Carrabiitol®, a Novel Oligosaccharide Polyol Composition, Mitigates the Impact of Flooding, Drought, Salinity, and High Temperature in Tomato
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Determination of Growth, Physiological, and Biochemical Parameters
2.2.1. Flowering Days
2.2.2. Plant Dry Weight
2.2.3. Gas Exchange Parameters
2.2.4. Chrolophyll Content
2.2.5. Carotenoid Content
2.2.6. Total Antioxidant Activity Potential
2.2.7. Sugar Content
2.2.8. MDA Content
2.2.9. Proline Content
2.2.10. Statistical Analysis
3. Results
3.1. Effect of Carrabiitol Treatment on Growth Parameter
3.1.1. Flowering Days
3.1.2. Plant Dry Weight
3.2. Effects of Carrabiitol® Treatment on Physiological Parameters
3.2.1. Leaf Water Potential (ψw)
3.2.2. Gas Exchange Parameters
3.3. Effects of Carrabiitol® Treatment on Biochemical Parameters
3.3.1. Chlorophyll Content
3.3.2. Total Carotenoid Content
3.3.3. Total Antioxidant Activity Potential
3.3.4. Sugar Content
3.3.5. Malondialdehyde Content
3.3.6. Proline Content
3.4. Statistical Analysis
4. Discussion
5. Conclusions
6. Patents
- IN396252: Shah, N.J.; Patel, F.Y., Carrabiitol formulation to maintain osmotic balance in plants against abiotic stress and method of extraction & preparation thereof, 2022 Applicant: M/s Pushpa J Shah.
- WO2022064524A1: Shah, N.J.; Patel, F.Y., Carrabiitol formulation to maintain osmotic balance in plants against abiotic stress and method of extraction & preparation thereof’, 2022 Applicant: M/s Pushpa J Shah.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Araújo, S.O.; Peres, R.S.; Barata, J.; Lidon, F.; Ramalho, J.C. Characterising the agriculture 4.0 landscape—Emerging trends, challenges and opportunities. Agronomy 2021, 11, 667. [Google Scholar] [CrossRef]
- Khalid, M.F.; Hussain, S.; Ahmad, S.; Ejaz, S.; Zakir, I.; Ali, M.A. Impacts of abiotic stresses on growth and development of plants. In Plant Tolerance to Environmental Stress; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–8. [Google Scholar]
- Khalid, M.F.; Huda, S.; Yong, M.; Li, L.; Li, L.; Chen, Z.H.; Ahmed, T. Alleviation of drought and salt stress in vegetables: Crop responses and mitigation strategies. Plant Growth Regul. 2022, 99, 177–194. [Google Scholar] [CrossRef]
- Bahmani, K.; Noori, S.A.S.; Darbandi, A.I.; Akbari, A. Molecular mechanisms of plant salinity tolerance: A review. Aust. J. Crop Sci. 2015, 9, 321–336. [Google Scholar]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Modi, P.; Dave, A.; Vijapura, A.; Patel, D.; Patel, M. Effect of abiotic stress on crops. In Sustainable Crop Production; Intechopen: Rijeka, Croatia, 2020; Volume 3. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 2019, 9, 285. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Gerszberg, A.; Hnatuszko-Konka, K. Tomato tolerance to abiotic stress: A review of most often engineered target sequences. Plant Growth Regul. 2017, 83, 175–198. [Google Scholar] [CrossRef]
- Suprasanna, P.; Nikalje, G.C.; Rai, A.N. Osmolyte accumulation and implications in plant abiotic stress tolerance. Osmolytes and plants acclimation to changing environment. In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies; Springer: New Delhi, India, 2016; pp. 1–12. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Deolu-Ajayi, A.O.; van der Meer, I.M.; Van der Werf, A.; Karlova, R. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. Plant Cell Environ. 2022, 45, 2537–2553. [Google Scholar] [CrossRef]
- Rai, N.; Rai, S.P.; Sarma, B.K. Prospects for abiotic stress tolerance in crops utilizing phyto-and bio-stimulants. Front. Sustain. Food Syst. 2021, 455, 754853. [Google Scholar] [CrossRef]
- Patel, F.Y.; Patel, A.; Shah, N.J. Osmo-priming with a Novel Actives Carrabiitol® Alleviates Abiotic Stresses in Sorghum and Fenugreek: Effect on Seed Germination and Seedling Growth. Agric. Sci. Dig. 2023, 43, 741–750. [Google Scholar] [CrossRef]
- Shah, N.J.; Patel, F.Y. Carrabiitol Formulation and Method of Extraction & Preparation Thereof. WO2022064524A1, 31 March 2022. [Google Scholar]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Kang, H.M.; Saltveit, M.E. Antioxidant enzymes and DPPH-radical scavenging activity in chilled and heat-shocked rice (Oryza sativa L.) seedlings radicles. J. Agric. Food Chem. 2002, 50, 513–518. [Google Scholar] [CrossRef] [PubMed]
- de Cortes Sánchez-Mata, M.; Cámara-Hurtado, M.; Díez-Marqués, C. Identification and quantification of soluble sugars in green beans by HPLC. Eur. Food Res. Technol. 2002, 214, 254–258. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Eziz, A.; Yan, Z.; Tian, D.; Han, W.; Tang, Z.; Fang, J. Drought effect on plant biomass allocation: A meta-analysis. Ecol. Evol. 2017, 7, 11002–11010. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.K.; Scoffoni, C.; Ardy, R.; Zhang, Y.; Sun, S.; Cao, K.; Sack, L. Rapid determination of comparative drought tolerance traits: Using an osmometer to predict turgor loss point. Methods Ecol. Evol. 2012, 3, 880–888. [Google Scholar] [CrossRef]
- Jongdee, B.; Fukai, S.; Cooper, M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res. 2002, 76, 153–163. [Google Scholar] [CrossRef]
- Long, S.P.; ZHU, X.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, X.; Chen, B.; Zhang, M.; Ma, J. Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.). ACS Omega 2020, 5, 4242–4249. [Google Scholar] [CrossRef] [PubMed]
- Rathinasabapathi, B. Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Ann. Bot. 2000, 86, 709–716. [Google Scholar] [CrossRef]
- Rolletschek, H.; Weber, H.; Borisjuk, L. Energy status and its control on embryogenesis of legumes. Embryo photosynthesis contributes to oxygen supply and is coupled to biosynthetic fluxes. Plant Physiol. 2003, 132, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Weber, H.; Heim, U.; Golombek, S.; Borisjuk, L.; Wobus, U. Assimilate uptake and the regulation of seed development. Seed Sci. Res. 1998, 8, 331–346. [Google Scholar] [CrossRef]
- Yaseen, M.; Ahmad, T.; Sablok, G.; Standardi, A.; Hafiz, I.A. Role of carbon sources for in vitro plant growth and development. Mol. Biol. Rep. 2013, 40, 2837–2849. [Google Scholar] [CrossRef] [PubMed]
- Neill, S.; Desikan, R.; Hancock, J. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 2002, 5, 388–395. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
Treatment | Flowering Time (Days) | Plant Dry Weight (g) | ||
---|---|---|---|---|
Positive Control | Flooding | Salinity | ||
T1 | 29.50 | 49.15 a | 29.03 a nc | 36.44 a nc |
T2 | 29.75 a | 56.07 ab | 42.40 b | 40.98 ab |
T3 | 28.25 a | 59.47 ab | 41.90 b | 38.91 a |
T4 | 28.00 | 62.08 ab | 47.95 bc | 46.23 ab |
T5 | 28.25 a | 56.58 ab | 50.68 bc | 38.15 a |
T6 | 27.50 a | 58.83 ab | 48.18 bc | 39.75 ab |
T7 | 27.38 a | 65.17 b | 55.58 c | 50.35 b |
SEM | 0.35 | 1.92 | 3.22 | 1.92 |
F-value | 0.34 | 1.13 | 5.79 | 1.78 |
LSD (p = 0.05) | NS | 14.07 | 10.40 | 10.94 |
Treatment | Flowering Time (Days) | Plant Dry Weight (g) | ||
---|---|---|---|---|
Positive Control | High Temperature | Drought | ||
T1 | 28.25 a | 42.89 a nc | 29.86 a nc | 23.66 a nc |
T2 | 29.25 a | 63.25 ab | 33.62 a | 40.18 b |
T3 | 29.25 a | 62.59 ab | 30.55 a | 36.68 b |
T4 | 28.75 a | 56.08 ab | 32.91 a | 46.68 c |
T5 | 29.25 a | 69.81 b | 35.61 a | 40.33 b |
T6 | 27.75 a | 62.15 ab | 31.09 a | 48.08 c |
T7 | 27.5 a | 75.61 b | 36.64 a | 47.24 c |
SEM | 0.28 | 3.93 | 0.98 | 3.23 |
F-value | 0.56 | 2.20 | 1.08 | 18.37 |
LSD (p = 0.05) | NS | 20.62 | NS | 5.87 |
Leaf Water Potential (-MPa) | Photosynthesis Rate (μmol/m2/s) | Stomatal Conductance (mmol/m2/s) | Transpiration Rate (mmol/m2/s) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Positive Control | Flooding | Salinity | Positive Control | Flooding | Salinity | Positive Control | Flooding | Salinity | Positive Control | Flooding | Salinity |
T1 | 0.83 a | 1.15 a nc | 1.28 anc | 15.02 ab | 8.04 a nc | 9.53 ab nc | 0.15 a | 0.07 a nc | 0.05 anc | 3.97 a | 2.05 e nc | 2.01 anc |
T2 | 0.80 a | 1.01 b | 1.10 bc | 13.49 a | 8.28 ab | 8.99 ab | 0.12 a | 0.08 ab | 0.08 b | 4.17 a | 3.21 a | 2.88 b |
T3 | 0.78 ab | 1.03 b | 1.16 b | 17.59 b | 7.92 a | 8.83 b | 0.13 a | 0.10 c | 0.08 b | 5.00 b | 3.47 ab | 2.88 b |
T4 | 0.77 ab | 1.01 b | 1.04 c | 16.23 ab | 9.03 ab | 10.41 ab | 0.14 a | 0.07 a | 0.06 ac | 5.82 c | 4.01 bc | 3.25 b |
T5 | 0.82 a | 1.09 c | 1.16 b | 14.65 ab | 9.24 ab | 9.10 ab | 0.12 a | 0.09 bc | 0.07 bc | 4.31 a | 3.55 abc | 3.10 b |
T6 | 0.78 ab | 1.02 b | 1.14 bd | 13.90 a | 9.90 b | 11.15 a | 0.15 a | 0.09 bc | 0.06 ac | 5.64 cd | 4.16 cd | 2.85 b |
T7 | 0.73 b | 1.00 b | 1.07 cd | 14.40 ab | 8.73 ab | 9.99 ab | 0.14 a | 0.10 c | 0.08 b | 5.27 bd | 4.69 d | 3.24 b |
SEM | 0.01 | 0.02 | 0.03 | 0.54 | 0.27 | 0.32 | 0.00 | 0.00 | 0.00 | 0.28 | 0.32 | 0.16 |
F-value | 2.00 | 11.71 | 8.31 | 1.50 | 1.56 | 1.23 | 1.84 | 3.88 | 3.18 | 17.01 | 15.01 | 5.24 |
LSD (p = 0.05) | 0.07 | 0.05 | 0.08 | 3.42 | 1.68 | 2.26 | NS | 0.01 | 0.01 | 0.53 | 0.64 | 0.54 |
Physiological Analysis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaf Water Potential (-MPa) | Photosynthesis Rate (μmol/m2/s) | Stomatal Conductance (mmol/m2/s) | Transpiration Rate (mmol/m2/s) | |||||||||
Treatment | Positive Control | High Temperature | Drought | Positive Control | High Temperature | Drought | Positive Control | High Temperature | Drought | Positive Control | High Temperature | Drought |
T1 | 0.72 a | 0.90 a nc | 0.87 a nc | 12.04 ac | 7.17 ab nc | 8.70 ac nc | 0.14 a | 0.07 a nc | 0.10 abc nc | 2.86 a | 1.84 a nc | 1.57 a nc |
T2 | 0.68 abc | 0.83 b | 0.82 b | 13.26 ab | 6.98 a | 7.95 ab | 0.16 ab | 0.09 ab | 0.11 abc | 3.40 abc | 1.80 a | 2.32 b |
T3 | 0.67 bc | 0.80 bc | 0.80 bc | 12.26 ac | 9.01 d | 7.66 b | 0.18 ab | 0.08 ab | 0.09 ac | 3.62 bc | 2.40 bd | 1.98 ab |
T4 | 0.69 ab | 0.77 c | 0.81 bc | 11.33 c | 6.40 a | 8.46 abc | 0.20 ab | 0.10 b | 0.08 a | 3.11 ab | 2.04 abd | 2.21 b |
T5 | 0.71 ab | 0.78 bc | 0.80 bc | 11.21 c | 8.02 bc | 8.16 abc | 0.19 ab | 0.09 ab | 0.12 bc | 4.01 c | 2.89 c | 2.34 b |
T6 | 0.67 bc | 0.75 c | 0.77 c | 14.72 bd | 7.98 bc | 9.77 d | 0.17 ab | 0.10 b | 0.11 abc | 3.70 bc | 2.61 cd | 2.88 c |
T7 | 0.64 c | 0.75 c | 0.78 bc | 15.02 d | 8.86 cd | 8.98 cd | 0.22 b | 0.10 b | 0.13 b | 3.89 bc | 3.03 c | 3.01 c |
SEM | 0.01 | 0.02 | 0.01 | 0.59 | 0.37 | 0.27 | 0.01 | 0.00 | 0.01 | 0.16 | 0.19 | 0.19 |
F-value | 3.82 | 9.22 | 5.27 | 7.96 | 9.69 | 4.63 | 1.81 | 2.79 | 4.16 | 3.71 | 10.41 | 8.23 |
LSD (p = 0.05) | 0.04 | 0.05 | 0.04 | 1.62 | 0.92 | 0.97 | 0.06 | 0.02 | 0.03 | 0.64 | 0.45 | 0.51 |
Biochemical Analysis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chlorophyll Content (mg/g FW) | Carotenoid Content (mg/g FW) | Total Antioxidant Activity Potential (DPPH, mg/100 g) | Glucose Content (mg/g FW) | |||||||||
Treatment | Positive Control | Flooding | Salinity | Positive Control | Flooding | Salinity | Positive Control | Flooding | Salinity | Positive Control | Flooding | Salinity |
T1 | 3.26 a | 2.27 a nc | 2.05 e nc | 2.32 a | 1.35 a nc | 1.79 ae nc | 121.59 a | 54.13 a nc | 71.28 a nc | 6.77 a | 3.96 a nc | 3.21 a nc |
T2 | 3.61 a | 2.53 ac | 2.84 ab | 1.81 b | 1.09 b | 1.41 b | 94.27 b | 44.64 b | 46.31 b | 8.79 b | 5.18 bd | 2.99 b |
T3 | 4.18 b | 3.56 b | 3.24 bcd | 2.17 a | 1.41 a | 1.59 bd | 75.52 c | 39.99 c | 49.92 c | 8.24 b | 5.32 b | 3.84 c |
T4 | 4.65 b | 3.72 b | 3.31 cd | 2.67 cd | 1.71 c | 2.01 c | 124.99 a | 59.35 d | 69.85 a | 10.62 c | 5.61 c | 4.21 d |
T5 | 4.27 b | 3.40 b | 3.05 ac | 2.72 c | 1.63 c | 1.97 ac | 82.31 d | 42.09 bc | 44.64 bd | 9.27 b | 4.91 d | 3.82 c |
T6 | 3.52 a | 2.92 c | 2.71 a | 2.40 ad | 1.45 a | 1.76 de | 62.85 e | 39.60 c | 41.78 d | 10.49 c | 5.86 c | 5.02 e |
T7 | 4.29 b | 3.41 b | 3.57 d | 2.67 cd | 1.76 c | 1.98 ac | 86.24 d | 55.53 ad | 52.00 e | 8.28 b | 6.21 e | 3.98 f |
SEM | 0.19 | 0.21 | 0.19 | 0.13 | 0.09 | 0.09 | 8.75 | 3.10 | 4.54 | 0.51 | 0.28 | 0.25 |
F-value | 7.34 | 13.88 | 11.02 | 11.63 | 15.77 | 13.36 | 119.88 | 37.40 | 162.46 | 13.86 | 67.53 | 281.57 |
LSD (p = 0.05) | 0.55 | 0.43 | 0.44 | 0.29 | 0.18 | 0.19 | 6.41 | 4.07 | 2.86 | 1.10 | 0.27 | 0.12 |
Biochemical Analysis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chlorophyll Content (mg/g FW) | Carotenoid Content (mg/g FW) | Total Antioxidant Activity Potential (DPPH, mg/100 g) | Glucose Content (mg/g FW) | |||||||||
Treatment | Positive Control | High Temperature | Drought | Positive Control | High Temperature | Drought | Positive Control | High Temperature | Drought | Positive Control | High Temperature | Drought |
T1 | 4.50 a | 2.96 a nc | 3.32 ab nc | 3.54 a | 1.78 a nc | 2.35 a nc | 93.02 a | 41.32 ad nc | 37.85 a nc | 5.48 a | 3.56 a nc | 3.21 a nc |
T2 | 3.85 b | 3.32 ab | 3.51 b | 3.55 a | 1.80 ab | 2.41 a | 57.85 b | 38.39 a | 36.96 a | 7.17 bc | 4.36 b | 3.83 b |
T3 | 4.65 ac | 3.75 cd | 3.18 ab | 3.02 bd | 2.12 b | 2.73 bc | 77.67 ce | 38.92 a | 40.35 a | 7.56 bcd | 4.79 c | 4.72 c |
T4 | 3.81 b | 3.40 bd | 3.05 a | 3.41 ae | 1.76 a | 2.79 bc | 63.56 bd | 57.85 b | 46.42 b | 6.75 b | 4.12 d | 4.22 d |
T5 | 4.76 ac | 3.96 c | 3.56 b | 3.37 ae | 2.02 ab | 2.48 ac | 69.81 cd | 44.46 d | 37.85 a | 8.12 cd | 4.42 b | 5.32 e |
T6 | 4.36 a | 3.80 cd | 3.21 ab | 2.76 bc | 1.80 ab | 2.85 b | 87.49 ae | 54.46 b | 51.32 c | 7.89 cd | 5.02 e | 4.75 c |
T7 | 5.02 c | 4.01 c | 3.45 ab | 3.19 de | 1.91 a | 2.79 bc | 76.96 ce | 49.74 c | 57.63 d | 8.39 d | 5.21 e | 5.21 e |
SEM | 0.17 | 0.15 | 0.07 | 0.11 | 0.05 | 0.08 | 4.74 | 2.92 | 3.02 | 0.37 | 0.21 | 0.29 |
F-value | 8.01 | 7.11 | 1.94 | 9.20 | 1.68 | 4.15 | 12.25 | 29.15 | 32.99 | 7.49 | 61.25 | 80.11 |
LSD (p = 0.05) | 0.47 | 0.42 | 0.40 | 0.29 | 0.32 | 0.31 | 10.86 | 4.33 | 4.22 | 1.10 | 0.22 | 0.26 |
Biochemical Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sucrose Content (mg/g FW) | MDA Content (µg/g FW) | Proline (mg/100 g FW) | |||||||
Treatment | Positive Control | Flooding | Salinity | Positive Control | Flooding | Salinity | Positive Control | Flooding | Salinity |
T1 | 2.39 a | 1.96 a nc | 1.55 a nc | 0.58 a | 1.13 a nc | 0.99 a nc | 2.29 a | 4.14 a nc | 6.53 a nc |
T2 | 3.15 bd | 2.45 ab | 1.66 a | 0.44 b | 0.86 b | 0.82 ac | 3.46 b | 7.36 b | 8.15 b |
T3 | 2.68 ad | 2.49 ab | 2.18 b | 0.43 be | 0.79 bd | 0.73 bc | 4.87 c | 8.52 c | 10.82 cf |
T4 | 3.92 c | 2.57 b | 2.63 c | 0.36 c | 0.61 c | 0.60 b | 3.64 d | 8.06 d | 8.91 de |
T5 | 2.54 a | 2.15 ab | 1.86 ab | 0.38 d | 0.72 bc | 0.72 bc | 3.76 e | 8.62 e | 9.06 e |
T6 | 3.54 bc | 2.64 b | 2.07 b | 0.42 ef | 0.79 bd | 0.68 bc | 5.66 f | 10.88 f | 10.50 f |
T7 | 4.01 c | 2.55 b | 2.94 c | 0.41 f | 0.66 cd | 0.70 bc | 4.35 g | 8.91 g | 9.91 g |
SEM | 0.25 | 0.09 | 0.19 | 0.03 | 0.06 | 0.05 | 0.41 | 0.77 | 0.56 |
F-value | 12.26 | 1.72 | 19.33 | 3.07 | 10.80 | 3.51 | 78.63 | 213.69 | 128.85 |
LSD (p = 0.05) | 0.58 | 0.58 | 0.35 | 0.01 | 0.16 | 0.20 | 0.03 | 0.42 | 0.40 |
Biochemical Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sucrose Content (mg/g FW) | MDA Content (µg/g FW) | Proline (mg/100 g FW) | |||||||
Treatment | Positive Control | High Temperature | Drought | Positive Control | High Temperature | Drought | Positive Control | High Temperature | Drought |
T1 | 2.97 a | 1.89 a nc | 1.56 a nc | 0.45 ab | 0.86 a nc | 0.76 a nc | 4.13 a | 8.85 a nc | 9.31 a nc |
T2 | 3.43 a | 2.17 ab | 1.76 ac | 0.52 ab | 0.79 ab | 0.62 abc | 4.80 b | 9.74 b | 11.15 b |
T3 | 3.35 a | 2.33 ab | 1.88 ac | 0.48 ab | 0.66 ab | 0.64 ab | 4.08 c | 10.83 cd | 12.68 c |
T4 | 4.25 b | 2.28 ab | 2.39 b | 0.53 a | 0.73 ab | 0.49 bc | 3.54 d | 11.61 d | 13.63 d |
T5 | 4.36 b | 2.18 ab | 2.47 b | 0.42 ab | 0.61 ab | 0.59 abc | 3.24 e | 9.63 ab | 14.22 d |
T6 | 3.58 ac | 2.63 b | 2.16 bc | 0.39 ab | 0.57 b | 0.48 bc | 5.68 f | 12.88 e | 12.72 c |
T7 | 4.23 bc | 2.41 b | 2.62 b | 0.36 b | 0.58 b | 0.45 c | 5.81 g | 10.79 c | 13.75 d |
SEM | 0.20 | 0.09 | 0.15 | 0.02 | 0.04 | 0.04 | 0.38 | 0.51 | 0.65 |
F-value | 6.20 | 2.09 | 6.71 | 1.51 | 1.46 | 3.89 | 38.84 | 26.98 | 51.13 |
LSD (p = 0.05) | 0.66 | 0.48 | 0.47 | 0.16 | 0.27 | 0.17 | 0.04 | 0.79 | 0.73 |
Flooding | Salinity | High Temperature | Drought | |||||
---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
Eigenvalues | 7.53 | 1.84 | 6.78 | 2.58 | 7.15 | 2.87 | 7.39 | 2.20 |
Variability (%) | 62.76 | 15.35 | 56.54 | 21.56 | 59.61 | 23.99 | 61.59 | 18.38 |
Cumulative (%) | 78.10 | 78.11 | 83.60 | 79.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, F.Y.; Upreti, K.K.; Laxman, R.H.; Shah, N.J. Carrabiitol®, a Novel Oligosaccharide Polyol Composition, Mitigates the Impact of Flooding, Drought, Salinity, and High Temperature in Tomato. Biology 2024, 13, 356. https://doi.org/10.3390/biology13050356
Patel FY, Upreti KK, Laxman RH, Shah NJ. Carrabiitol®, a Novel Oligosaccharide Polyol Composition, Mitigates the Impact of Flooding, Drought, Salinity, and High Temperature in Tomato. Biology. 2024; 13(5):356. https://doi.org/10.3390/biology13050356
Chicago/Turabian StylePatel, Femida Yunus, Kaushal Kishore Upreti, Ramanna Hunashikatti Laxman, and Neil Jaykumar Shah. 2024. "Carrabiitol®, a Novel Oligosaccharide Polyol Composition, Mitigates the Impact of Flooding, Drought, Salinity, and High Temperature in Tomato" Biology 13, no. 5: 356. https://doi.org/10.3390/biology13050356
APA StylePatel, F. Y., Upreti, K. K., Laxman, R. H., & Shah, N. J. (2024). Carrabiitol®, a Novel Oligosaccharide Polyol Composition, Mitigates the Impact of Flooding, Drought, Salinity, and High Temperature in Tomato. Biology, 13(5), 356. https://doi.org/10.3390/biology13050356