Baseline Inventory of Benthic Macrofauna in German Marine Protected Areas (2020–2022) before Closure for Bottom-Contact Fishing
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Habitat Protection
1.2. MGF and BfN Monitoring Projects and Aims of This Study
2. Materials and Methods
2.1. The North Sea Case Study
2.1.1. North Sea Study Areas
2.1.2. North Sea Data Collection
2.2. The Baltic Sea Case Study
2.2.1. The Baltic Sea Study Areas
2.2.2. Data Collection: Baltic Sea
2.3. Environmental Drivers, Mobile Bottom-Contact Fishing Data and Statistical Analysis
2.3.1. Temperature, Salinity, and Sediment Data
2.3.2. Bottom-Contact Fishing Intensity
2.3.3. Statistical Analysis
3. Results
3.1. Biodiversity and Community Analysis
3.1.1. Species Richness and Major Groups
North Sea
Baltic Sea
3.1.2. Community Structure
North Sea
Baltic Sea
3.2. Variation Explained by Environmental Drivers and Trawling Intensity
3.2.1. North Sea
3.2.2. Baltic Sea
3.3. Endangered Species
3.3.1. North Sea
3.3.2. Baltic Sea
4. Discussion
4.1. Species Richness and Composition in MPAs
4.2. Environmental Drivers
4.3. Bottom-Contact Fishing Intensity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ducrotoy, J.P.; Elliott, M.; de Jonge, V.N. The North Sea. Mar. Pollut. Bull. 2000, 41, 5–23. [Google Scholar] [CrossRef]
- Feistel, R.; Weinreben, S.; Wolf, H.; Seitz, S.; Spitzer, P.; Adel, B.; Nausch, G.; Schneider, B.; Wright, D. Density and Absolute Salinity of the Baltic Sea 2006–2009. Ocean. Sci. 2009, 6, 3–24. [Google Scholar] [CrossRef]
- Bendtsen, J.; Gustafsson, K.E.; Söderkvist, J.; Hansen, J.L.S. Ventilation of bottom water in the North Sea–Baltic Sea transition zone. J. Mar. Syst. 2009, 75, 138–149. [Google Scholar] [CrossRef]
- Inácio, M.; Karnauskaitė, D.; Baltranaitė, E.; Kalinauskas, M.; Bogdzevič, K.; Gomes, E.; Pereira, P. Ecosystem services of the Baltic Sea: An assessment and mapping perspective. Geogr. Sustain. 2020, 1, 256–265. [Google Scholar] [CrossRef]
- Selim, S.A.; Blanchard, J.L.; Bedford, J.; Webb, T.J. Direct and indirect effects of climate and fishing on changes in coastal ecosystem services: A historical perspective from the North Sea. Reg. Environ. Chang. 2014, 16, 341–351. [Google Scholar] [CrossRef]
- Geburzi, J.C.; Heuer, N.; Homberger, L.; Kabus, J.; Moesges, Z.; Ovnbeck, K.; Brandis, D.; Ewers, C. An environmental gradient dominates ecological and genetic differentiation of marine invertebrates between the North and Baltic Sea. Ecol. Evol. 2022, 12, e8868. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, I.P.; Rabinovich, A.B.; Kulikov, E.A. Tidal oscillations in the Baltic Sea. Oceanology 2013, 53, 526–538. [Google Scholar] [CrossRef]
- Johannesson, K.; Smolarz, K.; Grahn, M.; André, C. The future of Baltic Sea populations: Local extinction or evolutionary rescue? Ambio 2011, 40, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Duineveld, G.C.A.; Künitzer, A.; Niermann, U.; de Wilde, P.A.W.J.; Gray, J.S. The macrobenthos of the north sea. Neth. J. Sea Res. 1991, 28, 53–65. [Google Scholar] [CrossRef]
- Heip, C.; Basford, D.; Craeymeersch, J.A.; Dewarumez, J.M.; Dorjes, J.; Wilde, P.; Duineveld, G.; Eleftheriou, A.; Herman, P.M.J.; Niermann, U.; et al. Trends in biomass, density and diversity of North Sea macrofauna. ICES J. Mar. Sci. 1992, 49, 13–22. [Google Scholar] [CrossRef]
- Heip, C.; Craeymeersch, J.A. Benthic community structures in the North Sea. Helgol. Meeresunters. 1995, 49, 313–328. [Google Scholar] [CrossRef]
- Künitzer, A.; Basford, D.; Craeymeersch, J.A.; Dewarumez, J.M.; Dörjes, J.; Duineveld, G.C.A.; Eleftheriou, A.; Heip, C.; Herman, P.; Kingston, P.; et al. The benthic infauna of the North Sea: Species distribution and assemblages. ICES J. Mar. Sci. 1992, 49, 127–143. [Google Scholar] [CrossRef]
- Reiss, H.; Degraer, S.; Duineveld, G.C.A.; Kröncke, I.; Aldridge, J.; Craeymeersch, J.A.; Eggleton, J.D.; Hillewaert, H.; Lavaleye, M.S.S.; Moll, A.; et al. Spatial patterns of infauna, epifauna, and demersal fish communities in the North Sea. ICES J. Mar. Sci. 2009, 67, 278–293. [Google Scholar] [CrossRef]
- Meyer, J.; Nehmer, P.; Moll, A.; Kröncke, I. Shifting south-eastern North Sea macrofauna community structure since 1986: A response to de-eutrophication and regionally decreasing food supply? Estaurine Coast. Shelf Sci. 2018, 213, 115–127. [Google Scholar] [CrossRef]
- Glémarec, M. The benthic communities of the European North Atlantic continental shelf. Oceanogr. Mar. Biol. Annu. Rev. 1973, 11, 263–289. [Google Scholar]
- Craeymeersch, J.A.; Heip, C.H.R.; Buijs, J. Atlas of North Sea benthic infauna. Based on the 1986 North Sea Benthos Survey. ICES Coop. Res. Rep. 1997, 218, 90. [Google Scholar] [CrossRef]
- Fiorentino, D.; Pesch, R.; Guenther, C.P.; Gutow, L.; Holstein, J.; Dannheim, J.; Ebbe, B.; Bildstein, T.; Schroeder, W.; Schuchardt, B.; et al. A ‘fuzzy clustering’ approach to conceptual confusion: How to classify natural ecological associations. Mar. Ecol. Prog. Ser. 2017, 574, 17–30. [Google Scholar] [CrossRef]
- Kröncke, I.; Reiss, H.; Eggleton, J.D.; Aldridge, J.; Bergman, M.J.N.; Cocrane, S.; Craeymeersch, J.A.; Degraer, S.; Desroy, N.; Dewaumez, J.M.; et al. Changes in North Sea macrofauna communities and species distribution between 1986 and 2000. Estaurine Coast. Shelf Sci. 2011, 94, 1–15. [Google Scholar] [CrossRef]
- Shojaei, M.G.; Gutow, L.; Dannheim, J.; Pehlk, H.; Brey, T. Functional Diversity and Traits Assembly Patterns of Benthic Macrofaunal Communities in the Southern North Sea. In Towards an Interdisciplinary Approach in Earth System Science; Lohmann, G., Meggers, H., Unnithan, V., Wolf-Gladrow, D., Notholt, J., Bracher, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; 251p. [Google Scholar] [CrossRef]
- Kröncke, I. Changes in Dogger Bank macrofauna communities in the 20th century caused by fishing and climate. Estaurine Coast. Shelf Sci. 2011, 94, 234–245. [Google Scholar] [CrossRef]
- Rombouts, I.; Beaugrand, G.; Dauvin, J.C. Potential changes in benthic macrofaunal distributions from the English Channel simulated under climate change scenarios. Estaurine Coast. Shelf Sci. 2012, 99, 153–161. [Google Scholar] [CrossRef]
- Edwards, M.; Beaugrand, G.; Reid, P.C.; Rowden, A.A.; Jones, M.B. Ocean climate anomalies and the ecology of the North Sea. Mar. Ecol. Prog. Ser. 2002, 239, 1–10. [Google Scholar] [CrossRef]
- Detharding, G.G. Systematisches Verzeichnis der Mecklenburgischen Conchylien; Siemssen, A.C., Ed.; W. Bärensprung: Schwerin, Germany, 1794; p. 40. [Google Scholar]
- Arnold, C.; Lenz, H. Erster allgemeiner Bericht über die im Jahre 1872 angestellten zoologisch-botanischen Untersuchungen der Travemünder Bucht. Lübeckische Blätter 1873, 15, 213–216. [Google Scholar]
- Möbius, K. Die wirbellosen Thiere der Ostsee. Jahresber. Komm. Wiss. Unters. Dtsch. Meere Kiel 1873, 1, 97–144. [Google Scholar]
- Lenz, H. Die wirbellosen Thiere der Travemünder Bucht. Theil II. Resultate der im Auftrage der Freien und Hanse-Stadt Lübeck angestellten Schleppnetzuntersuchungen. In Vierter Bericht der Commission zur Wissenschaftlichen Untersuchung der Deutschen Meere, in Kiel Für Die Jahre 1877 bis 1881 7.-11. Jahrgang; I. Abth. Paul Parey: Berlin, Germany, 1882; Volume 4, pp. 169–184. [Google Scholar]
- Hagmeier, A.V. Die Bodenfauna der Ostsee im April 1929 nebst einigen Vergleichen mit April 1925 und juli 1926. Berichte Dtsch. Wiss. Kommision Meeresforsch. NF 1930, 5, 156–173. [Google Scholar]
- Schulz, S. Benthos and sediment in Mecklenburg Bay. Beitr. Meereskunde 1969, 24–25, 15–55. [Google Scholar]
- Löwe, F.K. Quantitative Benthosuntersuchungen in der Arkonasee. Mitteilungen Mus. Naturkunde Berlin. Zool. Mus. Inst. Spez. Zool. 1963, 39, 247–349. [Google Scholar] [CrossRef]
- Zettler, M.L.; Röhner, M. Verbreitung und Entwicklung des Makrozoobenthos der Ostsee zwischen Fehmarnbelt und Usedom—Daten von 1839 bis 2001. In Die Biodiversität in Nord- und Ostsee. Band 3. Bericht BfG, 1421; Leuchs, H., König, B., Eds.; Bundesanstalt für Gewässerkunde: Koblenz, Germany, 2004; pp. 1–175. [Google Scholar]
- Zenkevitch, L. Biology of the Seas of the U.S.S.R.; Allen & Unwin: London, UK, 1963; p. 953. [Google Scholar] [CrossRef]
- Schiewer, U. Ecology of Baltic Coastal Waters, 1st ed.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2008; Volume 19, p. 430. [Google Scholar]
- Zettler, M.L.; Karlsson, A.; Kontula, T.; Gruszka, P.; Laine, A.O.; Herkül, K.; Schiele, K.S.; Maximov, A.; Haldin, J. Biodiversity gradient in the Baltic Sea: A comprehensive inventory of macrozoobenthos data. Helgol. Mar. Res. 2014, 68, 49–57. [Google Scholar]
- Gogina, M.; Nygård, H.; Blomqvist, M.; Daunys, D.; Josefson, A.B.; Kotta, J.; Maximov, A.; Warzocha, J.; Yermakov, V.; Gräwe, U.; et al. The Baltic Sea scale inventory of benthic faunal communities. ICES J. Mar. Sci. 2016, 73, 1196–1213. [Google Scholar] [CrossRef]
- Salomon, M.; Schumacher, J. Maritime spatial planning: Germany as a forerunner in ecosystem-based management? Plan. Pract. Res. 2022, 37, 739–750. [Google Scholar] [CrossRef]
- Krause, J.C.; Boedeker, D.; Backhausen, I.; Heinicke, K.; Groß, A.; von Nordheim, H. Rationale behind site selection for the NATURA 2000 network in the German EEZ. In Progress in Marine Conservation in Europe; von Nordheim, H., Boedeker, D., Krause, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 65–96. [Google Scholar] [CrossRef]
- Pedersen, S.A.; Fock, H.; Krause, J.; Pusch, C.; Sell, A.L.; Böttcher, U.; Rogers, S.I.; Sköld, M.; Skov, H.; Podolska, M.; et al. Natura 2000 sites and fisheries in German offshore waters. ICES J. Mar. Sci. 2009, 66, 155–169. [Google Scholar] [CrossRef]
- Krause, J.; Wollny-Goerke, K.; Boller, F.; Hauswirth, M.; Heinicke, K.; Herrmann, C.; Körber, P.; Narberhaus, I.; Richter-Kemmermann, A. The German marine protected areas in the North Sea and Baltic Sea. Nat. Landsch. 2011, 9–10, 397–409. [Google Scholar]
- Bildstein, T.; Schuchardt, B.; Bleich, S.; Bennecke, S.; Schückel, S.; Huber, A.; Dierschke, V.; Koschinski, S.; Darr, A. Die Meeresschutzgebiete in der deutschen AWZ der Ostsee—Beschreibung und Zustandsbewertung. BfN-Skripten 2020, 553, 1–497. [Google Scholar] [CrossRef]
- Zettler, M.L.; Beermann, J.; Dannheim, J.; Ebbe, B.; Grotjahn, M.; Günther, C.P.; Gusky, M.; Kind, B.; Kröncke, I.; Kuhlenkamp, R.; et al. An annotated checklist of macrozoobenthic species in German waters of the North and Baltic Seas. Helgol. Mar. Res. 2018, 72, 5. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Ramsay, K.; Richardson, C.A.; Spence, F.E.; Brand, A.R. Chronic fishing disturbance has changed shelf sea benthic community structure. J. Anim. Ecol. 2000, 69, 494–503. [Google Scholar] [CrossRef]
- Sciberras, M.; Hiddink, J.G.; Jennings, S.; Szostek, C.L.; Hughes, K.M.; Kneafsey, B.; Clarke, L.J.; Ellis, N.; Rijnsdorp, A.D.; McConnaughey, R.S.; et al. Response of benthic fauna to experimental bottom fishing: A global meta-analysis. Fish Fish. 2018, 19, 698–715. [Google Scholar] [CrossRef]
- Hiddink, J.G.; Kaiser, M.J.; Sciberras, M.; McConnaughey, R.A.; Mazor, T.; Hilborn, R.; Collie, J.S.; Pitcher, C.R.; Parma, A.M.; Suuronen, P.; et al. Selection of indicators for assessing and managing the impacts of bottom trawling on seabed habitats. J. Appl. Ecol. 2020, 57, 1199–1209. [Google Scholar] [CrossRef]
- Mazor, T.; Pitcher, C.R.; Rochester, W.; Kaiser, M.J.; Hiddink, J.G.; Jennings, S.; Amoroso, R.; McConnaughey, R.A.; Rijnsdorp, A.D.; Parma, A.M.; et al. Trawl fishing impacts on the status of seabed fauna in diverse regions of the globe. Fish Fish. 2021, 22, 72–86. [Google Scholar] [CrossRef]
- Rijnsdorp, A.D.; Bolam, S.G.; Garcia, C.; Hiddink, J.G.; Hintzen, N.T.; van Denderen, P.D.; van Kooten, T. Estimating sensitivity of seabed habitats to disturbance by bottom trawling based on the longevity of benthic fauna. Ecol. Appl. 2018, 28, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- van Denderen, P.D.; Törnroos, A.; Sciberras, M.; Hinz, H.; Friedland, R.; Lasota, R.; Mangano, M.C.; Robertson, C.; Valanko, S.; Hiddink, J.G. Effects of bottom trawling and hypoxia on benthic invertebrate communities. Mar. Ecol. Prog. Ser. 2022, 694, 13–27. [Google Scholar] [CrossRef]
- Beermann, J.; Gutow, L. Langzeitbeobachtung benthischer Lebensräume in küstenfernen Gebieten der deutschen Nordsee (LABEL). In Proceedings of the Koordinatorentreffen des Bundesamtes für Naturschutz (BfN), Vilm, Germany, 18–20 March 2019. hdl:10013/epic.09150f67-8b69-43f6-925d-33a1fc0eac5a. [Google Scholar]
- Bonthond, G.; Beermann, J.; Gutow, L.; Neumann, A.; Barboza, F.R.; Desiderato, A.; Fofonova, V.; Helber, S.; Khodami, S.; Kraan, C.; et al. Benthic microbial biogeographic trends in the North Sea are shaped by an interplay of environmental drivers and bottom trawling effort. ISME Commun. 2023, 3, 132. [Google Scholar] [CrossRef]
- Gutow, L.; Günther, C.P.; Ebbe, B.; Schückel, S.; Schuchardt, B.; Dannheim, J.; Darr, A.; Pesch, R. Structure and distribution of a threatened muddy biotope in the south-eastern North Sea. J. Environ. Manag. 2020, 255, 109876. [Google Scholar] [CrossRef] [PubMed]
- Marx, D.; Feldens, A.; Papenmeier, S.; Feldens, P.; Darr, A.; Zettler, M.L.; Heinicke, K. Habitats and Biotopes in the German Baltic Sea. Biology 2024, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Kröncke, I.; Bartholomä, A.; Dippner, J.W.; Schückel, U. Long-term changes in species composition of demersal fish and epibenthic species in the Jade area (German Wadden Sea/southern North Sea) since 1972. Estaurine Coast. Shelf Sci. 2016, 181, 284–293. [Google Scholar] [CrossRef]
- de Groot, S.J.; Lindeboom, H.J. Environmental Impact of bottom gears on benthic fauna in relation to natural resources management and protection of the North Sea. NIOZ Rapp. 1994, 11, 254. [Google Scholar]
- Lindeboom, H.J.; de Groot, S.J. The effects of different types of fisheries on the North Sea and Irish Sea benthic ecosystems (IMPACT II). NIOZ-Rapp. 1998, 1, 404. [Google Scholar]
- Greenstreet, S.; Robinson, L.; Piet, G.; Craeymeersch, J.; Callaway, R.; Reiss, H.; Ehrich, S.; Kröncke, I.; Fraser, H.; Lancaster, J.; et al. The ecological disturbance caused by fishing in the North Sea. FRS Collab. Rep. 2007, 04/07, 169. [Google Scholar]
- Sköld, M.; Göransson, P.; Jonsson, P.; Bastardie, F.; Blomqvist, M.; Agrenius, S.; Hiddink, J.G.; Nilsson, H.C.; Bartolino, V. Effects of chronic bottom trawling on soft-seafloor macrofauna in the Kattegat. Mar. Ecol. Prog. Ser. 2018, 586, 41–55. [Google Scholar] [CrossRef]
- Rumohr, H.; Kujawski, T. The impact of trawl fishery on the epifauna of the southern North Sea. ICES J. Mar. Sci. 2000, 57, 1389–1394. [Google Scholar] [CrossRef]
- Duineveld, G.C.A.; Bergman, M.J.N.; Lavaleye, M.S.S. Effects of an area closed to fisheries on the composition of the benthic fauna in the southern North Sea. ICES J. Mar. Sci. 2007, 64, 899–908. [Google Scholar] [CrossRef]
- Arntz, W.E.; Weber, W. Cyprina islandica (Mollusca: Bivalvia) als Nahrung von Dorsch und Kliesche in der Kieler Bucht. Berichte Dtsch. Wiss. Komm. Meeresforsch. 1970, 21, 193–209. [Google Scholar]
- Krost, P. The Impact of Otter-Trawl Fishery on Nutrient Release from the Sediment and Macrofauna of Kieler Bucht (Western Baltic). Ph.D. Thesis, Christian-Albrechts-Universität Kiel, Kiel, Germany, 1990. [Google Scholar]
- Rumohr, H.; Krost, P. Experimental evidence of damage to benthos by bottom trawling with special reference to Arctica islandica. Meeresforsch. Rep. Mar. Res. 1991, 33, 340–345. [Google Scholar]
- Sonnewald, M.; Türkay, M. Composition of the Epibenthic Decapod Crustacean Megafauna of the German Exclusive Economic Zone: Comparison and Analysis of Past and Recent Surveys. Crustaceana 2017, 90, 1193–1210. [Google Scholar] [CrossRef]
- ICES. Data for OSPAR request on the production of spatial data layers of fishing intensity/pressure. Data Outputs 2021. [Google Scholar] [CrossRef]
- ICES. ICES Data Call for VMS/Log Book Data 2009–2020. Data Calls 2021. [Google Scholar] [CrossRef]
- ICES. HELCOM request 2022 for spatial data layers on effort, fishing intensity and fishing footprint for the years 2016–2021. Data Outputs 2022. [Google Scholar] [CrossRef]
- Diesing, M.; Ware, S.; Foster-Smith, R.; Stewart, H.; Long, D.; Vanstaen, K.; Forster, R.; Morando, A. Understanding the Marine Environment—Seabed Habitat Investigations of the Dogger Bank Offshore Draft SAC; JNCC Report No. 429; Joint Nature Conservation Committee: Peterborough, UK, 2009; p. 89. Available online: http://www.jncc.gov.uk/ (accessed on 22 March 2024).
- Coolen, J.W.P.; Bos, O.G.; Glorius, S.; Lengkeek, W.; Cuperus, J.; van der Weide, B.; Agüera, A. Reefs, sand and reef-like sand: A comparison of the benthic biodiversity of habitats in the Dutch Borkum Reef Grounds. J. Sea Res. 2015, 103, 84–92. [Google Scholar] [CrossRef]
- Galvez, D.S.; Papenmeier, S.; Sander, L.; Hass, H.C.; Fofonova, V.; Bartholomä, A.; Wiltshire, K.H. Ensemble Mapping and Change Analysis of the Seafloor Sediment Distribution in the Sylt Outer Reef, German North Sea from 2016 to 2018. Water 2021, 13, 2254. [Google Scholar] [CrossRef]
- Ahyong, S.; Boyko, C.B.; Bailly, N.; Bernot, J.; Bieler, R.; Brandão, S.N.; Daly, M.; De Grave, S.; Gofas, S.; Hernandez, F.; et al. World Register of Marine Species. Available online: https://www.marinespecies.org/imis.php?dasid=1447&doiid=170 (accessed on 4 January 2024).
- Joseph, L.; Cusson, M. Resistance of benthic intertidal communities to multiple disturbances and stresses. Mar. Ecol. Prog. Ser. 2015, 534, 49–64. [Google Scholar] [CrossRef]
- Karlson, A.M.L.; Pilditch, C.A.; Probert, P.K.; Leduc, D.; Savage, C. Large Infaunal Bivalves Determine Community Uptake of Macroalgal Detritus and Food Web Pathways. Ecosystems 2021, 24, 384–402. [Google Scholar] [CrossRef]
- Rees, H.L. (Ed.) Guidelines for the study of the epibenthos of subtidal environments. ICES Tech. Mar. Environ. Sci. 2009, 42, 88. [Google Scholar]
- Beisiegel, K.; Darr, A.; Zettler, M.L.; Friedland, R.; Gräwe, U.; Gogina, M. Spatial variability in subtidal hard substrate assemblages across horizontal and vertical gradients: A multi-scale approach by seafloor imaging. Mar. Ecol. Prog. Ser. 2020, 633, 23–36. [Google Scholar] [CrossRef]
- Gräwe, U.; Naumann, M.; Mohrholz, V.; Burchard, H. Anatomizing one of the largest saltwater inflows into the Baltic Sea in December 2014. J. Geophys. Res. Ocean. 2015, 120, 7676–7697. [Google Scholar] [CrossRef]
- ICES. Baltic Sea Ecoregion—Ecosystem overview. ICES Advice: Ecosystem Overviews. Report 2022. [Google Scholar] [CrossRef]
- Clarke, K.; Warwick, R. An Approach to Statistical Analyses and Interpretation. Change in Marine Communities, 2nd ed.; RIMER-E Ltd.; Plynouth Marine Laboratory: Plymouth, UK, 2001; pp. 6-1–6-14. [Google Scholar]
- Eigaard, O.E.; Bastardie, F.; Breen, M.; Dinesen, G.E.; Hintzen, N.T.; Laffargue, P.; Mortensen, L.O.; Nielsen, J.R.; Nilsson, H.C.; O’Neill, F.G.; et al. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J. Mar. Sci. 2016, 73, i27–i43. [Google Scholar] [CrossRef]
- McArdle, B.H.; Anderson, M.J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- Rachor, E.; Bönsch, R.; Boos, K.; Gosselck, F.; Grotjahn, M.; Günther, C.P.; Gusky, M.; Gutow, L.; Heiber, W.; Jantschik, P.; et al. Rote Liste der bodenlebenden wirbellosen Meerestiere. Naturschutz Biol. Vielfalt 2013, 70, 81–176. [Google Scholar]
- Rote-Liste-Zentrum.de. Available online: https://www.rote-liste-zentrum.de/en/Categories-1711.html (accessed on 27 September 2023).
- Hahn, S.J.; Brandt, A.; Sonnewald, M. Annotated checklist and biodiversity analysis of benthic fauna at Sylt Outer Reef and Borkum Reef Ground (North Sea). Check List 2022, 18, 593–628. [Google Scholar] [CrossRef]
- Rachor, E.; Nehmer, P. Erfassung und Bewertung Ökologisch Wertvoller Lebensräume in der Nordsee; Wegener Institute for Polar and Marine Research: Bremerhaven, Germany, 2003; pp. 1–175. [Google Scholar]
- Lackschewitz, D.; Reise, K.; Buschbaum, C.; Karez, R. Neobiota der Deutschen Nord- und Ostseeküste. Eingeschleppte Arten in Deutschen Küstengewässern; Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein: Flintbek, Germany, 2022; pp. 1–394. [Google Scholar]
- Lavesque, N.; Bonifácio, P.; Londoño-Mesa, M.H.; Le Garrec, V.; Grall, J. Loimia ramzega sp. nov.; a new giant species of Terebellidae (Polychaeta) from French waters (Brittany, English Channel). J. Mar. Biol. Assoc. United Kingd. 2017, 97, 935–942. [Google Scholar] [CrossRef]
- Viitasalo, M.; Bonsdorff, E. Global climate change and the Baltic Sea ecosystem: Direct and indirect effects on species, communities and ecosystem functioning. Earth Syst. Dynam. 2022, 13, 711–747. [Google Scholar] [CrossRef]
- Singer, A.; Bijleveld, A.I.; Hahner, F.; Holthuijsen, S.J.; Hubert, K.; Kerimoglu, O.; Kleine Schaars, L.; Kröncke, I.; Lettmann, K.A.; Rittweg, T.; et al. Long-term response of coastal macrofauna communities to deeutrophication and sea level rise mediated habitat changes (1980s versus 2018). Front. Mar. Sci. 2023, 9, 963325. [Google Scholar] [CrossRef]
- Zenetos, A.; Tsiamis, K.; Galandi, M.; Carvalho, N.; Bartilotti, C.; Canning-Clode, J.; Castriota, L.; Chainho, P.; Comas-González, R.; Costa, A.C.; et al. Status and Trends in the Rate of Introduction of Marine Non-Indigenous Species in European Seas. Diversity 2022, 14, 1077. [Google Scholar] [CrossRef]
- Neumann, H.; Kröncke, I. The effect of temperature variability on ecological functioning of epifauna in the German Bight. Mar. Ecol. 2011, 32, 49–57. [Google Scholar] [CrossRef]
- Laurer, W.-U.; Naumann, M.; Zeiler, M. Erstellung der Karte zur Sedimentverteilung auf dem Meeresboden in der Deutschen Nordsee nach der Klassifikation von Figge (1981); Modul B—Dokumentation Nr. 1: LBEG—BSH—BGR; Geopotenzial Deutsche Nordsee: Hannover/Hamburg, Germany, 2012; p. 19. Available online: https://www.gpdn.de (accessed on 22 March 2024).
- Beermann, J.; Gutow, L.; Wührdemann, S.; Heinicke, K.; Bildstein, T.; Jaklin, S.; Gusky, M.; Zettler, M.L.; Dannheim, J.; Pesch, R. Characterization and differentiation of sublittoral sandbanks in the southeastern North Sea. Biodivers. Conserv. 2023, 32, 2747–2768. [Google Scholar] [CrossRef]
- Bradshaw, C.; Iburg, S.; Morys, C.; Sköld, M.; Pusceddu, A.; Ennas, C.; Jonsson, P.; Nascimento, F.J.A. Effects of bottom trawling and environmental factors on benthic bacteria, meiofauna and macrofaunal communities and benthic ecosystem processes. Sci. Total. Environ. 2024, 921, 171076. [Google Scholar] [CrossRef] [PubMed]
- Beauchard, O.; Bradshaw, C.; Bolam, S.; Tiano, J.; Garcia, C.; De Borger, E.; Laffargue, P.; Blomqvist, M.; Tsikopoulou, I.; Papadopoulou, N.K.; et al. Trawling-induced change in benthic effect trait composition—A multiple case study. Front. Mar. Sci. 2023, 10, 1303909. [Google Scholar] [CrossRef]
- McLaverty, C.; Eigaard, O.R.; Olsen, J.; Brooks, M.E.; Petersen, J.K.; Erichsen, A.C.; van der Reijden, K.; Dinesen, G.E. European Coastal Monitoring Programmes May Fail to Identify Impacts on Benthic Macrofauna Caused by Bottom Trawling. J. Environ. Manag. 2023, 334, 117510. [Google Scholar] [CrossRef] [PubMed]
- Romoth, K.; Darr, A.; Papenmeier, S.; Zettler, M.L.; Gogina, M. Substrate heterogeneity as a trigger for species diversity in marine benthic assemblages. Biology 2023, 12, 825. [Google Scholar] [CrossRef] [PubMed]
- Fock, H.O. Natura 2000 and the European Common Fisheries Policy. Mar. Policy. 2011, 35, 181–188. [Google Scholar] [CrossRef]
- Li, C.; Coolen, J.W.P.; Scherer, L.; Mogollón, J.M.; Braeckman, U.; Vanaverbeke, J.; Tukker, A.; Steubing, B. Offshore Wind Energy and Marine Biodiversity in the North Sea: Life Cycle Impact Assessment for Benthic Communities. Environ. Sci. Technol. 2023, 57, 6455–6464. [Google Scholar] [CrossRef]
- González-Irusta, J.M.; de la Torriente, A.; Punzón, A.; Blanco, M.; Serrano, A. Determining and mapping species sensitivity to trawling impacts: The BEnthos Sensitivity Index to Trawling Operations (BESITO). ICES J. Mar. Sci. 2018, 75, 1710–1721. [Google Scholar] [CrossRef]
- Serrano, A.; de la Torriente, A.; Punzón, A.; Blanco, M.; Bellas, J.; Durán-Muñoz, P.; Murillo, F.J.; Sacau, M.; García-Alegre, A.; Antolínez, A.; et al. Sentinels of Seabed (SoS) indicator: Assessing benthic habitats condition using typical and sensitive species. Ecol. Ind. 2022, 140, 108979. [Google Scholar] [CrossRef]
- Schröder, A. Community Dynamics and Development of Soft Bottom Benthos in the German Bight (North Sea) 1969–2000. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2005. [Google Scholar]
- Werner, O. Charakterisierung des Aktuellen Zustandes der Arctica Islandica—Population im Meeresschutzgebiet Fehmarnbelt (Westliche Ostsee), Einem von Grundschleppnetzfischerei Beeinflussten Schlickigen Meeresboden. Master’s Thesis, Rostock University, Rostock, Germany, 2021. [Google Scholar]
- Zeller, D.; Rossing, P.; Harper, S.; Persson, L.; Pauly, D. The Baltic Sea: Estimates of total fisheries removals 1950–2007. Fish. Res. 2011, 108, 356–363. [Google Scholar] [CrossRef]
- Couce, E.; Schratzberger, M.; Engelhard, G.H. Reconstructing three decades of total international trawling effort in the North Sea. Earth Syst. Sci. Data 2020, 12, 373–386. [Google Scholar] [CrossRef]
- Global Fishing Watch. Available online: https://globalfishingwatch.org (accessed on 19 September 2023).
- Schönke, M.; Clemens, D.; Feldens, P. Quantifying the Physical Impact of Bottom Trawling Based on High-Resolution Bathymetric Data. Remote Sens. 2022, 14, 2782. [Google Scholar] [CrossRef]
- Ohnesorge, A.; John, U.; Taudien, S.; Neuhaus, S.; Kuczynski, L.; Laakmann, S. Capturing drifting species and molecules—Lessons learned from integrated approaches to assess marine metazoan diversity in highly dynamic waters. Environ. DNA 2023, 5, 1541–1556. [Google Scholar] [CrossRef]
- Jac, C.; Desroy, N.; Duchêne, J.-C.; Foveau, A.; Labrune, C.; Lescure, L.; Vaz, S. Assessing the impact of trawling on benthic megafauna: Comparative study of video surveys vs. scientific trawling. ICES J. Mar. Sci. 2021, 78, 1636–1649. [Google Scholar] [CrossRef]
- Pawlowski, J.; Bonin, A.; Boyer, F.; Cordier, T.; Taberlet, P. Environmental DNA for biomonitoring. Mol. Ecol. 2021, 30, 2931–2936. [Google Scholar] [CrossRef] [PubMed]
- Derycke, S.; Maes, S.; Van den Bulcke, L.; Vanhollebeke, J.; Wittoeck, J.; Hillewaert, H.; Ampe, B.; Haegeman, A.; Hostens, K.; De Backer, A. Detection of Macrobenthos Species with Metabarcoding Is Consistent in Bulk DNA but Dependent on Body Size and Sclerotization in eDNA From the Ethanol Preservative. Front. Mar. Sci. 2021, 8, 637858. [Google Scholar] [CrossRef]
- McEver, R.A.; Zhang, B.; Levenson, C.; Iftekhar, A.S.M.; Manjunath, B.S. Context-Driven Detection of Invertebrate Species in Deep-Sea Video. Int. J. Comput. Vis. 2023, 131, 1367–1388. [Google Scholar] [CrossRef]
Study Site | Sampling Methods | No. of Stations | Month |
---|---|---|---|
2020 | |||
Sylt Outer Reef (SAR) # | In- and Epifauna | 20 | May |
Borkum Reef Ground (BRG) * | In- and Epifauna | 14 | July |
2021 | |||
Dogger Bank (DGB) | Infauna | 20 | May |
Sylt Outer Reef (SAR) | Infauna | 20 | May |
Dogger Bank (DGB) | Epifauna | 25 | July |
Amrum Bank (AMB) | Epifauna | 11 | August |
2022 | |||
Sylt Outer Reef (SAR) | Epifauna | 15 | May |
Borkum Reef Ground (BRG) | Epifauna | 14 | July |
Amrum Bank (AMB) | Epifauna | 11 | July |
Study Site | No. of Stations in MPA (Close Outside) | Month |
---|---|---|
2020 | ||
Fehmarnbelt (FB) | 29 (12) | June * |
Western Rønne Bank (RB) | 1 | July |
Pomeranian Bay with Odra Bank (OB) | 4 | June–July |
Kadetrinne (KR) | 6 | June |
Adler Ground (AG) | 8 | July |
2021 | ||
Fehmarnbelt (FB) | 13 (3) | June * |
Western Rønne Bank (RB) | 6 | June |
Pomeranian Bay with Odra Bank (OB) | 40 | June * |
Kadetrinne (KR) | 11 | June |
Adler Ground (AG) | 14 | July–Aug |
2022 | ||
Fehmarnbelt (FB) | 33 (16) | March, June |
Western Rønne Bank (RB) | 7 (4) | April, June |
Pomeranian Bay with Odra Bank (OB) | 40 | March, June |
Kadetrinne (KR) | 4 | June |
Adler Ground (AG) | 6 | June |
Sea | Area | Total Taxa No. | Depth, m | Mud, % | Gravel, % | Temp, °C | Temp Mod, °C | Sal, (psu) | O2, ML/L | Trawling | |
---|---|---|---|---|---|---|---|---|---|---|---|
sur SwAR | Subsurswar | ||||||||||
North Sea | SAR | 187 | 43 ± 1.2 | 16.2 ± 8.3 | 2.6 ± 9.9 | 7.5 ± 0.4 | / | 34.3 ± 0.2 | / | 0.61 ± 0.62 | 0.40 ± 0.32 |
BRG | 135 | 30 ± 1.2 | 0.5 ± 0.5 | 1.2 ± 2.2 | 16.4 ± 0.6 | / | 33.4 ± 0.2 | / | 0.2 ± 0.22 | 0.03 ± 0.02 | |
DGB | 143 | 43.3 ± 0.6 | 0.2 ± 0.1 | 0 | 11 ± 0.6 | / | 34.5 ± 0.03 | / | 1.08 ± 0.2 | 0.68 ± 0.3 | |
AMB * | 50 | 11.4 ± 2.7 | / | / | 18.2 ± 0.2 | / | 30.9 ± 0.6 | / | 3.04 ± 0.96 | 1.58 ± 0.5 | |
Baltic Sea | FB | 264 | 22 ± 5 | 33.5 ± 23.5 | 2.8 ± 8.2 | 8.1 ± 4 | 7.9 ± 0 | 19.3 ± 2.9 | 6 ± 1.8 | 2.64 ± 2.45 | 0.21 ± 0.19 |
RB | 58 | 34 ± 5 | 15 ± 15.8 | 5.8 ± 14.3 | 6.9 ± 2.2 | 5.7 ± 0.1 | 10.7 ± 1.6 | 6 ± 0.7 | 0.85 ± 1.05 | 0.07 ± 0.08 | |
OB | 56 | 14 ± 2 | 0.3 ± 0.4 | 0 ± 0 | 13.1 ± 4.4 | 8.4 ±0.1 | 8.2 ± 1.6 | 6.9 ± 1.3 | 0.88 ± 0.67 | 0.07 ± 0.05 | |
KR | 141 | 19 ± 4 | 26.6 ± 33.8 | 2.8 ± 7.6 | 10.6 ± 1 | 7.4 ± 0 | 16.5 ± 2.4 | 5.2 ± 0.9 | 0.21 ± 0.22 | 0.01 ± 0.01 | |
AG | 62 | 16 ± 7 | 0 ± 0 | 3 ± 9.5 | 12.9 ± 3.4 | 7.6 ± 0.9 | 7.8 ± 0.7 | 6.6 ± 0.5 | 0.03 ± 0.04 | 0.00 ± 0.00 |
SAR | BRG | DGB | |||
---|---|---|---|---|---|
Mean similarity: 62.3% | Abra alba | Mean similarity: 57.5% | Aonides paucibranchiata | Mean similarity: 67.5% | Amphiura filiformis |
Amphiura filiformis | Astropecten irregularis | Anthozoa | |||
Astropecten irregularis | Ensis spp. | Aora gracilis | |||
Chamelea striatula | Lanice conchilega | Asterias rubens | |||
Corystes cassivelaunus | Liocarcinus holsatus | Astropecten irregularis | |||
Cylichna cylindracea | Spio symphyta | Bathyporeia elegans | |||
Echinocardium cordatum | Spiophanes bombyx | Bathyporeia guilliamsoniana | |||
Eudorella truncatula | Thia scutellata | Dosinia lupinus | |||
Hyala vitrea | Asterias rubens | Echinocyamus pusillus | |||
Kurtiella bidentata | Bathyporeia guilliamsoniana | Euspira nitida |
FB | KR | RB | AG | OB | |||||
---|---|---|---|---|---|---|---|---|---|
Mean similarity: 38.8% | Aricidea suecica | Mean similarity: 46.9% | Mytilus edulis | Mean similarity: 49.2% | Macoma balthica | Mean similarity: 60.2% | Mytilus edulis | Mean similarity: 64.0% | Peringia ulvae |
Scoloplos armiger | Peringia ulvae | Peringia ulvae | Peringia ulvae | Pygospio elegans | |||||
Ophiura albida | Bylgides sarsi | Scoloplos armiger | Gammarus salinus | Tubificinae | |||||
Varicorbula gibba | Pygospio elegans | Diastylis rathkei | Einhornia crustulenta | Mytilus edulis | |||||
Diastylis rathkei | Eucratea loricata | Pontoporeia femorata | Pygospio elegans | Mya arenaria | |||||
Kurtiella bidentata | Kurtiella bidentata | Halicryptus spinulosus | Hediste diversicolor | Hediste diversicolor | |||||
Tubificinae | Asterias rubens | Bylgides sarsi | Tubificinae | Marenzelleria viridis | |||||
Levinsenia gracilis | Mya arenaria | Hediste diversicolor | Jaera albifrons | Macoma balthica | |||||
Abra alba | Nephtys caeca | Capitella capitata | Amphibalanus improvisus | Cerastoderma glaucum | |||||
Paradoneis eliasoni | Diastylis rathkei | Mya arenaria | Bylgides sarsi | Streblospio shrubsolii |
Status | Both | North Sea | Baltic Sea |
---|---|---|---|
Near Threatened | 16 | 7 | 9 |
Extremely Rare | 26 | 12 | 16 |
Threat of Unknown Extent | 47 | 28 | 30 |
Threatened | 10 | 6 | 5 |
Highly Threatened | 8 | 5 | 5 |
Threatened with Extinction | 3 | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogina, M.; Hahn, S.J.; Ohde, R.; Brandt, A.; Forster, S.; Kröncke, I.; Powilleit, M.; Romoth, K.; Sonnewald, M.; Zettler, M.L. Baseline Inventory of Benthic Macrofauna in German Marine Protected Areas (2020–2022) before Closure for Bottom-Contact Fishing. Biology 2024, 13, 389. https://doi.org/10.3390/biology13060389
Gogina M, Hahn SJ, Ohde R, Brandt A, Forster S, Kröncke I, Powilleit M, Romoth K, Sonnewald M, Zettler ML. Baseline Inventory of Benthic Macrofauna in German Marine Protected Areas (2020–2022) before Closure for Bottom-Contact Fishing. Biology. 2024; 13(6):389. https://doi.org/10.3390/biology13060389
Chicago/Turabian StyleGogina, Mayya, Sarah Joy Hahn, Ramona Ohde, Angelika Brandt, Stefan Forster, Ingrid Kröncke, Martin Powilleit, Katharina Romoth, Moritz Sonnewald, and Michael L. Zettler. 2024. "Baseline Inventory of Benthic Macrofauna in German Marine Protected Areas (2020–2022) before Closure for Bottom-Contact Fishing" Biology 13, no. 6: 389. https://doi.org/10.3390/biology13060389
APA StyleGogina, M., Hahn, S. J., Ohde, R., Brandt, A., Forster, S., Kröncke, I., Powilleit, M., Romoth, K., Sonnewald, M., & Zettler, M. L. (2024). Baseline Inventory of Benthic Macrofauna in German Marine Protected Areas (2020–2022) before Closure for Bottom-Contact Fishing. Biology, 13(6), 389. https://doi.org/10.3390/biology13060389