google Scholar] [CrossRef]
- Buller, N.B. Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual; CABI Publishing: Wallingford, UK, 2004. [Google Scholar]
- Marinho-Neto, F.A.; Claudiano, G.S.; Yunis-Aguinaga, J.; Cueva-Quiroz, V.A.; Kobashigawa, K.K.; Cruz, N.R.N.; Moraes, F.R.; Moraes, J.R.E. Morphological, microbiological and ultrastructural aspects of sepsis by Aeromonas hydrophila in Piaractus mesopotamicus. PLoS ONE 2019, 14, e0222626. [Google Scholar] [CrossRef]
- Abreu, R.E.F.F.; Magalhães, T.C.; Souza, R.C.; Teixeira, A.B.; Moreira, E.L.T.; Rosa, P.S.; Pinheiro, R.O.; Alves, D.B.M.; Byrd, D.S.; Lemos, M.L.; et al. Environmental factors on virulence of Aeromonas hydrophila. Aquac. Int. 2018, 26, 495–507. [Google Scholar] [CrossRef]
- Gjerde, B.; Evensen, Ø.; Bentsen, H.B.; Storset, A. Genetic (co)variation of vaccine injuries and innate resistance to furunculosis (Aeromonas salmonicida) and infectious salmon anaemia (ISA) in Atlantic salmon (Salmo salar). Aquaculture 2009, 287, 52–58. [Google Scholar] [CrossRef]
- Lund, V.; Mikkelsen, H.; Schrøder, M.B. Comparison of atypical furunculosis vaccines in spotted wolffish (Anarhicas minor O.) and Atlantic halibut (Hippoglossus hippoglossus L.). Vaccine 2008, 26, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- Diamanka, A.; Loch, T.P.; Cipriano, R.C.; Faisal, M. Polyphasic characterization of Aeromonas salmonicida isolates recovered from salmonid and non-salmonid fish. J. Fish Dis. 2014, 36, 949–963. [Google Scholar] [CrossRef]
- Hiney, M. Field observation of clinical furunculosis in Atlantic salmon smolts vaccinated with an oil-based furunculosis vaccine. Bull. Eur. Assoc. Fish Pathol. 1999, 19, 66–69. [Google Scholar]
- Gudding, R.; Van Muiswinkel, W.B. A history of fish vaccination: Science-based disease prevention in aquaculture. Fish Shellfish Immunol. 2013, 35, 1683–1688. [Google Scholar] [CrossRef]
- Ahmed, I.; Ishtiyaq, S.; Sayed, S.F. An overview on understanding the major bacterial fish diseases in freshwater salmonids. Front. Aquac. 2025, 4, 1515831. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Z.; Li, M.; Zhang, X.; Shi, Q.; Xu, Z. Fish genomics and its application in disease-resistance breeding. Rev. Aquac. 2025, 17, e12973. [Google Scholar] [CrossRef]
- Pereiro, P.; Tur, R.; García, M.; Figueras, A.; Novoa, B. Unravelling turbot (Scophthalmus maximus) resistance to Aeromonas salmonicida: Transcriptomic insights from two full-sibling families with divergent susceptibility. Front. Immunol. 2024, 15, 1522666. [Google Scholar] [CrossRef]
- Majeed, S.; De Silva, L.A.D.S.; Kumarage, P.M.; Heo, G.-J. Occurrence of potential virulence determinants in Aeromonas spp. isolated from different aquatic environments. J. Appl. Microbiol. 2023, 134, lxad031. [Google Scholar] [CrossRef]
- Reith, M.E.; Singh, R.K.; Curtis, B.; Boyd, J.M.; Bouevitch, A.; Kimball, J.; Munholland, J.; Murphy, C.; Sarty, D.; Williams, J.; et al. The genome of Aeromonas salmonicida subsp. salmonicida A449: Insights into the evolution of a fish pathogen. BMC Genom. 2008, 9, 427. [Google Scholar] [CrossRef] [PubMed]
- Sreedharan, K.; Philip, R.; Singh, I.S.B. Characterization and virulence potential of phenotypically diverse Aeromonas veronii isolates recovered from moribund freshwater ornamental fishes of Kerala, India. Antonie Van Leeuwenhoek 2013, 103, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Abdella, B.; Shokrak, N.M.; Abozahra, N.A.; Elshamy, Y.M.; Kadira, H.I.; Mohamed, R.A. Aquaculture and Aeromonas hydrophila: A complex interplay of environmental factors and virulence. Aquac. Int. 2024, 32, 7671–7681. [Google Scholar] [CrossRef]
- Vanden Bergh, P.; Frey, J. Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb. Biotechnol. 2014, 7, 381–400. [Google Scholar] [CrossRef]
- Wiklund, T.; Dalsgaard, I. Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species: A review. Dis. Aquat. Org. 1998, 32, 49–69. [Google Scholar] [CrossRef]
- Bernoth, E.-M. Diagnosis of furunculosis: The tools. In Furunculosis: Multidisciplinary Fish Disease Research; Bernoth, E.-M., Ellis, A.E., Midtlyng, P.J., Olivier, G., Smith, P., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 98–158. [Google Scholar]
- Ogut, H.; Reno, P.W. Evaluation of an experimental Aeromonas salmonicida epidemic in chinook salmon, Oncorhynchus tshawytscha (Walbaum). J. Fish Dis. 2005, 28, 263–269. [Google Scholar] [CrossRef]
- Cipriano, R.C.; Bullock, G.L. Furunculosis and Other Diseases Caused by Aeromonas salmonicida; Fish Disease Leaflet 66; U.S. Fish and Wildlife Service, National Fish Health Research Laboratory: Kearneysville, WV, USA, 2001. [Google Scholar]
- Coscelli, G.A.; Bermúdez, R.; Losada, A.P.; Faílde, L.D.; Santos, Y.; Quiroga, M.I. Acute Aeromonas salmonicida infection in turbot (Scophthalmus maximus L.). Histopathological and immunohistochemical studies. Aquaculture 2014, 430, 79–85. [Google Scholar] [CrossRef]
- Noga, E.J. Fish Disease: Diagnosis and Treatment, 2nd ed.; Wiley-Blackwell: Ames, IA, USA, 2010. [Google Scholar] [CrossRef]
- Magnadóttir, B.; Bambir, S.H.; Gudmundsdóttir, B.K.; Pilström, L.; Helgason, S. Atypical Aeromonas salmonicida infection in naturally and experimentally infected cod, Gadus morhua L. J. Fish Dis. 2002, 25, 583–597. [Google Scholar] [CrossRef]
- Farto, R.; Milton, D.L.; Bermúdez, M.B.; Nieto, T.P. Colonization of turbot tissues by virulent and avirulent Aeromonas salmonicida subsp. salmonicida strains during infection. Dis. Aquat. Org. 2011, 95, 167–173. [Google Scholar] [CrossRef]
- Han, H.J.; Kim, D.Y.; Kim, W.S.; Kim, C.S.; Jung, S.J.; Oh, M.J.; Kim, D.H. Atypical Aeromonas salmonicida infection in the black rockfish, Sebastes schlegeli Hilgendorf, in Korea. J. Fish Dis. 2011, 34, 47–55. [Google Scholar] [CrossRef]
- Basak, C.; Chakraborty, R. Protocol to establish a disease model in Lepidocephalichthys guntea using Aeromonas hydrophila. STAR Protoc. 2024, 5, 103165. [Google Scholar] [CrossRef] [PubMed]
- Plumb, J.A.; Hanson, L.A. Health Maintenance and Principal Microbial Diseases of Cultured Fishes, 3rd ed.; Wiley-Blackwell: Ames, IA, USA, 2011. [Google Scholar] [CrossRef]
- Daly, J.G.; Kew, A.K.; Moore, A.R.; Olivier, G. The cell surface of Aeromonas salmonicida determines in vitro survival in cultured brook trout (Salvelinus fontinalis) peritoneal macrophages. Microb. Pathog. 1996, 21, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Lian, Z.; Bai, J.; Hu, X.; Lü, A.; Sun, J.; Guo, Y.; Song, Y. Detection and characterization of Aeromonas salmonicida subsp. salmonicida infection in crucian carp Carassius auratus. Vet. Res. Commun. 2020, 44, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, T.; Bardhan, A. Histopathological changes in teleost kidney as indicators of aetiopathogenic involvement. J. Environ. Inform. Lett. 2025, 13, 25–37. [Google Scholar] [CrossRef]
- Bernet, D.; Schmidt, H.; Meier, W.; Burkhardt-Holm, P.; Wahli, T. Histopathology in fish: Proposal for a protocol to assess aquatic pollution. J. Fish Dis. 1999, 22, 25–34. [Google Scholar] [CrossRef]
- Yi, M.; Du, Y.; Chi, L.; Sun, G.; Li, X.; Liu, Y. The impact of Aeromonas salmonicida infection on behaviour and physiology of Atlantic salmon Salmo salar L. Aquac. Res. 2016, 47, 2287–2296. [Google Scholar] [CrossRef]
- Sharifpour, I.; Rahimi Afzal, Z.; Hemati, A.; Saeidi, Z. Histology of the inflammatory response of carp (Cyprinus carpio L.) to Aeromonas hydrophila infection. Sustain. Aquac. Health Manage. J. 2024, 10, 111–146. [Google Scholar] [CrossRef]
- Bergey, D.H. Bergey’s Manual of Determinative Bacteriology, 9th ed.; Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Williams, S.T., Eds.; Williams & Wilkins: Baltimore, MD, USA, 1994. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Whitman, K.A. Finfish and Shellfish Bacteriology Manual: Techniques and Procedures; Iowa State Press: Ames, IA, USA, 2004. [Google Scholar]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 21 May 2024).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinf. 2009, 10, 421. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Glöckner, F.O.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.; Varani, A.M.; Snesrud, E.; Huang, H.; Alvarenga, D.O.; Zhang, J.; Chandler, M. TnCentral: A prokaryotic transposable element database and web portal for transposon analysis. mBio 2021, 12, e02060-21. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, B.; Zheng, D.; Chen, L.; Yang, J. VFDB 2025: An integrated resource for exploring anti-virulence compounds. Nucleic Acids Res. 2025, 53, D871–D877. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; McArthur, A.G. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Ling, X.-D.; Dong, W.-T.; Zhang, Y.; Qian, X.; Zhang, W.-D.; He, W.-H.; Zhao, X.-X.; Liu, J.-X. Comparative transcriptomics and histopathological analysis of crucian carp infection by atypical Aeromonas salmonicida. Fish Shellfish Immunol. 2019, 94, 294–307. [Google Scholar] [CrossRef]
- Bhat, R.A.H.; Thakuria, D.; Dubey, M.K.; Tandel, R.S.; Sharma, P.; Khangembam, V.C.; Tripathi, G.; Dash, P.; Sarma, D. Lethal dose and histopathological alterations induced by Aeromonas salmonicida in experimentally challenged common carp, Cyprinus carpio. Microb. Pathog. 2021, 158, 105110. [Google Scholar] [CrossRef]
- Blaxhall, P.C.; Daisley, K.W. Routine haematological methods for use with fish blood. J. Fish Biol. 1973, 5, 771–781. [Google Scholar] [CrossRef]
- Grant, K.R. Fish hematology and associated disorders. Vet. Clin. N. Am. Exot. Anim. Pract. 2015, 18, 83–103. [Google Scholar] [CrossRef]
- Fijan, N. Morphogenesis of blood cell lineages in channel catfish. J. Fish Biol. 2002, 60, 999–1014. [Google Scholar] [CrossRef]
- Kondera, E. Haematopoiesis in the head kidney of common carp (Cyprinus carpio L.): A morphological study. Fish Physiol. Biochem. 2011, 37, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Nabi, N.; Ahmed, I.; Wani, G.B. Hematological and serum biochemical reference intervals of rainbow trout, Oncorhynchus mykiss cultured in Himalayan aquaculture: Morphology, morphometrics and quantification of peripheral blood cells. Saudi J. Biol. Sci. 2022, 29, 2942–2957. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, S.K.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques, 8th ed.; Elsevier: Philadelphia, PA, USA, 2018. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Smorodinskaya, S.; Kochetkov, N.; Gavrilin, K.; Nikiforov-Nikishin, D.; Reznikova, D.; Vatlin, A.; Danilenko, V. The effects of acute bisphenol A toxicity on the hematological parameters, hematopoiesis, and kidney histology of zebrafish (Danio rerio). Animals 2023, 13, 3685. [Google Scholar] [CrossRef]
- Nikiforov-Nikishin, A.L.; Nikiforov-Nikishin, D.L.; Kochetkov, N.I. Status of isolated Coregonus peled peled populations from mountain lakes of Altai according to histological indices and elemental composition of eye lens. Inland Water Biol. 2023, 16, 722–734. [Google Scholar] [CrossRef]
- Oropesa, A.L.; Jiménez, B.; Fallola, C.; Pula, H.J.; Cuesta, J.M.; Gómez, L. Histological alterations on the structure of the excretory renal system in tench (Tinca tinca) after exposure to 17-alpha-ethynylestradiol. Bull. Environ. Contam. Toxicol. 2013, 91, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Escaffre, A.M.; Kaushik, S.; Mambrini, M. Morphometric evaluation of changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) due to fish meal replacement with soy protein concentrate. Aquaculture 2007, 273, 127–138. [Google Scholar] [CrossRef]
- Healy, M.J.R. Statistical Method in Biological Assay, 3rd ed.; Finney, D.J., Ed.; Oxford University Press: Oxford, UK, 1979; Volume 142, p. 507. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 15 July 2025).
- R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2021. Available online: https://www.R-project.org/ (accessed on 15 July 2025).
- Kirov, S.M.; Tassell, B.C.; Semmler, A.B.; O’Donovan, L.A.; Rabaan, A.A.; Shaw, J.G. Lateral flagella and swarming motility in Aeromonas species. J. Bacteriol. 2002, 184, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Kirov, S.M.; Castrisios, M.; Shaw, J.G. Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect. Immun. 2004, 72, 1939–1945. [Google Scholar] [CrossRef]
- Stuber, K.; Burr, S.E.; Braun, M.; Wahli, T.; Frey, J. Type III secretion genes in Aeromonas salmonicida subsp. salmonicida are located on a large thermolabile virulence plasmid. J. Clin. Microbiol. 2003, 41, 3854–3856. [Google Scholar] [CrossRef]
- Vasquez, I.; Hossain, A.; Gnanagobal, H.; Valderrama, K.; Campbell, B.; Ness, M.; Santander, J. Comparative genomics of typical and atypical Aeromonas salmonicida complete genomes revealed new insights into pathogenesis evolution. Microorganisms 2022, 10, 189. [Google Scholar] [CrossRef]
- Akram, M.; Hafeez-ur-Rehman, M.; Abbas, F.; Altaf, I.; Kanwal, S.; Mobeen, N.; Anjum, S.; Sughra, F. Identification, isolation and pathogenicity of Aeromonas salmonicida and histopathology of infected Oncorhynchus mykiss in Punjab and northern areas of Pakistan. J. Fish. 2025, 13, 131204. [Google Scholar] [CrossRef]
- Kozińska, A.; Figueras, M.J.; Chacon, M.R.; Soler, L. Phenotypic characteristics and pathogenicity of Aeromonas genomospecies isolated from common carp (Cyprinus carpio L.). J. Appl. Microbiol. 2002, 93, 1034–1041. [Google Scholar] [CrossRef]
- Sudheesh, P.S.; Al-Ghabshi, A.; Al-Mazrooei, N.; Al-Habsi, S. Comparative pathogenomics of bacteria causing infectious diseases in fish. Int. J. Evol. Biol. 2012, 2012, 457264. [Google Scholar] [CrossRef]
- Bari, S.M.; Islam, M.M.; Amina, A.; Khatun, M.; Shahabuddin, A.M. Molecular identification, histopathology and antibiotic susceptibility profiling of Aeromonas veronii isolated from Oreochromis niloticus in Bangladesh. Vet. Med. Sci. 2024, 10, e70103. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Devi, R.; Khan, M.I.R.; Kamilya, D.; Choudhury, T.G.; Parhi, J. Isolation of Aeromonas salmonicida subspecies salmonicida from aquaculture environment in India: Polyphasic identification, virulence characterization, and antibiotic susceptibility. Microb. Pathog. 2023, 179, 106100. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Fan, H.; Gan, Z.; Jiang, Z.; Tang, S.; Xia, H.; Lu, Y. Comparative genomic analysis provides insights into taxonomy and temperature adaption of Aeromonas salmonicida. J. Fish Dis. 2023, 46, 545–561. [Google Scholar] [CrossRef] [PubMed]
- Charette, S.J. Aeromonas salmonicida: Genomics, taxonomy, diversity, pathogenesis, treatments and beyond. Microorganisms 2023, 11, 1189. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M.; Popowska, M. Insight into the mobilome of Aeromonas strains. Front. Microbiol. 2015, 6, 494. [Google Scholar] [CrossRef]
- Pereira, C.; Duarte, J.; Costa, P.; Braz, M.; Almeida, A. Bacteriophages in the control of Aeromonas sp. in aquaculture systems: An integrative view. Antibiotics 2022, 11, 163. [Google Scholar] [CrossRef]
- Izumikawa, K.; Ueki, N. Atypical Aeromonas salmonicida infection in cultured Schlegel’s black rockfish. Fish Pathol. 1997, 32, 67–68. [Google Scholar] [CrossRef]
- Mittal, K.R.; Lalonde, G.; Leblanc, D.; Olivier, G.; Lallier, R. Aeromonas hydrophila in rainbow trout: Relation between virulence and surface characteristics. Can. J. Microbiol. 1980, 26, 1501–1503. [Google Scholar] [CrossRef]
- Korotkov, K.V.; Sandkvist, M. Architecture, function, and substrates of the type II secretion system. EcoSal Plus 2019, 8, 10.1128. [Google Scholar] [CrossRef]
- Peatman, E.; Mohammed, H.; Kirby, A.; Shoemaker, C.A.; Yildirim-Aksoy, M.; Beck, B.H. Mechanisms of pathogen virulence and host susceptibility in virulent Aeromonas hydrophila infections of channel catfish (Ictalurus punctatus). Aquaculture 2018, 482, 1–8. [Google Scholar] [CrossRef]
- Seibel, H.; Baßmann, B.; Rebl, A. Blood will tell: What hematological analyses can reveal about fish welfare. Front. Vet. Sci. 2021, 8, 616955. [Google Scholar] [CrossRef]
- Rini, R.K.; Aisiah, S.; Nafisah, L. Hematological and histological analysis of tilapia (Oreochromis niloticus) cultured in floating net cages after disease outbreak. J. Penelit. Pendidik. IPA 2024, 10, 1787–1793. [Google Scholar] [CrossRef]
- Korni, F.M.; EL-Nahass, E.S.; Ahmed, W. An outbreak of motile Aeromonas septicemia in cultured Nile tilapia, Oreochromis niloticus with reference to hematological, biochemical and histopathological alterations. J. Fish Pathol. 2017, 30, 11–24. [Google Scholar] [CrossRef]
- Mbokane, E.M.; Moyo, N.A. Alterations of haemato-biochemical parameters pre and post-challenge with Aeromonas hydrophila and survival of Oreochromis mossambicus fed Moringa oleifera-based diets. Fish Shellfish Immunol. 2018, 83, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.M.; Kanki, J.P.; Rhodes, J.; Liu, T.X.; Paw, B.H.; Kieran, M.W.; Look, A.T. Myelopoiesis in the zebrafish, Danio rerio. Blood 2001, 98, 643–651. [Google Scholar] [CrossRef]
- Carriero, M.M.; Mendes Maia, A.A.; Sousa, R.L.M.; Henrique-Silva, F. Characterization of a new strain of Aeromonas dhakensis isolated from diseased pacu fish (Piaractus mesopotamicus) in Brazil. J. Fish Dis. 2016, 39, 1285–1295. [Google Scholar] [CrossRef]
- Cueva-Quiroz, V.A.; Yunis-Aguinaga, J.; Ramos-Espinoza, F.C.; de Moraes, F.R.; de Moraes, J.R.E. Acute hypercortisolemia inhibits innate immune parameters in Piaractus mesopotamicus experimentally infected with Aeromonas hydrophila. Aquaculture 2020, 523, 735231. [Google Scholar] [CrossRef]
- Sharon, J.; Abraham, T.J.; Sen, A.; Das, R.; Sinha, P.; Boda, S.; Patil, P.K. Haemato-biochemistry, erythromorphology, and histopathology of Oreochromis niloticus as influenced by Aeromonas hydrophila infection and florfenicol therapy. Anim. Res. One Health 2025, 3, 54–70. [Google Scholar] [CrossRef]
- Bojarski, B.; Witeska, M.; Kondera, E. Blood biochemical biomarkers in fish toxicology—A review. Animals 2025, 15, 965. [Google Scholar] [CrossRef]
- Řehulka, J. The blood indices of the rainbow trout, Oncorhynchus mykiss (Walbaum) in Aeromonas-induced ulcerous dermatitis. Acta Vet. Brno 1998, 67, 317–322. [Google Scholar] [CrossRef]
- Kulkarni, R.S. Sex differences in the blood biochemical parameters of the fresh water fish, Notopterus notopterus (Pallas, 1789). World News Nat. Sci. 2017, 6, 36–43. [Google Scholar]
- Banaee, M. Alkaline phosphatase activity as a biochemical biomarker in aqua-toxicological studies. Int. J. Aquat. Biol. 2020, 8, 143–147. [Google Scholar]
- Yang, Y.; Wang, Z.; Wang, J.; Lyu, F.; Xu, K.; Mu, W. Histopathological, hematological, and biochemical changes in high-latitude fish Phoxinus lagowskii exposed to hypoxia. Fish Physiol. Biochem. 2021, 47, 919–938. [Google Scholar] [CrossRef] [PubMed]
- Panepucci, L.; Fernandes, M.N.; Sanches, J.R.; Rantin, F.T. Changes in lactate dehydrogenase and malate dehydrogenase activities during hypoxia and after temperature acclimation in the armored fish, Rhinelepis strigosa (Siluriformes, Loricariidae). Rev. Bras. Biol. 2000, 60, 353–360. [Google Scholar] [CrossRef]
- Yousaf, M.N.; Powell, M.D. The effects of heart and skeletal muscle inflammation and cardiomyopathy syndrome on creatine kinase and lactate dehydrogenase levels in Atlantic salmon (Salmo salar L.). Sci. World J. 2012, 2012, 741302. [Google Scholar] [CrossRef]
- Chopra, A.K.; Xu, X.J.; Ribardo, D.; Gonzalez, M.; Kuhl, K.; Peterson, J.W.; Houston, C.W. The cytotoxic enterotoxin of Aeromonas hydrophila induces proinflammatory cytokine production and activates arachidonic acid metabolism in macrophages. Infect. Immun. 2000, 68, 2808–2818. [Google Scholar] [CrossRef]
- Beaz-Hidalgo, R.; Figueras, M.J. Aeromonas spp. whole genomes and virulence factors implicated in fish disease. J. Fish Dis. 2013, 36, 371–388. [Google Scholar] [CrossRef]
- Afifi, S.H.; Al-Thobiati, S.; Hazaa, M.S. Bacteriological and histopathological studies on Aeromonas hydrophila infection of Nile tilapia (Oreochromis niloticus) from fish farms in Saudi Arabia. Assiut Vet. Med. J. 2000, 42, 195–205. [Google Scholar]
- Abdelhamed, H.; Ibrahim, I.; Baumgartner, W.; Lawrence, M.L.; Karsi, A. Characterization of histopathological and ultrastructural changes in channel catfish experimentally infected with virulent Aeromonas hydrophila. Front. Microbiol. 2017, 8, 1519. [Google Scholar] [CrossRef]
- Bach, R.; Chen, P.K.; Chapman, G.B. Changes in the spleen of the channel catfish Ictalurus punctatus Rafinesque induced by infection with Aeromonas hydrophila. J. Fish Dis. 1978, 1, 205–217. [Google Scholar] [CrossRef]
- Sales, C.F.; Silva, R.F.; Amaral, M.G.; Domingos, F.F.; Ribeiro, R.I.; Thomé, R.G.; Santos, H.B. Comparative histology in the liver and spleen of three species of freshwater teleost. Neotrop. Ichthyol. 2017, 15, e160041. [Google Scholar] [CrossRef]
- Espenes, A.; Press, C.M.L.; Dannevig, B.H.; Landsverk, T. Investigation of the structural and functional features of splenic ellipsoids in rainbow trout (Oncorhynchus mykiss). Cell Tissue Res. 1995, 279, 469–474. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C. Modern trends in Aeromonas hydrophila disease management with fish. Rev. Fish. Sci. 2005, 13, 281–320. [Google Scholar] [CrossRef]
- Mokhtar, D.M.; Zaccone, G.; Alesci, A.; Kuciel, M.; Hussein, M.T.; Sayed, R.K.A. Main components of fish immunity: An overview of the fish immune system. Fishes 2023, 8, 93. [Google Scholar] [CrossRef]
- Zhang, M.; Xue, M.; Xiao, Z.; Liu, W.; Jiang, N.; Meng, Y.; Zhou, Y. Staphylococcus sciuri causes disease and pathological changes in hybrid sturgeon Acipenser baerii × Acipenser schrencki. Front. Cell. Infect. Microbiol. 2022, 12, 1029692. [Google Scholar] [CrossRef]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef]
- Wiklund, T.; Dalsgaard, I.; Eerola, E.; Olivier, G. Characteristics of ‘atypical’, cytochrome oxidase-negative Aeromonas salmonicida isolated from ulcerated flounders (Platichthys flesus (L.)). J. Appl. Microbiol. 1994, 76, 511–520. [Google Scholar] [CrossRef]
- Liu, J.; Ji, K.; Pang, X.; Jin, S.; Zheng, Y.; Xu, J.; Hu, M. Effects of Citrobacter freundii on sturgeon: Insights from haematological and intestinal-liver immunity. Aquaculture 2024, 586, 740811. [Google Scholar] [CrossRef]
- Mao, X.; Tian, Y.; Wen, H.; Liu, Y.; Sun, Y.; Yanglang, A.; Li, Y. Effects of Vibrio harveyi infection on serum biochemical parameters and expression profiles of interleukin-17 (IL-17)/interleukin-17 receptor (IL-17R) genes in spotted sea bass. Dev. Comp. Immunol. 2020, 110, 103731. [Google Scholar] [CrossRef]
- Jumma, S.Q.; Shihab, T.J.; MahmoodHamad al-shammari, S. Some hematological and biochemical parameter accompanying with Aeromonas hydrophila infection diagnosed genetically in Cyprinus carpio. Ann. Rom. Soc. Cell Biol. 2022, 26, 3203–3210. [Google Scholar]
- Shahjahan, M.; Islam, M.J.; Hossain, M.T.; Mishu, M.A.; Hasan, J.; Brown, C. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Sci. Total Environ. 2022, 843, 156910. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bravo, A.; Figueras, M.J. An update on the genus Aeromonas: Taxonomy, epidemiology, and pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Aboyadak, I.M.; Soliman, M.K.; Nageeb, H.M.; Ali, N.G. The role of Aeromonas genotyping in virulence for Dicentrarchus labrax. J. Fish Dis. 2024, 47, e13878. [Google Scholar] [CrossRef]
- Pal, S.; Roy, D.; Ray, S.D.; Homechaudhuri, S. Aeromonas hydrophila induced mitochondrial dysfunction and apoptosis in liver and spleen of Labeo rohita mediated by calcium and reactive oxygen species. Turk. J. Fish. Aquat. Sci. 2019, 20, 255–266. [Google Scholar]
- Chakraborty, S.; Hossain, A.; Cao, T.; Gnanagobal, H.; Segovia, C.; Hill, S.; Santander, J. Multi-organ transcriptome response of lumpfish (Cyclopterus lumpus) to Aeromonas salmonicida subspecies salmonicida systemic infection. Microorganisms 2022, 10, 2113. [Google Scholar] [CrossRef]
- Khoshnood, Z. Effects of environmental pollution on fish: A short review. Transylv. Rev. Syst. Ecol. Res. 2017, 19, 49–60. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Baldisserotto, B. Creatine kinase activity as an indicator of energetic impairment and tissue damage in fish: A review. Fishes 2023, 8, 59. [Google Scholar] [CrossRef]
- Orozova, P.; Barker, M.; Austin, D.A.; Austin, B. Identification and pathogenicity to rainbow trout, Oncorhynchus mykiss (Walbaum), of some aeromonads. J. Fish Dis. 2009, 32, 865–871. [Google Scholar] [CrossRef]
- Oh, W.T.; Kim, J.H.; Jun, J.W.; Giri, S.S.; Yun, S.; Kim, H.J.; Park, S.C. Genetic characterization and pathological analysis of a novel bacterial pathogen, Pseudomonas tructae, in rainbow trout (Oncorhynchus mykiss). Microorganisms 2019, 7, 432. [Google Scholar] [CrossRef]
- Ceylan, M.; Duman, M.; Inan, S.; Ozyigit, O.; Saticioglu, I.B.; Altun, S. The study of histopathologic changes of experimental infection with Listonella (Vibrio) anguillarum in rainbow trout. J. Res. Vet. Med. 2019, 38, 59–66. [Google Scholar] [CrossRef]
- Jutfelt, F.; Sundh, H.; Glette, J.; Mellander, L.; Björnsson, B.T.; Sundell, K. The involvement of Aeromonas salmonicida virulence factors in bacterial translocation across the rainbow trout, Oncorhynchus mykiss (Walbaum), intestine. J. Fish Dis. 2008, 31, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Ringø, E.; Salinas, I.; Olsen, R.E.; Nyhaug, A.; Myklebust, R.; Mayhew, T.M. Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strains. Cell Tissue Res. 2007, 328, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Jutfelt, F. Barrier function of the gut. In Encyclopedia of Fish Physiology: From Genome to Environment; Farrell, A.P., Ed.; Academic Press: San Diego, CA, USA, 2011; Volume 2, pp. 1322–1331. [Google Scholar]
- Sha, J.; Kozlova, E.V.; Chopra, A.K. Role of various enterotoxins in Aeromonas hydrophila-induced gastroenteritis: Generation of enterotoxin gene-deficient mutants and evaluation of their enterotoxic activity. Infect. Immun. 2002, 70, 1924–1935. [Google Scholar] [CrossRef] [PubMed]
- Ringø, E.; Jutfelt, F.; Kanapathippillai, P.; Bakken, Y.; Sundell, K.; Glette, J.; Olsen, R.E. Damaging effect of the fish pathogen Aeromonas salmonicida ssp. salmonicida on intestinal enterocytes of Atlantic salmon (Salmo salar L.). Cell Tissue Res. 2004, 318, 305–311. [Google Scholar] [CrossRef]
- Mu, Q.; Dong, Z.; Kong, W.; Wang, X.; Yu, J.; Ji, W.; Xu, Z. Response of immunoglobulin M in gut mucosal immunity of common carp (Cyprinus carpio) infected with Aeromonas hydrophila. Front. Immunol. 2022, 13, 1037517. [Google Scholar] [CrossRef]
- Witeska, M.; Kondera, E.; Bojarski, B. Hematological and hematopoietic analysis in fish toxicology—A review. Animals 2023, 13, 2625. [Google Scholar] [CrossRef]
- Kondera, E.; Bojarski, B.; Ługowska, K.; Kot, B.; Witeska, M. Effects of oxytetracycline and gentamicin therapeutic doses on hematological, biochemical and hematopoietic parameters in Cyprinus carpio juveniles. Animals 2020, 10, 2278. [Google Scholar] [CrossRef]
- Shaalan, M.; El-Mahdy, M.; Theiner, S.; Dinhopl, N.; El-Matbouli, M.; Saleh, M. Silver nanoparticles: Their role as antibacterial agent against Aeromonas salmonicida subsp. salmonicida in rainbow trout (Oncorhynchus mykiss). Res. Vet. Sci. 2018, 119, 196–204. [Google Scholar] [CrossRef]
- Roy, A.; Abraham, T.J.; Namdeo, M.S.; Singha, J.; Julinta, R.B.; Boda, S. Effects of oral oxytetracycline-therapy on wound progression and healing following Aeromonas caviae infection in Nile tilapia (Oreochromis niloticus L.). Braz. Arch. Biol. Technol. 2019, 62, e19180766. [Google Scholar] [CrossRef]
- Yancheva, V.; Velcheva, I.; Stoyanova, S.; Georgieva, E. Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: A review. Appl. Ecol. Environ. Res. 2016, 14, 47–75. [Google Scholar] [CrossRef]
- Dale, O.B.; Tørud, B.; Kvellestad, A.; Koppang, H.S.; Koppang, E.O. From chronic feed-induced intestinal inflammation to adenocarcinoma with metastases in salmonid fish. Cancer Res. 2009, 69, 4355–4362. [Google Scholar] [CrossRef]
- Gogal, R.M., Jr.; Smith, B.J.; Kalnitsky, J.; Holladay, S.D. Analysis of apoptosis of lymphoid cells in fish exposed to immunotoxic compounds. Cytometry 2000, 39, 310–318. [Google Scholar] [CrossRef]
- Zapata, A.G. The fish spleen. Fish Shellfish Immunol. 2024, 144, 109280. [Google Scholar] [CrossRef] [PubMed]
- Masada, C.L.; LaPatra, S.E.; Morton, A.W.; Strom, M.S. An Aeromonas salmonicida type IV pilin is required for virulence in rainbow trout Oncorhynchus mykiss. Dis. Aquat. Org. 2002, 51, 13–25. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, N.; Amer, S.; Qian, M.; Lv, M.; Zhao, Y.; Zhao, B. Protective efficacy of PLGA microspheres loaded with divalent DNA vaccine encoding the ompA gene of Aeromonas veronii and the hly gene of Aeromonas hydrophila in mice. Vaccine 2013, 31, 5754–5759. [Google Scholar] [CrossRef]
- Tobin, L.A.; Jarocki, V.M.; Kenyon, J.; Drigo, B.; Donner, E.; Djordjevic, S.P.; Hamidian, M. Genomic analysis of diverse environmental Acinetobacter isolates identifies plasmids, antibiotic resistance genes, and capsular polysaccharides shared with clinical strains. Appl. Environ. Microbiol. 2024, 90, e01654-23. [Google Scholar] [CrossRef]
- Maczuga, N.; Tran, E.N.; Qin, J.; Morona, R. Interdependence of Shigella flexneri O antigen and enterobacterial common antigen biosynthetic pathways. J. Bacteriol. 2022, 204, e00546-21. [Google Scholar] [CrossRef]
- Dils, R.E.; Firestone, T.B.; Schaffer, P.A.; Winkelman, D.L.; Fetherman, E.R. Histological progression and bacterial load dynamics of Renibacterium salmoninarum in Chinook salmon Oncorhynchus tshawytscha. Dis. Aquat. Org. 2025, 162, 85–97. [Google Scholar] [CrossRef]
Parameter | 0 DPI | 1 DPI | 2 DPI | 4 DPI | 6 DPI |
---|---|---|---|---|---|
Blood, lg(CFU/mL) | 0 | 1.36 ± 0.07 | 3.73 ± 0.05 | 1.49 ± 0.04 | 0 |
Liver, lg(CFU/g) | 0 | 3.09 ± 0.04 | 5.51 ± 0.05 | 2.66 ± 0.04 | 1.68 ± 0.11 |
Muscule, lg(CFU/g) | 0 | 0 | 4.95 ± 0.07 | 2.33 ± 0.04 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikiforov-Nikishin, D.; Kochetkov, N.; Gavrilin, K.; Gaffarova, V.; Medvedev, K.; Smorodinskaya, S.; Klimuk, A.; Kuchikhin, Y.; Svinarev, I.; Gladysh, N.; et al. Dynamics of Pathomorphological and Pathophysiological Alterations in Rainbow Trout (Oncorhynchus mykiss) During Acute Aeromonas salmonicida Infection. Biology 2025, 14, 1330. https://doi.org/10.3390/biology14101330
Nikiforov-Nikishin D, Kochetkov N, Gavrilin K, Gaffarova V, Medvedev K, Smorodinskaya S, Klimuk A, Kuchikhin Y, Svinarev I, Gladysh N, et al. Dynamics of Pathomorphological and Pathophysiological Alterations in Rainbow Trout (Oncorhynchus mykiss) During Acute Aeromonas salmonicida Infection. Biology. 2025; 14(10):1330. https://doi.org/10.3390/biology14101330
Chicago/Turabian StyleNikiforov-Nikishin, Dmitry, Nikita Kochetkov, Kirill Gavrilin, Viktoria Gaffarova, Kirill Medvedev, Svetlana Smorodinskaya, Anastasia Klimuk, Yuri Kuchikhin, Ivan Svinarev, Natalya Gladysh, and et al. 2025. "Dynamics of Pathomorphological and Pathophysiological Alterations in Rainbow Trout (Oncorhynchus mykiss) During Acute Aeromonas salmonicida Infection" Biology 14, no. 10: 1330. https://doi.org/10.3390/biology14101330
APA StyleNikiforov-Nikishin, D., Kochetkov, N., Gavrilin, K., Gaffarova, V., Medvedev, K., Smorodinskaya, S., Klimuk, A., Kuchikhin, Y., Svinarev, I., Gladysh, N., Kudryavtseva, A., Shitikov, E., & Nikiforov-Nikishin, A. (2025). Dynamics of Pathomorphological and Pathophysiological Alterations in Rainbow Trout (Oncorhynchus mykiss) During Acute Aeromonas salmonicida Infection. Biology, 14(10), 1330. https://doi.org/10.3390/biology14101330