Comparative Analysis of Angora Rabbit Colostrum and Mature Milk Using Quantitative Proteomics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Milk Sample Collection and Preparation
2.2. Total Protein Extraction
2.3. Trypsin Digestion
2.4. Data-Dependent Acquisition (DDA) and DIA Analyses
2.5. Protein Identification and Quantification
2.6. Bioinformatics and Statistical Analysis
2.7. Parallel Reaction Monitoring (PRM) Validation
3. Results
3.1. Daily Milk Yields and Litter Sizes Alive
3.2. Component Analysis of Proteins from Colostrum and Mature Milk
3.3. Characterization of DAPs
3.4. GO Annotation and KEGG Pathway Analyses
3.5. PPI Network and Module Analysis
3.6. Validation of DAPs by PRM
4. Discussion
4.1. Daily Milk Production and Associated Traits
4.2. Screening of Candidate Proteins in Colostrum and Mature Milk
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Imperiale, S.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Analysis of milk with liquid chromatography-mass spectrometry: A review. Eur. Food Res. Technol. 2023, 249, 861–902. [Google Scholar] [CrossRef]
- Rahman, M.M.; Takashima, S.; Kamatari, Y.O.; Shimizu, K.; Okada, A.; Inoshima, Y. Comprehensive Proteomic Analysis Revealed a Large Number of Newly Identified Proteins in the Small Extracellular Vesicles of Milk from Late-Stage Lactating Cows. Animals 2021, 11, 2506. [Google Scholar] [CrossRef] [PubMed]
- Maertens, L.; Lebas, F.; Szendrö, Z. Rabbit milk: A review of quantity, quality and non-dietary affecting factors. World Rabbit Sci. 2006, 14, 205–230. [Google Scholar] [CrossRef]
- Santillo, A.; Figliola, L.; Ciliberti, M.G.; Caroprese, M.; Marino, R.; Albenzio, M. Focusing on fatty acid profile in milk from different species after in vitro digestion. J. Dairy Res. 2018, 85, 257–262. [Google Scholar] [CrossRef]
- Masterson, H.K.; Ocallaghan, T.F.; Odonovan, M.; Murphy, J.P.; Sugrue, K.; Owens, R.A.; Hickey, R.M. Relative quantitative proteomic profiling of bovine colostrum and transition milk at onset of lactation. Int. Dairy J. 2024, 148, 105804. [Google Scholar] [CrossRef]
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum Management for Dairy Calves. Vet. Clin. North Am. Food Anim. Pract. 2019, 35, 535–536. [Google Scholar] [CrossRef] [PubMed]
- Ludwiczak, A.; Skladanowska-Baryza, J.; Kuczynska, B.; Stanisz, M. Hycole Doe Milk Properties and Kit Growth. Animals 2020, 10, 214. [Google Scholar] [CrossRef]
- Hernandez-Castellano, L.E.; Arguello, A.; Almeida, A.M.; Castro, N.; Bendixen, E. Colostrum protein uptake in neonatal lambs examined by descriptive and quantitative liquid chromatography-tandem mass spectrometry. J. Dairy Sci. 2015, 98, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Boyso, J.; Valdez-Alarcon, J.J.; Cajero-Juarez, M.; Ochoa-Zarzosa, A.; Lopez-Meza, J.E.; Bravo-Patino, A.; Baizabal-Aguirre, V.M. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect. 2007, 54, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Shen, Y.; Fan, G.J.; Li, T.T.; Wu, C.E.; Ye, Y.H. Unravelling the Proteomic Profiles of Bovine Colostrum and Mature Milk Derived from the First and Second Lactations. Foods 2023, 12, 4056. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, A.; Jakaria Listyarini, K.; Furqon, A.; Sumantri, C.; Akter, S.H.; Uddin, M.J. Transcriptome signature of liver tissue with divergent mutton odour and flavour using RNA deep sequencing. Gene 2018, 676, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Ludwiczak, A.; Skladanowska-Baryza, J.; Kuczynska, B.; Sell-Kubiak, E.; Stanisz, M.; Skrzypczak, E. Unveiling the attributes of rabbit milk. Animal 2023, 17, 100848. [Google Scholar] [CrossRef]
- Fahey, M.J.; Fischer, A.J.; Steele, M.A.; Greenwood, S.L. Characterization of the colostrum and transition milk proteomes from primiparous and multiparous Holstein dairy cows. J. Dairy Sci. 2020, 103, 1993–2005. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Y.; Lu, J.; Chen, B.R.; Gao, P.; Song, B.; Zhang, S.W.; Pang, X.Y.; Hettinga, K.; Lyu, J. Comparison of Whey Proteome and Glycoproteome in Bovine Colostrum and Mature Milk. J. Agric. Food Chem. 2023, 71, 10863–10876. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.X.; Wang, C.N.; Sun, X.M.; Guo, M.R. Proteomic analysis of whey proteins in the colostrum and mature milk of Xinong Saanen goats. J. Dairy Sci. 2020, 103, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Dong, Y.S.; Li, W.X.; Shen, X.Y.; Abdlla, R.; Chen, J.L.; Cao, X.Y.; Yue, X.Q. Characterization and comparison of whey proteomes from bovine and donkey colostrum and mature milk. LWT-Food Sci. Technol. 2022, 158, 113113. [Google Scholar] [CrossRef]
- Ludwig, C.; Gillet, L.; Rosenberger, G.; Amon, S.; Collins, B.; Aebersold, R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2018, 14, e8126. [Google Scholar] [CrossRef] [PubMed]
- Peaker, M.; Taylor, J.C. Milk secretion in the rabbit: Changes during lactation and the mechanism of ion transport. J. Physiol. 1976, 253, 527–545. [Google Scholar] [CrossRef] [PubMed]
- Bekker-Jensen, D.B.; Martinez-Val, A.; Steigerwald, S.; Ruther, P.; Fort, K.L.; Arrey, T.N.; Harder, A.; Makarov, A.; Olsen, J.V. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients. Mol. Cell. Proteom. 2020, 19, 716–729. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, K.; Op de Beeck, J.; Dürnberger, G.; Jacobs, P.; Mechtler, K. Ultrasensitive NanoLC-MS of Subnanogram Protein Samples Using Second Generation Micropillar Array LC Technology with Orbitrap Exploris 480 and FAIMS PRO. Anal. Chem. 2021, 93, 8704–8710. [Google Scholar] [CrossRef] [PubMed]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef]
- Eggers, B.; Eisenacher, M.; Marcus, K.; Uszkoreit, J. Establishing a Custom-Fit Data-Independent Acquisition Method for Label-Free Proteomics. Methods Mol. Biol. 2021, 2228, 307–325. [Google Scholar]
- Lebas, F. Feeding and growth of sucking rabbits. Recl. Med. Vet. 1970. [Google Scholar]
- Qi, Y.A.; Zheng, T.H.; Yang, S.W.; Zhang, Q.Z.; Li, B.F.; Zeng, X.F.; Zhong, Y.X.; Chen, F.; Guan, W.T.; Zhang, S.H. Maternal sodium acetate supplementation promotes lactation performance of sows and their offspring growth performance. Anim. Nutr. 2023, 14, 213–224. [Google Scholar] [CrossRef]
- El-Sabrout, K.; Aggag, S.; El-Raffa, A. Comparison of milk production and milk composition for an exotic and a local synthetic rabbit lines. Vet. World 2017, 10, 526–529. [Google Scholar] [CrossRef]
- El-Sayiad, G.A.; Habeeb, A.A.M.; El-Maghawry, A.M. A note on the effects of breed, stage of lactation and pregnancy status on milk composition of rabbits. Anim. Sci. 1994, 58, 153–157. [Google Scholar] [CrossRef]
- Ayyat, M.S.; Marai, I.F.M.; El-Sayiad, G.A. Genetic and non-genetic factors affecting milk production and preweaning litter traits of New Zealand white does under Egyptian conditions. World Rabbit Sci. 1995, 3, 119–124. [Google Scholar]
- Egertson, J.D.; Kuehn, A.; Merrihew, G.E.; Bateman, N.W.; MacLean, B.X.; Ting, Y.S.; Canterbury, J.D.; Marsh, D.M.; Kellmann, M.; Zabrouskov, V.; et al. Multiplexed MS/MS for improved data-independent acquisition. Nat. Methods 2013, 10, 744–746. [Google Scholar] [CrossRef]
- Hohmann, L.G.; Weimann, C.; Scheper, C.; Erhardt, G.; König, S. Associations between maternal milk protein genotypes with preweaning calf growth traits in beef cattle. J. Anim. Sci. 2020, 98, skaa280. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.; Fontes, E.A.F.; López, C.J.R.; Sousa, W.V.; Gomes, I.S.; Barros, E.; Coimbra, J.S.D.; Franceschini, S.D.C.; Silva, D.A.; Baracat-Pereira, M.C. Proteoforms of β-Casein, α-s1-Casein, α-Lactalbumin, Serum Albumin, and Lactotransferrin Identified in Different Lactation Phases of Human Milk by Proteomics Approach. Mol. Nutr. Food Res. 2023, 67, e2200308. [Google Scholar] [CrossRef]
- Topno, N.A.; Kesarwani, V.; Kushwaha, S.K.; Azam, S.; Kadivella, M.; Gandham, R.K.; Majumdar, S.S. Non-Synonymous Variants in Fat QTL Genes among High- and Low-Milk-Yielding Indigenous Breeds. Animals 2023, 13, 884. [Google Scholar] [CrossRef]
- Mohan, G.; Kumar, A.; Khan, S.H.; Kumar, N.A.; Kapila, S.; Lathwal, S.S.; Sodhi, M.; Niranjan, S.K. Casein (CSN) gene variants and parity affect the milk protein traits in crossbred (Bos taurus x Bos indicus) cows in sub-tropical climate. Trop. Anim. Health Prod. 2021, 53, 289. [Google Scholar] [CrossRef] [PubMed]
- Alim, M.A.; Wang, P.; Wu, X.P.; Li, C.; Cui, X.G.; Zhang, S.L.; Zhang, Q.; Zhang, Y.; Sun, D.X. Effect of FASN gene on milk yield and milk composition in the Chinese Holstein dairy population. Anim. Genet. 2014, 45, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Yang, Y.Z.; Duan, H.; He, J.H.; Sun, L.; Hu, W.M.; Zeng, J. CHI3L2 Is a Novel Prognostic Biomarker and Correlated with Immune Infiltrates in Gliomas. Front. Oncol. 2021, 11, 611038. [Google Scholar] [CrossRef] [PubMed]
- Ghoreishifar, S.M.; Eriksson, S.; Johansson, A.M.; Khansefid, M.; Moghaddaszadeh-Ahrabi, S.; Parna, N.; Davoudi, P.; Javanmard, A. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genet. Sel. Evol. 2020, 52, 52. [Google Scholar] [CrossRef] [PubMed]
- Munblit, D.; Treneva, M.; Peroni, D.G.; Colicino, S.; Chow, L.; Dissanayeke, S.; Abrol, P.; Sheth, S.; Pampura, A.; Boner, A.L.; et al. Colostrum and Mature Human Milk of Women from London, Moscow, and Verona: Determinants of Immune Composition. Nutrients 2016, 8, 695. [Google Scholar] [CrossRef] [PubMed]
- Aldredge, D.L.; Geronimo, M.R.; Hua, S.; Nwosu, C.C.; Lebrilla, C.B.; Barile, D. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures. Glycobiology 2013, 23, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, N.A.; Robinson, R.C.; Barile, D.; Larsen, L.B.; Buitenhuis, B. A genome-wide association study reveals specific transferases as candidate loci for bovine milk oligosaccharides synthesis. BMC Genom. 2019, 20, 404. [Google Scholar] [CrossRef]
- Keragala, C.B.; Draxler, D.F.; McQuilten, Z.K.; Medcalf, R.L. Haemostasis and innate immunity—A complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br. J. Haematol. 2018, 180, 782–798. [Google Scholar] [CrossRef]
- Moreno-Indias, I.; Dodds, A.W.; Argüello, A.; Castro, N.; Sim, R.B. The complement system of the goat: Haemolytic assays and isolation of major proteins. BMC Vet. Res. 2012, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Cao, X.Y.; Wu, R.N.; Liu, B.A.; Ye, W.H.; Yue, X.Q.; Wu, J.R. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS. Int. J. Food Sci. Nutr. 2017, 68, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.H.; Yu, Z.N.; Liang, C.Z.; Xie, S.B.; Wang, H.X.; Wang, J.; Yang, Y.X.; Han, R.W. Comparative analysis of changes in whey proteins of goat milk throughout the lactation cycle using quantitative proteomics. J. Dairy Sci. 2023, 106, 792–806. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.X.; Zhao, X.W.; Yu, S.M.; Cao, S.Z. Quantitative proteomic analysis of whey proteins in the colostrum and mature milk of yak (Bos grunniens). J. Sci. Food Agric. 2015, 95, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Nosanchuk, J.D. The inhibitory effect of cerulenin to yeasts is fungicidal. Commun. Integr. Biol. 2011, 4, 631–632. [Google Scholar] [CrossRef] [PubMed]
- Contarini, G.; Povolo, M.; Pelizzola, V.; Monti, L.; Bruni, A.; Passolungo, L.; Abeni, F.; Degano, L. Bovine colostrum: Changes in lipid constituents in the first 5 days after parturition. J. Dairy Sci. 2014, 97, 5065–5072. [Google Scholar] [CrossRef]
- Zhou, M.M.; Huang, F.; Du, X.Y.; Liu, G.Q.; Wang, C.F.; De Noni, I. Analysis of the Differentially Expressed Proteins in Donkey Milk in Different Lactation Stages. Foods 2023, 12, 4466. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.M.; Pourmousa, M.; Sampson, M.; Sviridov, D.; Islam, R.; Perrin, B.S.; Kemeh, G.; Pastor, R.W.; Remaley, A.T. Identification of a novel lipid binding motif in apolipoprotein B by the analysis of hydrophobic cluster domains. Biochim. Biophys. Acta Biomembr. 2017, 1859, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J.; Schwinn, A.C.; Schmitz-Hsu, F.; Menzi, F.; Drögemüller, C.; Albrecht, C.; Bruckmaier, R.M. Rapid Communication: Cholesterol deficiency-associated APOB mutation impacts lipid metabolism in Holstein calves and breeding bulls. J. Anim. Sci. 2016, 94, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Bagatoli, A.; de Melo, A.L.P.; Gasparino, E.; Rodrigues, M.T.; Ferreira, L.; Garcia, O.S.R.; Soares, M.A.M. Association between polymorphisms of APOB, SLC27A6, AGPAT6 and PRLR genes and milk production and quality traits in goats. Small Rumin. Res. 2021, 203, 106484. [Google Scholar] [CrossRef]
- Wang, M.Q.; Do, D.N.; Peignier, C.M.L.; Dudemaine, P.E.L.; Schenkel, L.O.; Miglior, L.P.; Zhao, X.; Ibeagha, E.M. Cholesterol deficiency haplotype frequency and its impact on milk production and milk cholesterol content in Canadian Holstein cows. Can. J. Anim. Sci. 2020, 100, 786–791. [Google Scholar] [CrossRef]
- Lai, C.Q.; Parnell, L.D.; Ordovas, J.M. The APOA1/C3/A4/A5 gene cluster, lipid metabolism and cardiovascular disease risk. Curr. Opin. Lipidol. 2005, 16, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Veshkini, A.; Hammon, H.M.; Vogel, L.; Viala, D.; Delosière, M.; Tröscher, A.; Déjean, S.; Ceciliani, F.; Sauerwein, H.; Bonnet, M. Plasma proteomics reveals crosstalk between lipid metabolism and immunity in dairy cows receiving essential fatty acids and conjugated linoleic acid. Sci. Rep. 2022, 12, 5648. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.Y.; Wang, M.L.; Cai, M.; Nan, X.M.; Zhao, Y.G.; Xiong, B.H.; Yang, L. Protein Expression Profiles in Exosomes of Bovine Mammary Epithelial Cell Line MAC-T Infected with Staphylococcus aureus. Appl. Environ. Microbiol. 2023, 89, e0174322. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lee, S.B.; Hwang, J.H.; Lim, J.N.; Jung, U.S.; Kim, M.J.; Kang, H.S.; Choi, S.H.; Lee, J.S.; Roh, S.G.; et al. Proteomic Analysis Reveals PGAM1 Altering cis-9, trans-11 Conjugated Linoleic Acid Synthesis in Bovine Mammary Gland. Lipids 2015, 50, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Hong, T.N.; Li, Z.Q.; Shen, G.H.; Gu, Y.T.; Han, J. A comparison of milk fat globule membranes and whey proteomes: New insight into variation nutrient differences between Buffalo, Cow, Goat, and Yak. Food Chem. 2023, 429, 136845. [Google Scholar] [CrossRef] [PubMed]
- Cihan, P.; Gökçe, E.; Atakisi, O.; Kirmizigül, A.H.; Erdogan, H.M. Prediction of Immunoglobulin G in Lambs with Artificial Intelligence Methods. Kafkas Univ. Vet. Fak. Derg. 2021, 27, 21–27. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Wang, Y.; Ding, H.; Zhao, H. Comparative Analysis of Angora Rabbit Colostrum and Mature Milk Using Quantitative Proteomics. Biology 2024, 13, 634. https://doi.org/10.3390/biology13080634
Huang D, Wang Y, Ding H, Zhao H. Comparative Analysis of Angora Rabbit Colostrum and Mature Milk Using Quantitative Proteomics. Biology. 2024; 13(8):634. https://doi.org/10.3390/biology13080634
Chicago/Turabian StyleHuang, Dongwei, Yuanlang Wang, Haisheng Ding, and Huiling Zhao. 2024. "Comparative Analysis of Angora Rabbit Colostrum and Mature Milk Using Quantitative Proteomics" Biology 13, no. 8: 634. https://doi.org/10.3390/biology13080634
APA StyleHuang, D., Wang, Y., Ding, H., & Zhao, H. (2024). Comparative Analysis of Angora Rabbit Colostrum and Mature Milk Using Quantitative Proteomics. Biology, 13(8), 634. https://doi.org/10.3390/biology13080634