Whole Genome Analysis and Assessment of the Metabolic Potential of Streptomyces carpaticus SCPM-O-B-9993, a Promising Phytostimulant and Antiviral Agent
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain Cultivation
2.2. Phytotoxicity Assessment
2.3. Studying Antiviral Activity
2.4. Genome Analysis
3. Results
3.1. Morphological Features of the Strain
3.2. Evaluation of Productivity as well as the Phytostimulatory and Antiviral Properties of the Strain
3.3. Taxonomic Positioning of the Strain SCPM-O-B-9993
3.4. Analysis of the Genome of Streptomyces carpaticus Strain SCPM-O-B-9993 and Its Closest Relatives
3.5. Functional Annotation of Streptomyces carpaticus Strain SCPM-O-B-9993
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, T.-L.; Huang, T.-W.; Wang, Y.-X.; Liu, C.-P.; Kirby, R.; Chu, C.-M.; Huang, C.-H. An actinobacterial isolate, Streptomyces sp. YX44, produces broad-spectrum antibiotics that strongly inhibit Staphylococcus aureus. Microorganisms 2021, 9, 630. [Google Scholar] [CrossRef] [PubMed]
- Veselá, A.B.; Pelantová, H.; Šulc, M.; Macková, M.; Lovecká, P.; Thimová, M.; Pasquarelli, F.; Pičmanová, M.; Pátek, M.; Bhalla, T.C.; et al. Biotransformation of benzonitrile herbicides via the nitrile hydratase–amidase pathway in rhodococci. J. Ind. Microbiol. Biotechnol. 2012, 39, 1811–1819. [Google Scholar] [CrossRef] [PubMed]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef] [PubMed]
- Khadayat, K.; Sherpa, D.D.; Malla, K.P.; Shrestha, S.; Rana, N.; Marasini, B.P.; Khanal, S.; Rayamajhee, B.; Bhattarai, B.R.; Parajuli, N. Molecular identification and antimicrobial potential of Streptomyces species from nepalese soil. Int. J. Microbiol. 2020, 2020, 8817467. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Hwang, S.; Kim, J.; Cho, S.; Palsson, B.; Cho, B.-K. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct. Biotechnol. J. 2020, 18, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Lapaz, M.I.; Cisneros, E.J.; Pianzzola, M.J.; Francis, I.M. Exploring the exceptional properties of Streptomyces: A hands-on discovery of natural products. Am. Biol. Teach. 2019, 81, 658–664. [Google Scholar] [CrossRef]
- Tarkka, M.; Hampp, R. Secondary Metabolites of Soil Streptomycetes in Biotic Interactions; Springer: Berlin/Heidelberg, Germany, 2008; pp. 107–126. [Google Scholar] [CrossRef]
- Xia, H.; Li, X.; Li, Z.; Zhan, X.; Mao, X.; Li, Y. The Application of regulatory cascades in Streptomyces: Yield enhancement and metabolite mining. Front. Microbiol. 2020, 11, 508962. [Google Scholar] [CrossRef]
- Shirokikh, I.G.; Ashikhmina, T.Y. Actinobacteria in protecting the environment from industrial pollution. Theor. Appl. Ecol. 2022, 4, 14–21. [Google Scholar] [CrossRef]
- Hamedi, J.; Mohammadipanah, F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J. Ind. Microbiol. Biotechnol. 2015, 42, 157–171. [Google Scholar] [CrossRef]
- Vurukonda, S.S.; Giovanardi, D.; Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 2018, 19, 952. [Google Scholar] [CrossRef]
- Wright, G.D. Environmental and clinical antibiotic resistomes, same only different. Curr. Opin. Microbiol. 2019, 51, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Belknap, K.C.; Park, C.J.; Barth, B.M.; Andam, C.P. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci. Rep. 2020, 10, 2003. [Google Scholar] [CrossRef] [PubMed]
- Klassen, J.L.; Currie, C.R. Gene fragmentation in bacterial draft genomes: Extent, consequences and mitigation. BMC Genom. 2012, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Semenkov, I.N.; Shelyakin, P.V.; Nikolaeva, D.D.; Tutukina, M.N.; Sharapova, A.V.; Lednev, S.A.; Sarana, Y.V.; Gelfand, M.S.; Krechetov, P.P.; Koroleva, T.V. Data on the temporal changes in soil properties and microbiome composition after a jet-fuel contamination during the pot and field experiments. Data Brief 2023, 46, 108860. [Google Scholar] [CrossRef]
- Kalkreuter, E.; Pan, G.; Cepeda, A.J.; Shen, B. Targeting bacterial genomes for natural product discovery. Trends Pharmacol. Sci. 2020, 41, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Caicedo-Montoya, C.; Manzo-Ruiz, M.; Ríos-Estepa, R. Pan-Genome of the genus Streptomyces and prioritization of biosynthetic gene clusters with potential to produce antibiotic compounds. Front. Microbiol. 2021, 12, 677558. [Google Scholar] [CrossRef] [PubMed]
- Salas, J.A.; Méndez, C. Indolocarbazole antitumour compounds by combinatorial biosynthesis. Curr. Opin. Chem. Biol. 2009, 13, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Ostash, B.; Doud, E.H.; Lin, C.; Ostash, I.; Perlstein, D.L.; Fuse, S.; Wolpert, M.; Kahne, D.; Walker, S. Complete characterization of the seventeen step moenomycin biosynthetic pathway. Biochemistry 2009, 48, 8830–8841. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Y.; Jeong, H.; Yu, D.S.; Fischbach, M.A.; Park, H.-S.; Kim, J.J.; Seo, J.-S.; Jensen, S.E.; Oh, T.K.; Lee, K.J.; et al. Draft genome sequence of Streptomyces clavuligerus NRRL 3585, a producer of diverse secondary metabolites. J. Bacteriol. 2010, 192, 6317–6318. [Google Scholar] [CrossRef]
- Bataeva, Y.V.; Grigoryan, L.N.; Kurashov, E.A.; Krylova, J.V.; Fedorova, E.V.; Iavid, E.J.; Khodonovich, V.V.; Yakovleva, L.V. Study of metabolites of Streptomyces carpaticus RCAM04697 for the creation of environmentally friendly plant protection products. Theor. Appl. Ecol. 2021, 3, 172–178. [Google Scholar] [CrossRef]
- Bataeva, Y.V.; Grigoryan, L.N.; Bogun, A.G.; Kislichkina, A.A.; Platonov, M.E.; Kurashov, E.A.; Krylova, J.V.; Fedorenko, A.G.; Andreeva, M.P. Biological Activity and Composition of Metabolites of Potential Agricultural Application from Streptomyces carpaticus K-11 RCAM04697 (SCPM-O-B-9993). Microbiology 2023, 92, 459–467. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Ha, S.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Dong, Z.; Fang, L.; Luo, Y.; Wei, Z.; Guo, H.; Zhang, G.; Gu, Y.Q.; Coleman-Derr, D.; Xia, Q.; et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019, 47, W52–W58. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef]
- Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Marçais, G.; Delcher, A.L.; Phillippy, A.M.; Coston, R.; Salzberg, S.L.; Zimin, A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 2018, 14, e1005944. [Google Scholar] [CrossRef] [PubMed]
- Ara, I.; Bukhari, N.A.; Aref, N.M.; Shinwari, M.A.; Bakir, M.A. Antiviral activities of streptomycetes against tobacco mosaic virus (TMV) in Datura plant: Evaluation of different organic compounds in their metabolites. Afr. J. Biotechnol. 2012, 11, 2130–2138. [Google Scholar] [CrossRef]
- Onaka, H. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J. Antibiot. 2017, 70, 865–870. [Google Scholar] [CrossRef]
- Kim, C.-G.; Yu, T.-W.; Fryhle, C.B.; Handa, S.; Floss, H.G. 3-Amino-5-hydroxybenzoic Acid Synthase, the Terminal Enzyme in the Formation of the Precursor of mC7N Units in Rifamycin and Related Antibiotics. J. Biol. Chem. 1998, 273, 6030–6040. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.S.; Shin, Y.-H.; Lee, H.-M.; Kim, J.K.; Choe, J.H.; Jang, J.-C.; Um, S.; Jin, H.S.; Komatsu, M.; Cha, G.-H.; et al. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway. Sci. Rep. 2017, 7, 3431. [Google Scholar] [CrossRef] [PubMed]
- Um, S.; Choi, T.J.; Kim, H.; Kim, B.Y.; Kim, S.-H.; Lee, S.K.; Oh, K.-B.; Shin, J.; Oh, D.-C. Ohmyungsamycins A and B: Cytotoxic and antimicrobial cyclic peptides produced by Streptomyces sp. from a volcanic island. J. Org. Chem. 2013, 78, 12321–12329. [Google Scholar] [CrossRef]
- Kim, E.; Du, Y.E.; Ban, Y.H.; Shin, Y.-H.; Oh, D.-C.; Yoon, Y.J. Enhanced ohmyungsamycin a production via adenylation domain engineering and optimization of culture conditions. Front. Microbiol. 2021, 12, 626881. [Google Scholar] [CrossRef]
- An, J.; Kim, S.H.; Bahk, S.; Vuong, U.T.; Nguyen, N.T.; Do, H.L.; Kim, S.H.; Chung, W.S. Naringenin induces pathogen resistance against Pseudomonas syringae through the activation of NPR1 in Arabidopsis. Front. Plant Sci. 2021, 12, 672552. [Google Scholar] [CrossRef]
- Din, S.; Hamid, S.; Yaseen, A.; Yatoo, A.M.; Ali, S.; Shamim, K.; Mahdi, W.A.; Alshehri, S.; Rehman, M.U.; Shah, W.A. Isolation and characterization of flavonoid naringenin and evaluation of cytotoxic and biological efficacy of water lilly (Nymphaea mexicana Zucc.). Plants 2022, 11, 3588. [Google Scholar] [CrossRef]
- Wu, L.-H.; Lin, C.; Lin, H.-Y.; Liu, Y.-S.; Wu, C.Y.-J.; Tsai, C.-F.; Chang, P.-C.; Yeh, W.-L.; Lu, D.-Y. Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Mol. Neurobiol. 2016, 53, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Álvarez, R.; Botas, A.; Albillos, S.M.; Rumbero, A.; Martín, J.F.; Liras, P. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microb. Cell Factories 2015, 14, 178. [Google Scholar] [CrossRef] [PubMed]
- Cavia-Saiz, M.; Busto, M.D.; Pilar-Izquierdo, M.C.; Ortega, N.; Perez-Mateos, M.; Muñiz, P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: A comparative study. J. Sci. Food Agric. 2010, 90, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Jagetia, A.; Jagetia, G.C.; Jha, S. Naringin, a grapefruit flavanone, protects V79 cells against the bleomycin-induced genotoxicity and decline in survival. J. Appl. Toxicol. 2007, 27, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Jahns, C.; Hoffmann, T.; Müller, S.; Gerth, K.; Washausen, P.; Höfle, G.; Reichenbach, H.; Kalesse, M.; Müller, R. Pellasoren: Structure elucidation, biosynthesis, and total synthesis of a cytotoxic secondary metabolite from Sorangium cellulosum. Angew. Chem. Int. Ed. 2012, 51, 5239–5243. [Google Scholar] [CrossRef] [PubMed]
- Abbassi-Ghanavati, M.; Alexander, J.; McIntire, D.; Savani, R.; Leveno, K. Neonatal effects of magnesium sulfate given to the mother. Am. J. Perinatol. 2012, 29, 795–800. [Google Scholar] [CrossRef]
- Jaita, S.; Phakhodee, W.; Chairungsi, N.; Pattarawarapan, M. Mechanochemical synthesis of primary amides from carboxylic acids using TCT/NH4SCN. Tetrahedron Lett. 2018, 59, 3571–3573. [Google Scholar] [CrossRef]
- Eftekharivash, L.; Hamedi, J. Genome sequence and annotation of Streptomyces tendae UTMC 3329, acid and alkaline tolerant actinobacterium. Iran. J. Microbiol 2020, 12, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Korolev, S.A.; Zverkov, O.A.; Seliverstov, A.V.; Lyubetsky, V.A. Ribosome reinitiation at leader peptides increases translation of bacterial proteins. Biol. Direct 2016, 11, 20. [Google Scholar] [CrossRef]
- Ziemert, N.; Jensen, P.R. Phylogenetic approaches to natural product structure prediction. Meth Enzym. 2012, 517, 161–182. [Google Scholar]
Incubation Time, h | Number of Plants without Symptoms of Infestation | |||||
---|---|---|---|---|---|---|
S. carpaticus SCPM-O-B-9993 | K+ | K− | ||||
pcs. | % | pcs. | % | pcs. | % | |
24 | 0 | 0 | 0 | - | 0 | - |
48 | 0 | 0 | 0 | - | 0 | - |
72 | 10 | 100 | 0 | - | 0 | - |
96 | 9 | 90 | 4 | 40 | 0 | 0 |
120 | 8 | 80 | 0 | - | 0 | - |
144 | 6 | 60 | 0 | - | 0 | - |
168 | 5 | 50 | 0 | - | 0 | - |
Genome Size, bp | GC Content, % | |
---|---|---|
Streptomyces carpaticus SCPM-O-B-9993_CP104005.1 | 5,968,715 | 72.84 |
Streptomyces harbinensis NA02264_CP054938.1 | 5,802,668 | 72.89 |
Streptomyces xiamenensis 318_CP009922.3 | 5,961,402 | 72.02 |
Streptomyces sp. XC2026_CP064057.1 | 5,836,896 | 72.10 |
ANI Value, % | DDH Value, % | |
---|---|---|
Streptomyces harbinensis NA02264 | 98.71 | 90.90 |
Streptomyces xiamenensis 318 | 87.05 | 60.50 |
Streptomyces sp. XC 2026 | 86.87 | 58.00 |
ANI Value, % | DDH Value, % | |
---|---|---|
Streptomyces harbinensis NA02264 | 99.03 | 96.20 |
Streptomyces carpaticus SCPM-O-B-9993 | 98.72 | 90.40 |
Type | Most Similar Known Cluster | Position, from | Position, to | Cluster Length, bp | Similarity with the Most Similar Known Cluster, % |
---|---|---|---|---|---|
NRPS | ohmyungsamycin A/ohmyungsamycin B | 345,372 | 455,838 | 110,466 | 93 |
T1PKS | pellasoren | 526,710 | 571,823 | 45,113 | 83 |
ectoine | ectoine | 1,213,541 | 1,223,945 | 10,404 | 100 |
NRPS | coelibactin | 5,391,062 | 5,451,702 | 60,640 | 81 |
T3PKS | naringenin | 5,831,966 | 5,873,087 | 41,121 | 100 |
NAPAA, terpene | ε-poly-L-lysine | 5,878,144 | 5,925,132 | 46,988 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bataeva, Y.; Delegan, Y.; Bogun, A.; Shishkina, L.; Grigoryan, L. Whole Genome Analysis and Assessment of the Metabolic Potential of Streptomyces carpaticus SCPM-O-B-9993, a Promising Phytostimulant and Antiviral Agent. Biology 2024, 13, 388. https://doi.org/10.3390/biology13060388
Bataeva Y, Delegan Y, Bogun A, Shishkina L, Grigoryan L. Whole Genome Analysis and Assessment of the Metabolic Potential of Streptomyces carpaticus SCPM-O-B-9993, a Promising Phytostimulant and Antiviral Agent. Biology. 2024; 13(6):388. https://doi.org/10.3390/biology13060388
Chicago/Turabian StyleBataeva, Yulia, Yanina Delegan, Alexander Bogun, Lidiya Shishkina, and Lilit Grigoryan. 2024. "Whole Genome Analysis and Assessment of the Metabolic Potential of Streptomyces carpaticus SCPM-O-B-9993, a Promising Phytostimulant and Antiviral Agent" Biology 13, no. 6: 388. https://doi.org/10.3390/biology13060388
APA StyleBataeva, Y., Delegan, Y., Bogun, A., Shishkina, L., & Grigoryan, L. (2024). Whole Genome Analysis and Assessment of the Metabolic Potential of Streptomyces carpaticus SCPM-O-B-9993, a Promising Phytostimulant and Antiviral Agent. Biology, 13(6), 388. https://doi.org/10.3390/biology13060388