Vibration Emissions Reduce Boar Sperm Quality via Disrupting Its Metabolism
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Chemicals
2.3. Collection and Analysis of Vibration Data
2.4. Animals and Semen Collection
2.5. Evaluation of Sperm Motility Parameters
2.6. Evaluation of Sperm Plasma Membrane Integrity and Acrosome Integrity
2.7. Measurement of Sperm ATP Level
2.8. Evaluation of Sperm Mitochondrial Membrane Potential
2.9. Analysis of Hexokinase Activity and Pyruvate Kinase Activity
2.10. Measurement of Lactate Dehydrogenase Activity
2.11. Detecting Lactic Acid Levels
2.12. Western Blotting
2.13. Sperm Morphology
2.14. Monitoring of pH
2.15. Measure of Sperm Mitochondrial ROS Level
2.16. Sperm Capacitation
2.17. Sperm Binding in the Oviduct Explant
- Al1, Al2, Al3 = area of location no. 1, 2, and 3, respectively;
- Nl1, Nl2, Nl3 = the number of sperm at location no. 1, 2, and 3, respectively.
2.18. Insemination Assays
2.19. Statistical Analysis
3. Results
3.1. Analysis of Vibration Emissions under Field Conditions and Orbital Shaker
3.2. Effect of Vibration Emissions on Sperm Motility Parameters
3.3. Effects of Vibration Emission Stress on Sperm Plasma Membrane Integrity, Acrosome Integrity, Abnormality Rate, and pH Value
3.4. Effects of Simulated Vibration Emissions on Sperm Tyrosine Phosphorylation Levels, ATP Levels, and Mitochondrial Membrane Potential
3.5. Effects of Vibration Emissions on the Expression of Mitochondria-Encoded Proteins and the Levels of Mitochondrial ROS
3.6. Effects of Simulated Vibration Emissions on Sperm Lactate Levels, HK Activity, PK Activity, and LDH Activity
3.7. Effects of Simulated Vibration Emissions on Sperm Binding to Oviduct Explants
3.8. Effects of Simulated Vibration Emissions on Reproductive Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knox, R.V. Artificial insemination in pigs today. Theriogenology 2016, 85, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Mellagi, A.P.G.; Will, K.J.; Quirino, M.; Bustamante-Filho, I.C.; Ulguim, R.D.; Bortolozzo, F.P. Update on artificial insemination: Semen, techniques, and sow fertility. Mol. Reprod. Dev. 2022, 90, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Hafemeister, T.; Schulze, P.; Bortfeldt, R.; Simmet, C.; Jung, M.; Fuchs-Kittowski, F.; Schulze, M. Boar Semen Shipping for Artificial Insemination: Current Status and Analysis of Transport Conditions with a Major Focus on Vibration Emissions. Animals 2022, 12, 1331. [Google Scholar] [CrossRef] [PubMed]
- Paschoal, A.F.; Luther, A.M.; Jakop, U.; Schulze, M.; Bortolozzo, F.P.; Waberski, D. Factors influencing the response of spermatozoa to agitation stress: Implications for transport of extended boar semen. Theriogenology 2021, 175, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Leahy, T.; Gadella, B.M. Capacitation and capacitation-like sperm surface changes induced by handling boar semen. Reprod. Domest. Anim. 2011, 46 (Suppl. S2), 7–13. [Google Scholar] [CrossRef] [PubMed]
- Armistead, F.J.; Gala De Pablo, J.; Gadelha, H.; Peyman, S.A.; Evans, S.D. Cells Under Stress: An Inertial-Shear Microfluidic Determination of Cell Behavior. Biophys. J. 2019, 116, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Purdy, P.H.; Tharp, N.; Stewart, T.; Spiller, S.F.; Blackburn, H.D. Implications of the pH and temperature of diluted, cooled boar semen on fresh and frozen-thawed sperm motility characteristics. Theriogenology 2010, 74, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Bortfeldt, R.; Schafer, J.; Jung, M.; Fuchs-Kittowski, F. Effect of vibration emissions during shipping of artificial insemination doses on boar semen quality. Anim. Reprod. Sci. 2018, 192, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Tamanini, M.S.C.; Dos Santos, G.; Leal, L.A.; Wolf, L.M.; Schulze, M.; Christ, T.S.; Bortolozzo, F.P.; Ulguim, R.R.; Wentz, I.; Mellagi, A.P.G. Impact of agitation time of boar semen doses on sperm traits in short- and long-term extenders. Anim. Reprod. Sci. 2022, 247, 107159. [Google Scholar] [CrossRef]
- Hafemeister, T.; Schulze, P.; Simmet, C.; Jung, M.; Fuchs-Kittowski, F.; Schulze, M. Intensity and Duration of Vibration Emissions during Shipping as Interacting Factors on the Quality of Boar Semen Extended in Beltsville Thawing Solution. Animals 2023, 13, 952. [Google Scholar] [CrossRef]
- Mohammadi, H.; Golbabaei, F.; Dehghan, S.F.; Ardakani, S.K.; Imani, H.; Tehrani, F.R. Relationship between occupational exposure to whole-body vibration and noise with sex hormone levels: An empirical assessment in an automobile parts manufacturing plant. Toxicol. Ind. Health 2021, 37, 377–390. [Google Scholar] [CrossRef]
- Tas, S.; Lauwerys, R.; Lison, D. Occupational hazards for the male reproductive system. Crit. Rev. Toxicol. 1996, 26, 261–307. [Google Scholar] [CrossRef] [PubMed]
- Baranski, B. Effects of the workplace on fertility and related reproductive outcomes. Env. Health Perspect. 1993, 101 (Suppl. S2), 81–90. [Google Scholar] [CrossRef] [PubMed]
- Zarei, S.; Dehghan, S.F.; Vaziri, M.H.; Gilani, M.A.S.; Ardakani, S.K. Assessment of semen quality of taxi drivers exposed to whole body vibration. J. Occup. Med. Toxicol. 2022, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Motmans, R. Reducing whole body vibration in forklift drivers. Work 2012, 41 (Suppl. S1), 2476–2481. [Google Scholar] [CrossRef] [PubMed]
- Jarimopas, B.; Singh, S.P.; Saengnil, W. Measurement and analysis of truck transport vibration levels and damage to packaged tangerines during transit. Packag. Technol. Sci. 2005, 18, 179–188. [Google Scholar] [CrossRef]
- Ben Ammar, J.; Lanoiselle, J.L.; Lebovka, N.I.; Van Hecke, E.; Vorobiev, E. Impact of a pulsed electric field on damage of plant tissues: Effects of cell size and tissue electrical conductivity. J. Food Sci. 2011, 76, E90–E97. [Google Scholar] [CrossRef] [PubMed]
- Jaskula-Goiris, B.; De Causmaecker, B.; De Rouck, G.; Aerts, G.; Paternoster, A.; Braet, J.; De Cooman, L. Influence of transport and storage conditions on beer quality and flavour stability. J. Inst. Brew. 2019, 125, 60–68. [Google Scholar] [CrossRef]
- Hua, J.; Erickson, L.E.; Yiin, T.Y.; Glasgow, L.A. A review of the effects of shear and interfacial phenomena on cell viability. Crit. Rev. Biotechnol. 1993, 13, 305–328. [Google Scholar] [CrossRef]
- Maa, Y.F.; Hsu, C.C. Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol. Bioeng. 1997, 54, 503–512. [Google Scholar] [CrossRef]
- Balogun, K.B.; Stewart, K.R. Effects of air exposure and agitation on quality of stored boar semen samples. Reprod. Domest. Anim. 2021, 56, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Vyt, P.; Maes, D.; Sys, S.U.; Rijsselaere, T.; Van Soom, A. Air contact influences the pH of extended porcine semen. Reprod. Domest. Anim. 2007, 42, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Moraes, C.R.; Meyers, S. The sperm mitochondrion: Organelle of many functions. Anim. Reprod. Sci. 2018, 194, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Fan, X.; Lv, Y.; Lin, Y.; Wu, D.; Zeng, W. Glutamine protects rabbit spermatozoa against oxidative stress via glutathione synthesis during cryopreservation. Reprod. Fertil. Dev. 2017, 29, 2183–2194. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ren, Z.; Fan, X.; Pan, Y.; Lv, S.; Pan, C.; Lei, A.; Zeng, W. Cysteine protects rabbit spermatozoa against reactive oxygen species-induced damages. PLoS ONE 2017, 12, e0181110. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Kawai, T.; Umehara, T.; Hoque, S.A.M.; Zeng, W.; Shimada, M. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria. Free Radic. Biol. Med. 2019, 141, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Bucci, D.; Spinaci, M.; Bustamante-Filho, I.C.; Nesci, S. The sperm mitochondria: Clues and challenges. Anim. Reprod. 2022, 19, e20220131. [Google Scholar] [CrossRef] [PubMed]
- Kamp, G.; Schmidt, H.; Stypa, H.; Feiden, S.; Mahling, C.; Wegener, G. Regulatory properties of 6-phosphofructokinase and control of glycolysis in boar spermatozoa. Reproduction 2007, 133, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G. Mitochondrial control of apoptosis: An overview. Biochem. Soc. Symp. 1999, 66, 1–15. [Google Scholar] [CrossRef]
- Patergnani, S.; Suski, J.M.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E.; Giorgi, C.; Marchi, S.; Missiroli, S.; Poletti, F.; et al. Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun. Signal. 2011, 9, 19. [Google Scholar] [CrossRef]
- Ferramosca, A.; Zara, V. Bioenergetics of mammalian sperm capacitation. Biomed. Res. Int. 2014, 2014, 902953. [Google Scholar] [CrossRef] [PubMed]
- Tait, S.W.; Green, D.R. Mitochondria and cell signalling. J. Cell Sci. 2012, 125, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Min, L.; Li, Y.; Lang, Y.; Hoque, S.A.M.; Adetunji, A.O.; Zhu, Z. Beneficial Effect of Proline Supplementation on Goat Spermatozoa Quality during Cryopreservation. Animals 2022, 12, 2626. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, R.; Feng, C.; Liu, R.; Zheng, Y.; Hoque, S.A.M.; Wu, D.; Lu, H.; Zhang, T.; Zeng, W. Exogenous Oleic Acid and Palmitic Acid Improve Boar Sperm Motility via Enhancing Mitochondrial Beta-Oxidation for ATP Generation. Animals 2020, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, R.; Fan, X.; Lv, Y.; Zheng, Y.; Hoque, S.A.M.; Wu, D.; Zeng, W. Resveratrol Improves Boar Sperm Quality via 5′AMP-Activated Protein Kinase Activation during Cryopreservation. Oxid. Med. Cell. Longev. 2019, 2019, 5921503. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, W.; Li, R.; Zeng, W. Reducing the Glucose Level in Pre-treatment Solution Improves Post-thaw Boar Sperm Quality. Front. Vet. Sci. 2022, 9, 856536. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Han, Y.; Chen, X.; Lv, Y.; Zhang, Y.; Cao, L.; Zhang, J.; Jin, Y. Inhibition of 26S proteasome enhances AKAP3-mediated cAMP-PKA signaling during boar sperm capacitation. Anim. Reprod. Sci. 2022, 247, 107079. [Google Scholar] [CrossRef] [PubMed]
- Henning, H.H.W.; Batz-Schott, J.; Grunther, B.; Le Thi, X.; Waberski, D. Fluorescent labelling of boar spermatozoa for quantitative studies on competitive sperm-oviduct binding. Reprod. Fertil. Dev. 2019, 31, 1520–1532. [Google Scholar] [CrossRef] [PubMed]
- Henning, H.; Franz, J.; Batz-Schott, J.; Le Thi, X.; Waberski, D. Assessment of Chilling Injury in Boar Spermatozoa by Kinematic Patterns and Competitive Sperm-Oviduct Binding In Vitro. Animals 2022, 12, 712. [Google Scholar] [CrossRef]
- Gatti, J.L.; Chevrier, C.; Paquignon, M.; Dacheux, J.L. External ionic conditions, internal pH and motility of ram and boar spermatozoa. J. Reprod. Fertil. 1993, 98, 439–449. [Google Scholar] [CrossRef]
- Jones, J.M.; Bavister, B.D. Acidification of intracellular pH in bovine spermatozoa suppresses motility and extends viable life. J. Androl. 2000, 21, 616–624. [Google Scholar] [CrossRef] [PubMed]
- De Braekeleer, M.; Nguyen, M.H.; Morel, F.; Perrin, A. Genetic aspects of monomorphic teratozoospermia: A review. J. Assist. Reprod. Genet. 2015, 32, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Carrasquillo, R.; Madhusoodanan, V.; Dadoun, S.; Patel, A.; Smith, N.; Collazo, I.; Kohn, T.; Ramasamy, R. Impact of Abnormal Sperm Morphology on Live Birth Rates Following Intrauterine Insemination. J. Urol. 2019, 202, 801–805. [Google Scholar] [CrossRef]
- Alm, K.; Peltoniemi, O.A.T.; Koskinen, E.; Andersson, M. Porcine Field Fertility with Two Different Insemination Doses and the Effect of Sperm Morphology. Reprod. Domest. Anim. 2006, 41, 210–213. [Google Scholar] [CrossRef]
- Suarez, S.S.; Pacey, A.A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 2006, 12, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Abou-Haila, A.; Tulsiani, D.R. Mammalian sperm acrosome: Formation, contents, and function. Arch. Biochem. Biophys. 2000, 379, 173–182. [Google Scholar] [CrossRef]
- Benoff, S. Carbohydrates and fertilization: An overview. Mol. Hum. Reprod. 1997, 3, 599–637. [Google Scholar] [CrossRef]
- Losano, J.; Angrimani, D.; Dalmazzo, A.; Rui, B.R.; Brito, M.M.; Mendes, C.M.; Kawai, G.; Vannucchi, C.I.; Assumpcao, M.; Barnabe, V.H.; et al. Effect of mitochondrial uncoupling and glycolysis inhibition on ram sperm functionality. Reprod. Domest. Anim. 2017, 52, 289–297. [Google Scholar] [CrossRef]
- du Plessis, S.S.; Agarwal, A.; Mohanty, G.; van der Linde, M. Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use? Asian J. Androl. 2015, 17, 230–235. [Google Scholar] [CrossRef]
- Mukai, C.; Travis, A.J. What sperm can teach us about energy production. Reprod. Domest. Anim. 2012, 47 (Suppl. S4), 164–169. [Google Scholar] [CrossRef]
- Mukai, C.; Okuno, M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod. 2004, 71, 540–547. [Google Scholar] [CrossRef]
- Storey, B.T.; Kayne, F.J. Energy metabolism of spermatozoa. VI. Direct intramitochondrial lactate oxidation by rabbit sperm mitochondria. Biol. Reprod. 1977, 16, 549–556. [Google Scholar] [PubMed]
- Passarella, S.; de Bari, L.; Valenti, D.; Pizzuto, R.; Paventi, G.; Atlante, A. Mitochondria and L-lactate metabolism. FEBS Lett. 2008, 582, 3569–3576. [Google Scholar] [CrossRef] [PubMed]
- Harayama, H.; Minami, K.; Kishida, K.; Noda, T. Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reprod. Med. Biol. 2017, 16, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Ramio-Lluch, L.; Fernandez-Novell, J.M.; Pena, A.; Colas, C.; Cebrian-Perez, J.A.; Muino-Blanco, T.; Ramirez, A.; Concha, I.I.; Rigau, T.; Rodriguez-Gil, J.E. ‘In vitro’ capacitation and acrosome reaction are concomitant with specific changes in mitochondrial activity in boar sperm: Evidence for a nucleated mitochondrial activation and for the existence of a capacitation-sensitive subpopulational structure. Reprod. Domest. Anim. 2011, 46, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Ramio-Lluch, L.; Yeste, M.; Fernandez-Novell, J.M.; Estrada, E.; Rocha, L.; Cebrian-Perez, J.A.; Muino-Blanco, T.; Concha, I.I.; Ramirez, A.; Rodriguez-Gil, J.E. Oligomycin A-induced inhibition of mitochondrial ATP-synthase activity suppresses boar sperm motility and in vitro capacitation achievement without modifying overall sperm energy levels. Reprod. Fertil. Dev. 2014, 26, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Wolken, G.G.; Arriaga, E.A. Simultaneous measurement of individual mitochondrial membrane potential and electrophoretic mobility by capillary electrophoresis. Anal. Chem. 2014, 86, 4217–4226. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Le, L.; Fan, Y.; Lv, L.; Zhang, J. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition. Autophagy 2012, 8, 1071–1084. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Umehara, T.; Okazaki, T.; Goto, M.; Fujita, Y.; Hoque, S.A.M.; Kawai, T.; Zeng, W.; Shimada, M. Gene Expression and Protein Synthesis in Mitochondria Enhance the Duration of High-Speed Linear Motility in Boar Sperm. Front. Physiol. 2019, 10, 252. [Google Scholar] [CrossRef]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef]
- Sena, L.A.; Chandel, N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Peddinti, D.; Nanduri, B.; Kaya, A.; Feugang, J.M.; Burgess, S.C.; Memili, E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst. Biol. 2008, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, D.M.; Umbach, A.L.; Subbaiah, C.C.; Siedow, J.N. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 2006, 141, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Amaral, A.; Lourenco, B.; Marques, M.; Ramalho-Santos, J. Mitochondria functionality and sperm quality. Reproduction 2013, 146, R163–R174. [Google Scholar] [CrossRef] [PubMed]
- Visconti, P.E.; Kopf, G.S. Regulation of protein phosphorylation during sperm capacitation. Biol. Reprod. 1998, 59, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Buffone, M.G.; Calamera, J.C.; Verstraeten, S.V.; Doncel, G.F. Capacitation-associated protein tyrosine phosphorylation and membrane fluidity changes are impaired in the spermatozoa of asthenozoospermic patients. Reproduction 2005, 129, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.; Frost, D.; Li, L.; Bovin, N.; Miller, D.J. Lactadherin is a candidate oviduct Lewis X trisaccharide receptor on porcine spermatozoa. Andrology 2017, 5, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Winters, R.A.; Hamilton, D.N.; Bhatnagar, A.S.; Fitzgerald, R.; Bovin, N.; Miller, D.J. Porcine sperm binding to oviduct cells and glycans as supplements to traditional laboratory semen analysis. J. Anim. Sci. 2018, 96, 5265–5275. [Google Scholar] [CrossRef]
- Hereng, T.H.; Elgstoen, K.B.; Cederkvist, F.H.; Eide, L.; Jahnsen, T.; Skalhegg, B.S.; Rosendal, K.R. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa. Hum. Reprod. 2011, 26, 3249–3263. [Google Scholar] [CrossRef]
Range (D) | N | Median (D) | SD (D) | CV (D) |
---|---|---|---|---|
0.0~0.1 | 24,270 | 0.07 | 0.02 | 0.34 |
0.1~0.2 | 25,064 | 0.14 | 0.03 | 0.2 |
0.2~0.3 | 15,491 | 0.25 | 0.03 | 0.12 |
0.3~0.5 | 15,293 | 0.37 | 0.06 | 0.15 |
0.5~1.0 | 14,698 | 0.64 | 0.13 | 0.2 |
1.0~2.0 | 1212 | 1.15 | 0.21 | 0.17 |
Shaker Speed (rpm) | N | Median (D) | SD (D) | CV (D) |
---|---|---|---|---|
80 | 1200 | 0.11 | 0.09 | 0.67 |
140 | 1200 | 0.55 | 0.6 | 0.82 |
200 | 1200 | 1.55 | 1.5 | 0.79 |
Time (h) | Shaker Speed (rpm) | ||||
---|---|---|---|---|---|
Parameter | 0 rpm | 80 rpm | 140 rpm | 200 rpm | |
Total motility (%) | 0 | 95.3 ± 0.8 | 95.7 ± 0.4 | 93.6 ± 1.9 | 93.0 ± 2.1 |
3 | 94.9 ± 0.4 a | 86.9 ± 0.6 b | 79.6 ± 1.8 c | 67.9 ± 1.5 d | |
6 | 93.6 ± 1.8 a | 81.4 ± 0.5 b | 74.0 ± 1.6 c | 66.8 ± 2.8 d | |
Progressive motility (%) | 0 | 71.1 ± 2.7 | 70.1 ± 5.7 | 70.2 ± 4.6 | 69.5 ± 4.9 |
3 | 70.0 ± 2.2 a | 62.6 ± 1.6 b | 61.4 ± 0.2 b | 53.1 ± 1.1 c | |
6 | 71.4 ± 3.1 a | 58.8 ± 1.1 b | 57.1 ± 0.8 b | 46.1 ± 3.4 c | |
VCL (μm/s) | 0 | 99.6 ± 1.7 | 99.6 ± 3.2 | 99.2 ± 3.2 | 98.4 ± 3.3 |
3 | 99.2 ± 1.8 a | 95.8 ± 3.5 a | 89.6 ± 6.1 a | 64.1 ± 7.9 b | |
6 | 99.1 ± 0.3 a | 91.9 ± 7.4 a | 85.4 ± 12.4 a | 61.4 ± 3.3 b | |
VSL (μm/s) | 0 | 33.5 ± 0.9 | 33.6 ± 4.2 | 33.9 ± 3.9 | 32.9 ± 3.8 |
3 | 34.0 ± 1.2 a | 32.5 ± 3.6 a | 27.6 ± 0.4 b | 20.6 ± 1.1 c | |
6 | 33.9 ± 1.8 a | 29.7 ± 1.6 b | 23.8 ± 1.6 c | 18.3 ± 1.7 d | |
VAP (μm/s) | 0 | 51.5 ± 0.8 | 52.1 ± 7.8 | 52.3 ± 7.4 | 51.3 ± 7.3 |
3 | 52.9 ± 1.6 a | 47.8 ± 1.7 b | 42.5 ± 1.3 c | 36.7 ± 1.6 d | |
6 | 52.6 ± 2.0 a | 42.6 ± 0.9 b | 40.5 ± 2.0 b | 33.7 ± 0.9 c | |
LIN (%) | 0 | 48.3 ± 1.7 | 49.1 ± 2.8 | 48.8 ± 3.0 | 48.0 ± 2.5 |
3 | 47.8 ± 1.9 a | 36.4 ± 0.7 b | 32.0 ± 1.4 c | 30.5 ± 0.7 c | |
6 | 48.4 ± 2.1 a | 33.5 ± 3.0 b | 29.1 ± 1.5 c | 29.7 ± 1 bc | |
STR (%) | 0 | 73.9 ± 4.0 | 74.9 ± 3.6 | 73.8 ± 3.4 | 73.2 ± 3.7 |
3 | 73.9 ± 3.7 a | 69.3 ± 2.2 ab | 64.3 ± 0.8 b | 55.9 ± 3.5 c | |
6 | 73.1 ± 0.7 a | 67.5 ± 2.3 b | 60.7 ± 2.8 c | 55.9 ± 2.1 d | |
WOB (%) | 0 | 65.3 ± 0.8 | 65.8 ± 1.0 | 66.2 ± 1.3 | 65.0 ± 1.5 |
3 | 65.5 ± 0.5 a | 49.7 ± 1.2 c | 49.9 ± 3.5 c | 54.6 ± 2.5 b | |
6 | 65.5 ± 0.3 a | 48.2 ± 2.2 c | 48.3 ± 0.8 c | 53.6 ± 1.2 b | |
ALH (μm) | 0 | 6.7 ± 0.4 | 6.8 ± 0.2 | 6.7 ± 0.2 | 6.6 ± 0.3 |
3 | 6.7 ± 0.1 a | 6.0 ± 0.4 b | 5.7 ± 0.3 b | 3.7 ± 0.3 c | |
6 | 6.8 ± 0.1 a | 5.7 ± 0.8 a | 5.5 ± 0.9 a | 3.3 ± 0.4 b | |
BCF (Hz) | 0 | 5.9 ± 0.1 | 5.9 ± 0.2 | 5.8 ± 0.1 | 5.8 ± 0.1 |
3 | 5.8 ± 0.3 a | 5.3 ± 0.2 b | 5.1 ± 0.2 b | 4.4 ± 0.1 c | |
6 | 5.8 ± 0.3 a | 4.7 ± 0.1 b | 4.5 ± 0.1 b | 4.1 ± 0.1 c |
Parameter | Time (h) | 0 h | 24 h | 48 h | 72 h | 96 h |
---|---|---|---|---|---|---|
Total motility (%) | 0 | 96.2 ± 2.8 ab | 98.9 ± 0.6 a | 95.1 ± 1.4 bc | 92.5 ± 1.8 cd | 90.1 ± 2.5 d |
3 | 93.2 ± 5.1 a | 78 ± 1.9 b | 70.7 ± 4.8 c | 69.5 ± 3.0 c | 73.6 ± 2.7 bc | |
6 | 96.2 ± 1.9 a | 66.6 ± 3.2 b | 69.8 ± 4.6 b | 64.4 ± 3.5 b | 67.3 ± 0.5 b | |
Progressive motility (%) | 0 | 72.2 ± 2.3 a | 71.1 ± 6.5 a | 70.3 ± 7.6 ab | 65.9 ± 2.5 ab | 60.9 ± 2.5 b |
3 | 71.2 ± 1.7 a | 52.7 ± 3.4 b | 44.1 ± 9.9 b | 40.7 ± 5.9 b | 40.6 ± 1.3 b | |
6 | 71.8 ± 1.7 a | 50.0 ± 4.6 b | 39.8 ± 3.8 c | 32 ± 2.2 d | 29.6 ± 2.4 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zeng, X.; Liu, S.; Hoque, S.A.M.; Min, L.; Ding, N.; Zhu, Z. Vibration Emissions Reduce Boar Sperm Quality via Disrupting Its Metabolism. Biology 2024, 13, 370. https://doi.org/10.3390/biology13060370
Wang S, Zeng X, Liu S, Hoque SAM, Min L, Ding N, Zhu Z. Vibration Emissions Reduce Boar Sperm Quality via Disrupting Its Metabolism. Biology. 2024; 13(6):370. https://doi.org/10.3390/biology13060370
Chicago/Turabian StyleWang, Shanpeng, Xuejun Zeng, Shenao Liu, S. A. Masudul Hoque, Lingjiang Min, Nengshui Ding, and Zhendong Zhu. 2024. "Vibration Emissions Reduce Boar Sperm Quality via Disrupting Its Metabolism" Biology 13, no. 6: 370. https://doi.org/10.3390/biology13060370
APA StyleWang, S., Zeng, X., Liu, S., Hoque, S. A. M., Min, L., Ding, N., & Zhu, Z. (2024). Vibration Emissions Reduce Boar Sperm Quality via Disrupting Its Metabolism. Biology, 13(6), 370. https://doi.org/10.3390/biology13060370