Gestation Regulates Growth Hormone and Its Receptor Expression in Sheep Immune Organs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. RNA Extraction and RT-qPCR Assay
2.3. Western Blot Analysis
2.4. Immunohistochemistry Analysis
2.5. Statistical Analysis
3. Results
3.1. GH and GHR in the Thymus
3.2. GH and GHR in Lymph Nodes
3.3. GH and GHR in the Spleen
3.4. GH and GHR in the Liver
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GH | Growth hormone |
GHR | Growth hormone receptor |
IFNT | Interferon tau |
ISG15 | Interferon-stimulated gene 15 |
CO | Cortex |
ME | Medulla |
ER | Epithelial reticular |
CA | Capillary |
TC | Thymic corpuscle |
SS | Subcapsular sinus |
LN | Lymphoid nodule |
LS | Lymph sinus |
MC | Medullary cord |
CP | Capsule |
TR | Trabeculae |
SC | Splenic cords |
MZ | Marginal zone |
HA | Hepatic artery |
PV | Hepatic portal vein |
BD | Bile duct |
References
- Ranke, M.B.; Wit, J.M. Growth hormone—Past, present and future. Nat. Rev. Endocrinol. 2018, 14, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Weigent, D.A.; Blalock, J.E. Effect of the administration of growth-hormone-producing lymphocytes on weight gain and immune function in dwarf mice. Neuroimmunomodulation 1994, 1, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Savino, W.; Postel-Vinay, M.C.; Smaniotto, S.; Dardenne, M. The thymus gland: A target organ for growth hormone. Scand. J. Immunol. 2002, 55, 442–452. [Google Scholar] [CrossRef]
- Smaniotto, S.; Martins-Neto, A.A.; Dardenne, M.; Savino, W. Growth hormone is a modulator of lymphocyte migration. Neuroimmunomodulation 2011, 18, 309–313. [Google Scholar] [CrossRef]
- Yang, L.; Meng, Y.; Shi, Y.; Fang, H.; Zhang, L. Maternal hepatic immunology during pregnancy. Front. Immunol. 2023, 14, 1220323. [Google Scholar] [CrossRef]
- Mense, K.; Meyerholz, M.; Gil Araujo, M.; Lietzau, M.; Knaack, H.; Wrenzycki, C.; Hoedemaker, M.; Piechotta, M. The somatotropic axis during the physiological estrus cycle in dairy heifers—Effect on hepatic expression of GHR and SOCS2. J. Dairy Sci. 2015, 98, 2409–2418. [Google Scholar] [CrossRef]
- Abu-Raya, B.; Michalski, C.; Sadarangani, M.; Lavoie, P.M. Maternal immunological adaptation during normal pregnancy. Front. Immunol. 2020, 11, 575197. [Google Scholar] [CrossRef]
- Quirke, L.D.; Maclean, P.H.; Haack, N.A.; Edwards, S.J.; Heiser, A.; Juengel, J.L. Characterization of local and peripheral immune system in pregnant and nonpregnant ewes. J. Anim. Sci. 2021, 99, skab208. [Google Scholar] [CrossRef]
- Paolino, M.; Koglgruber, R.; Cronin, S.J.F.; Uribesalgo, I.; Rauscher, E.; Harreiter, J.; Schuster, M.; Bancher-Todesca, D.; Pranjic, B.; Novatchkova, M.; et al. RANK links thymic regulatory T cells to fetal loss and gestational diabetes in pregnancy. Nature 2021, 589, 442–447. [Google Scholar] [CrossRef]
- Slawek, A.; Maj, T.; Chelmonska-Soyta, A. CD40, CD80, and CD86 costimulatory molecules are differentially expressed on murine splenic antigen-presenting cells during the pre-implantation period of pregnancy, and they modulate regulatory T-cell abundance, peripheral cytokine response, and pregnancy outcome. Am. J. Reprod. Immunol. 2013, 70, 116–126. [Google Scholar] [PubMed]
- Bartlett, A.Q.; Vesco, K.K.; Purnell, J.Q.; Francisco, M.; Goddard, E.; Guan, X.; DeBarber, A.; Leo, M.C.; Baetscher, E.; Rooney, W.; et al. Pregnancy and weaning regulate human maternal liver size and function. Proc. Natl. Acad. Sci. USA 2021, 118, e2107269118. [Google Scholar] [CrossRef]
- Moffett, A.; Shreeve, N. Local immune recognition of trophoblast in early human pregnancy: Controversies and questions. Nat. Rev. Immunol. 2023, 23, 222–235. [Google Scholar] [CrossRef] [PubMed]
- McComb, S.; Thiriot, A.; Akache, B.; Krishnan, L.; Stark, F. Introduction to the immune system. Methods. Mol. Biol. 2019, 2024, 1–24. [Google Scholar] [PubMed]
- Ott, T.L. Immunological detection of pregnancy: Evidence for systemic immune modulation during early pregnancy in ruminants. Theriogenology 2020, 150, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Rocha, C.C.; da Silveira, J.C.; Forde, N.; Binelli, M.; Pugliesi, G. Conceptus-modulated innate immune function during early pregnancy in ruminants: A review. Anim. Reprod. 2021, 18, e20200048. [Google Scholar] [CrossRef]
- Yang, L.; Li, N.; Zhang, L.; Bai, J.; Zhao, Z.; Wang, Y. Effects of early pregnancy on expression of interferon-stimulated gene 15, STAT1, OAS1, MX1, and IP-10 in ovine liver. Anim. Sci. J. 2020, 91, e13378. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, L.; Zhao, Z.; Li, N.; Wang, B.; Yang, L. Expression of melatonin receptors and CD4 in the ovine thymus, lymph node, spleen and liver during early pregnancy. Immunology 2020, 160, 52–63. [Google Scholar] [CrossRef]
- Yang, Z.; Cao, Z.; Zhang, Y.; Li, Z.; Zhang, L.; Yang, L. Changes in expression of FSH and LH receptors in the ovine main immune organs during early pregnancy. Vet. Immunol. Immunopathol. 2025, 280, 110867. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Cao, Z.; Li, Z.; Zhang, L.; Yang, L. Expression of estrogen receptors in main immune organs in sheep during early pregnancy. Int. J. Mol. Sci. 2025, 26, 3528. [Google Scholar] [CrossRef]
- Alak, I.; Hitit, M.; Kose, M.; Kaya, M.S.; Ucar, E.H.; Atli, Z.; Atli, M.O. Relative abundance and localization of interferon-stimulated gene 15 mRNA transcript in intra- and extra-uterine tissues during the early stages of pregnancy in sheep. Anim. Reprod. Sci. 2020, 216, 106347. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kandil, D.; Leiman, G.; Allegretta, M.; Trotman, W.; Pantanowitz, L.; Goulart, R.; Evans, M. Glypican-3 immunocytochemistry in liver fine-needle aspirates: A novel stain to assist in the differentiation of benign and malignant liver lesions. Cancer 2007, 111, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, J.; Hidalgo, Y.; Sauma, D.; Rosemblatt, M.; Bono, M.R.; Núñez, S. The multifaceted roles of B cells in the thymus: From immune tolerance to autoimmunity. Front. Immunol. 2021, 12, 766698. [Google Scholar] [CrossRef] [PubMed]
- Dardenne, M.; Smaniotto, S.; de Mello-Coelho, V.; Villa-Verde, D.M.; Savino, W. Growth hormone modulates migration of developing T cells. Ann. N. Y. Acad. Sci. 2009, 1153, 1–5. [Google Scholar] [CrossRef]
- Pandian, M.R.; Talwar, G.P. Effect of growth hormone on the metabolism of thymus and on the immune response against sheep erythrocytes. J. Exp. Med. 1971, 134, 1095–1113. [Google Scholar] [CrossRef]
- Maggiano, N.; Piantelli, M.; Ricci, R.; Larocca, L.M.; Capelli, A.; Ranelletti, F.O. Detection of growth hormone-producing cells in human thymus by immunohistochemistry and non-radioactive in situ hybridization. J. Histochem. Cytochem. 1994, 42, 1349–1354. [Google Scholar] [CrossRef]
- de Mello-Coelho, V.; Gagnerault, M.C.; Souberbielle, J.C.; Strasburger, C.J.; Savino, W.; Dardenne, M.; Postel-Vinay, M.C. Growth hormone and its receptor are expressed in human thymic cells. Endocrinology 1998, 139, 3837–3842. [Google Scholar] [CrossRef]
- Vila, G.; Luger, A. Growth hormone deficiency and pregnancy: Any role for substitution? Minerva Endocrinol. 2018, 43, 451–457. [Google Scholar] [CrossRef]
- Park, J.E.; Botting, R.A.; Domínguez Conde, C.; Popescu, D.M.; Lavaert, M.; Kunz, D.J.; Goh, I.; Stephenson, E.; Ragazzini, R.; Tuck, E.; et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020, 367, eaay3224. [Google Scholar] [CrossRef]
- Grant, S.M.; Lou, M.; Yao, L.; Germain, R.N.; Radtke, A.J. The lymph node at a glance—How spatial organization optimizes the immune response. J. Cell Sci. 2020, 133, jcs241828. [Google Scholar] [CrossRef]
- Jalkanen, S.; Salmi, M. Lymphatic endothelial cells of the lymph node. Nat. Rev. Immunol. 2020, 20, 566–578. [Google Scholar] [CrossRef]
- Esquifino, A.I.; Alvarez, M.P.; Cano, P.; Chacon, F.; Reyes Toso, C.F.; Cardinali, D.P. 24-hour pattern of circulating prolactin and growth hormone levels and submaxillary lymph node immune responses in growing male rats subjected to social isolation. Endocrine 2004, 25, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Mazlan, M.; Spence-Jones, C.; Chard, T.; Landon, J.; McLean, C. Circulating levels of GH-releasing hormone and GH during human pregnancy. J. Endocrinol. 1990, 125, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Smaniotto, S.; Mendes-da-Cruz, D.A.; Carvalho-Pinto, C.E.; Araujo, L.M.; Dardenne, M.; Savino, W. Combined role of extracellular matrix and chemokines on peripheral lymphocyte migration in growth hormone transgenic mice. Brain Behav. Immun. 2010, 24, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Pankov, Y.A. Growth hormone and a partial mediator of its biological action, insulin-like growth factor I. Biochemistry 1999, 64, 1–7. [Google Scholar]
- Lewis, S.M.; Williams, A.; Eisenbarth, S.C. Structure and function of the immune system in the spleen. Sci. Immunol. 2019, 4, eaau6085. [Google Scholar] [CrossRef]
- Thangavel, C.; Dhir, R.N.; Volgin, D.V.; Shapiro, B.H. Sex-dependent expression of CYP2C11 in spleen, thymus and bone marrow regulated by growth hormone. Biochem. Pharmacol. 2007, 74, 1476–1484. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, G.; Lyu, Y.; Tian, H.; Shu, C.; Chen, B.; Fan, W.; Xu, W.; Shan, Y.; He, J.; et al. Human growth hormone supplement promotes human lymphohematopoietic cell reconstitution in immunodeficient mice. Immunotherapy 2022, 14, 1383–1392. [Google Scholar] [CrossRef]
- Hull, K.L.; Harvey, S. Autoregulation of growth hormone receptor and growth hormone binding protein transcripts in brain and peripheral tissues of the rat. Growth Horm. IGF Res. 1998, 8, 167–173. [Google Scholar] [CrossRef]
- Weigent, D.A. Hypoxia and cytoplasmic alkalinization upregulate growth hormone expression in lymphocytes. Cell. Immunol. 2013, 282, 9–16. [Google Scholar] [CrossRef]
- Geffner, M. Effects of growth hormone and insulin-like growth factor I on T- and B-lymphocytes and immune function. Acta Paediatr. Suppl. 1997, 423, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Dichtel, L.E.; Cordoba-Chacon, J.; Kineman, R.D. Growth hormone and insulin-Like growth factor 1 regulation of nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2022, 107, 1812–1824. [Google Scholar] [CrossRef]
- Fang, F.; Shi, X.; Brown, M.S.; Goldstein, J.L.; Liang, G. Growth hormone acts on liver to stimulate autophagy, support glucose production, and preserve blood glucose in chronically starved mice. Proc. Natl. Acad. Sci. USA 2019, 116, 7449–7454. [Google Scholar] [CrossRef]
- Vázquez-Borrego, M.C.; Del Río-Moreno, M.; Pyatkov, M.; Sarmento-Cabral, A.; Mahmood, M.; Pelke, N.; Wnek, M.; Cordoba-Chacon, J.; Waxman, D.J.; Puchowicz, M.A.; et al. Direct and systemic actions of growth hormone receptor (GHR)-signaling on hepatic glycolysis, de novo lipogenesis and insulin sensitivity, associated with steatosis. Metabolism 2023, 144, 155589. [Google Scholar] [CrossRef]
- Escalada, J.; Sánchez-Franco, F.; Velasco, B.; Cacicedo, L. Regulation of growth hormone (GH) gene expression and secretion during pregnancy and lactation in the rat: Role of insulin-like growth factor-I, somatostatin, and GH-releasing hormone. Endocrinology 1997, 138, 3435–3443. [Google Scholar] [CrossRef]
- Fang, H.; Li, Q.; Wang, H.; Ren, Y.; Zhang, L.; Yang, L. Maternal nutrient metabolism in the liver during pregnancy. Front. Endocrinol. 2024, 15, 1295677. [Google Scholar] [CrossRef]
Gene | Primer | Sequence | Size (bp) | Accession Numbers |
---|---|---|---|---|
GH | Forward | GCAGTTCCTCAGCAGAGTCTTCAC | 90 | NM_001009315.3 |
Reverse | ATGCCTTCCTCCAGGTCCTTCAG | |||
GHR | Forward | CAGTGTGACACGCACCCAGAAG | 84 | NM_001009323.2 |
Reverse | GGCATCTACCTCGCAGAAGTAAGC | |||
GAPDH | Forward | GGGTCATCATCTCTGCACCT | 176 | NM_001190390.1 |
Reverse | GGTCATAAGTCCCTCCACGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ma, X.; Du, Z.; Li, J.; Zhang, L.; Yang, L. Gestation Regulates Growth Hormone and Its Receptor Expression in Sheep Immune Organs. Biology 2025, 14, 1318. https://doi.org/10.3390/biology14101318
Li Z, Ma X, Du Z, Li J, Zhang L, Yang L. Gestation Regulates Growth Hormone and Its Receptor Expression in Sheep Immune Organs. Biology. 2025; 14(10):1318. https://doi.org/10.3390/biology14101318
Chicago/Turabian StyleLi, Zhouyuan, Xiaoxin Ma, Ziwang Du, Jingjing Li, Leying Zhang, and Ling Yang. 2025. "Gestation Regulates Growth Hormone and Its Receptor Expression in Sheep Immune Organs" Biology 14, no. 10: 1318. https://doi.org/10.3390/biology14101318
APA StyleLi, Z., Ma, X., Du, Z., Li, J., Zhang, L., & Yang, L. (2025). Gestation Regulates Growth Hormone and Its Receptor Expression in Sheep Immune Organs. Biology, 14(10), 1318. https://doi.org/10.3390/biology14101318