Enhancement of Vascularization and Ovarian Follicle Survival Using Stem Cells in Cryopreserved Ovarian Tissue Transplantation—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Search Strategy
2.2. Eligibility Criteria
2.3. Screening Process, Critical Appraisal and Data Collection Process
3. Results
3.1. Search Results
3.2. Experimental Design of Included Studies
3.3. Histological Evaluation of Transplanted Ovarian Tissue
3.4. Immunohistochemistry
3.5. TUNEL Staining
3.6. RT-PCR and Western Blot
3.7. Hormonal Status
Study | Type of Study | Origin of Ovarian Tissue Grafts | Age of Human Donors | Method of Cryopreservation | Ovarian Tissue Fragment Size | Transplantation Site | Experimental Groups | Type of Stem Cells | The Acquisition of SCs |
---|---|---|---|---|---|---|---|---|---|
Jia et al., 2017 [14] | in vitro | Human | 29–37 | vitrification | 2 × 2 × 1–2 mm | in vitro serum-free culture medium | 1. monoculture of OT 2. OT with hUC-MSCs 3. OT with SF cm | hUC-MSCs (before 6 passages) | 3 human donors |
Hosseini et al., 2020 [15] | in vitro | Human | 18–42 | vitrification | 5 × 10 × 1 mm | in vitro serum-free culture medium | 1. co-culture of OT and 3 × 105 hBM-MSCs 2. monoculture of OT | hBM-MSCs (passages 4 and 5) | commercially acquired |
Xu et al., 2022 [16] | in vitro | 8-week-old BALB/c mice | N/A | vitrification | N/A | in vitro 3D culture system medium | 1. OT without Matrigel® or hUC-MSCs 2. OT with Matrigel® 3. OT with hUC-MSCs 4. OT with Matrigel® and hUC-MSCs | hUC-MSCs | human donors |
Lamarão Damous et al., 2015 [17] | RCT in vivo | 12-week-old Wistar rats | N/A | slow-freezing | whole ovary | retroperitoneally without vascular anastomosis to Wistar rats | 1. OT with Gelfoam 2. OT with rASCs and Gelfoam | rASCs transgenic for green fluorescent protein (until passage 3) | 10-week-old Wistar rat |
Lamarão Damous et al., 2015 [19] | RCT in vivo | 12-week-old Wistar rats | N/A | slow-freezing | whole ovary | retroperitoneally without vascular anastomosis to Wistar rats | 1. OT with low glucose DMEM 2. OT with 5 × 104 ASCs | rASCs transgenic for green fluorescent protein (until passage 3) | 10-week-old Wistar rats |
Lamarão Damous et al., 2018 [18] | RCT in vivo | 12-week-old Wistar rats | N/A | slow-freezing | whole ovary | retroperitoneally without vascular anastomosis to Wistar rats | 1. monoculture of OT 2. OT with vehicle 3. OT with ASCs secretome | secretome of rACSs (until passage 3) | 10-week-old Wistar rats |
Xia et al., 2015 [21] | RCT in vivo | Human | 21 | slow-freezing | 2.5 × 2.5 × < 1 mm | subcutaneously to 33 8-week-old athymic BALB/c mice | 1. monoculture of OT 2. OT with Matrigel® 3. OT with Matrigel® and FGF2 4. OT with Matrigel® and hBM-MSCs | hBM-MSCs | five human donors (3 M, 2 F) |
Manavella et al., 2019 [22] | RCT in vivo | Human | 25–35 | N/A | 5 × 4 × 1 mm | intraperitoneally to 10 SCID mice | 1. grafting site prepared with ASC-loaded fibrin implant 14 days before OT grafting 2. OT alone | ASCs transgenic for green fluorescent protein | commercially acquired |
Cacciottola et al., 2021 [23] | RCT in vivo | Human | 20–35 | slow-freezing | 6 × 4 × 1.5 mm | back muscle region of nude mice aged 8–15 weeks | 1. grafting site prepared with 1.5 × 106 ASC-loaded fibrin implant 14 days before OT grafting 2. OT alone | hASCs (passages 5 and 6) | commercially acquired from female donors |
Cheng et al., 2022 [20] | RCT in vivo | Human | 20–31 | slow-freezing | round (diameter of 3 mm) | under the renal capsules of 64 8-week-old SCID mice | 1. OT without hUC-MSCs 2. OT with 2 × 106 normoxic-treated hUC-MSCs 3. OT with 2 × 106 hypoxic-treated hUC-MSCs 4. bilateral oophorectomy without OT | hypoxia-preconditioned hUC-MSCs (between passages 5 and 8) | 3 human donors |
3.8. Risk of Bias in Primary Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levine, J.M. Preserving Fertility in Children and Adolescents with Cancer. Children 2014, 1, 166–185. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Dolmans, M.-M. Fertility Preservation in Women. Nat. Rev. Endocrinol. 2013, 9, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Akahori, T.; Woods, D.C.; Tilly, J.L. Female Fertility Preservation through Stem Cell-Based Ovarian Tissue Reconstitution In Vitro and Ovarian Regeneration In Vivo. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119848007. [Google Scholar] [CrossRef] [PubMed]
- Doungkamchan, C.; Orwig, K.E. Recent Advances: Fertility Preservation and Fertility Restoration Options for Males and Females. Fac. Rev. 2021, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, M.-M.; Donnez, J. Fertility Preservation in Women for Medical and Social Reasons: Oocytes vs Ovarian Tissue. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 70, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Fraison, E.; Huberlant, S.; Labrune, E.; Cavalieri, M.; Montagut, M.; Brugnon, F.; Courbiere, B. Live Birth Rate after Female Fertility Preservation for Cancer or Haematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis of the Three Main Techniques; Embryo, Oocyte and Ovarian Tissue Cryopreservation. Hum. Reprod. 2023, 38, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Van Eyck, A.-S.; Bouzin, C.; Feron, O.; Romeu, L.; Van Langendonckt, A.; Donnez, J.; Dolmans, M.-M. Both Host and Graft Vessels Contribute to Revascularization of Xenografted Human Ovarian Tissue in a Murine Model. Fertil. Steril. 2010, 93, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.; Labied, S.; Fransolet, M.; Kirschvink, N.; Blacher, S.; Noel, A.; Foidart, J.-M.; Nisolle, M.; Munaut, C. Isoform 165 of Vascular Endothelial Growth Factor in Collagen Matrix Improves Ovine Cryopreserved Ovarian Tissue Revascularisation after Xenotransplantation in Mice. Reprod. Biol. Endocrinol. 2015, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Asadi, E.; Najafi, A.; Moeini, A.; Pirjani, R.; Hassanzadeh, G.; Mikaeili, S.; Salehi, E.; Adutwum, E.; Soleimani, M.; Khosravi, F.; et al. Ovarian Tissue Culture in the Presence of VEGF and Fetuin Stimulates Follicle Growth and Steroidogenesis. J. Endocrinol. 2017, 232, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Onions, V.J.; Mitchell, M.R.P.; Campbell, B.K.; Webb, R. Ovarian Tissue Viability Following Whole Ovine Ovary Cryopreservation: Assessing the Effects of Sphingosine-1-Phosphate Inclusion. Hum Reprod. 2008, 23, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Jahnukainen, K.; Ehmcke, J.; Söder, O.; Schlatt, S. Clinical Potential and Putative Risks of Fertility Preservation in Children Utilizing Gonadal Tissue or Germline Stem Cells. Pediatr. Res. 2006, 59, 40–47. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, S.; Lee, S. Role of Stem Cells in the Ovarian Tissue Cryopreservation and Transplantation for Fertility Preservation. Int. J. Mol. Sci. 2021, 22, 12482. [Google Scholar] [CrossRef] [PubMed]
- Manavella, D.D.; Cacciottola, L.; Desmet, C.M.; Jordan, B.F.; Donnez, J.; Amorim, C.A.; Dolmans, M.M. Adipose Tissue-Derived Stem Cells in a Fibrin Implant Enhance Neovascularization in a Peritoneal Grafting Site: A Potential Way to Improve Ovarian Tissue Transplantation. Hum. Reprod. 2018, 33, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Shi, X.; Xie, Y.; Xie, X.; Wang, Y.; Li, S. Human Umbilical Cord Stem Cell Conditioned Medium versus Serum-Free Culture Medium in the Treatment of Cryopreserved Human Ovarian Tissues in in-Vitro Culture: A Randomized Controlled Trial. Stem Cell Res. Ther. 2017, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Salehpour, S.; Ghaffari Novin, M.; Shams Mofarahe, Z.; Abdollahifar, M.-A.; Piryaei, A. Improvement of in Situ Follicular Activation and Early Development in Cryopreserved Human Ovarian Cortical Tissue by Co-Culturing with Mesenchymal Stem Cells. Cells Tissues Organs 2019, 208, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wu, C.; Zhu, X.; Wu, J.; Zhang, Z.; Wei, Z.; Cao, Y.; Zhou, P.; Wang, J. UC-MSCs Promote Frozen-Thawed Ovaries Angiogenesis via Activation of the Wnt/β-Catenin Pathway in Vitro Ovarian Culture System. Stem Cell Res. Ther. 2022, 13, 296. [Google Scholar] [CrossRef] [PubMed]
- Damous, L.L.; Nakamuta, J.S.; de Carvalho, A.E.T.S.; Soares, J.M.J.; de Jesus Simões, M.; Krieger, J.E.; Baracat, E.C. Adipose Tissue-Derived Stem Cell Therapy in Rat Cryopreserved Ovarian Grafts. Stem Cell Res. Ther. 2015, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Damous, L.L.; de Carvalho, A.E.T.S.; Nakamuta, J.S.; Shiroma, M.E.; Louzada, A.C.S.; Soares-Jr, J.M.; Krieger, J.E.; Baracat, E.C. Cell-Free Therapy with the Secretome of Adipose Tissue-Derived Stem Cells in Rats’ Frozen-Thawed Ovarian Grafts. Stem Cell Res. Ther. 2018, 9, 323. [Google Scholar] [CrossRef] [PubMed]
- Damous, L.L.; Nakamuta, J.S.; Saturi de Carvalho, A.E.T.; Carvalho, K.C.; Soares, J.M.J.; Simões, M.d.J.; Krieger, J.E.; Baracat, E.C. Scaffold-Based Delivery of Adipose Tissue-Derived Stem Cells in Rat Frozen-Thawed Ovarian Autografts: Preliminary Studies in a Rat Model. J. Assist. Reprod. Genet. 2015, 32, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Ruan, X.; Li, Y.; Du, J.; Jin, F.; Gu, M.; Zhou, Q.; Xu, X.; Yang, Y.; Wang, H.; et al. Effects of Hypoxia-Preconditioned HucMSCs on Neovascularization and Follicle Survival in Frozen/Thawed Human Ovarian Cortex Transplanted to Immunodeficient Mice. Stem Cell Res. Ther. 2022, 13, 474. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Yin, T.; Yan, J.; Yan, L.; Jin, C.; Lu, C.; Wang, T.; Zhu, X.; Zhi, X.; Wang, J.; et al. Mesenchymal Stem Cells Enhance Angiogenesis and Follicle Survival in Human Cryopreserved Ovarian Cortex Transplantation. Cell Transplant. 2015, 24, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Manavella, D.D.; Cacciottola, L.; Payen, V.L.; Amorim, C.A.; Donnez, J.; Dolmans, M.M. Adipose Tissue-Derived Stem Cells Boost Vascularization in Grafted Ovarian Tissue by Growth Factor Secretion and Differentiation into Endothelial Cell Lineages. Mol. Hum. Reprod. 2019, 25, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Cacciottola, L.; Nguyen, T.Y.T.; Amorim, C.A.; Donnez, J.; Dolmans, M.-M. Modulating Hypoxia and Oxidative Stress in Human Xenografts Using Adipose Tissue-Derived Stem Cells. F&S Sci. 2021, 2, 141–152. [Google Scholar]
- Siemerink, M.J.; Klaassen, I.; Vogels, I.M.C.; Griffioen, A.W.; Van Noorden, C.J.F.; Schlingemann, R.O. CD34 Marks Angiogenic Tip Cells in Human Vascular Endothelial Cell Cultures. Angiogenesis 2012, 15, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Pisacane, A.M.; Picciotto, F.; Risio, M. CD31 and CD34 Expression as Immunohistochemical Markers of Endothelial Transdifferentiation in Human Cutaneous Melanoma. Anal. Cell. Pathol. 2007, 29, 59–66. [Google Scholar] [CrossRef]
- Jelínek, M.; Balušíková, K.; Schmiedlová, M.; Němcová-Fürstová, V.; Šrámek, J.; Stančíková, J.; Zanardi, I.; Ojima, I.; Kovář, J. The Role of Individual Caspases in Cell Death Induction by Taxanes in Breast Cancer Cells. Cancer Cell. Int. 2015, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Strasser, A.; Cory, S.; Adams, J.M. Deciphering the Rules of Programmed Cell Death to Improve Therapy of Cancer and Other Diseases. EMBO J. 2011, 30, 3667–3683. [Google Scholar] [CrossRef] [PubMed]
- Fernezlian, S.M.; Baldavira, C.M.; de Souza, M.L.F.; Farhat, C.; de Vilhena, A.F.; Pereira, J.C.N.; de Campos, J.R.M.; Takagaki, T.; Balancin, M.L.; Ab’Saber, A.M.; et al. A Semi-Automated Microscopic Image Analysis Method for Scoring Ki-67 Nuclear Immunostaining. Braz. J. Med. Biol. Res. 2023, 56, e12922. [Google Scholar] [CrossRef] [PubMed]
- King, T.C. Cell Injury, Cellular Responses to Injury, and Cell Death. In Elsevier’s Integrated Pathology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–20. [Google Scholar]
- Cherubino, M.; Rubin, J.P.; Miljkovic, N.; Kelmendi-Doko, A.; Marra, K.G. Adipose-derived stem cells for wound healing applications. Ann. Plast. Surg. 2011, 66, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Ansboro, S.; Greiser, U.; Barry, F.; Murphy, M. Strategies for improved targeting of therapeutic cells: Implications for tissue repair. Eur. Cell. Mater. 2012, 23, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tee, B.C.; Kennedy, K.S.; Kennedy, P.M.; Kim, D.G.; Mallery, S.R.; Fields, H.W. Scaffold-based delivery of autologous mesenchymal stem cells for mandibular distraction osteogenesis: Preliminary studies in a porcine model. PLoS ONE 2013, 8, e74672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yao, L.; Yang, J.; Wang, Z.; Du, G. PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia (Review). Mol. Med. Rep. 2018, 18, 3547–3554. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chakraborty, A.A.; Liu, P.; Gan, W.; Zheng, X.; Inuzuka, H.; Wang, B.; Zhang, J.; Zhang, L.; Yuan, M.; et al. pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner. Science 2016, 353, 929–932. [Google Scholar] [CrossRef] [PubMed]
- Masciangelo, R.; Hossay, C.; Donnez, J.; Dolmans, M.M. Does the Akt pathway play a role in follicle activation after grafting of human ovarian tissue? Reprod. Biomed. Online 2019, 39, 196–198. [Google Scholar] [CrossRef]
- Gavish, Z.; Spector, I.; Peer, G.; Schlatt, S.; Wistuba, J.; Roness, H.; Meirow, D. Follicle activation is a significant and immediate cause of follicle loss after ovarian tissue transplantation. J. Assist. Reprod. Genet. 2018, 35, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Manavella, D.D.; Cacciottola, L.; Pommé, S.; Desmet, C.M.; Jordan, B.F.; Donnez, J.; Amorim, C.A.; Dolmans, M.M. Two-step transplantation with adipose tissue-derived stem cells increases follicle survival by enhancing vascularization in xenografted frozen-thawed human ovarian tissue. Hum Reprod. 2018, 33, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Dolmans, M.; Demylle, D.; Jadoul, P.; Pirard, C.; Squifflet, J.; Martinez-Madrid, B.; Van Langendonckt, A. Livebirth after Orthotopic Transplantation of Cryopreserved Ovarian Tissue. Lancet 2004, 364, 1405–1410. [Google Scholar] [CrossRef] [PubMed]
- Sarma, U.C.; Findlay, J.K.; Hutt, K.J. Oocytes from Stem Cells. Best Pract. Res. Clin. Obstet. Gynaecol. 2019, 55, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Eijkenboom, L.; Saedt, E.; Zietse, C.; Braat, D.; Beerendonk, C.; Peek, R. Strategies to Safely Use Cryopreserved Ovarian Tissue to Restore Fertility after Cancer: A Systematic Review. Reprod. Biomed. Online. 2022, 45, 763–778. [Google Scholar] [CrossRef] [PubMed]
- Practice Committee of the American Society for Reproductive Medicine. Fertility Preservation in Patients Undergoing Gonadotoxic Therapy or Gonadectomy: A Committee Opinion. Fertil. Steril. 2019, 112, 1022–1033. [Google Scholar] [CrossRef] [PubMed]
- Dadashzadeh, A.; Moghassemi, S.; Shavandi, A.; Amorim, C.A. A Review on Biomaterials for Ovarian Tissue Engineering. Acta Biomater. 2021, 135, 48–63. [Google Scholar] [CrossRef] [PubMed]
- Pennarossa, G.; Ghiringhelli, M.; Gandolfi, F.; Brevini, T.A.L. Whole-Ovary Decellularization Generates an Effective 3D Bioscaffold for Ovarian Bioengineering. J. Assist. Reprod. Genet. 2020, 37, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Masciangelo, R.; Hossay, C.; Chiti, M.C.; Manavella, D.D.; Amorim, C.A.; Donnez, J.; Dolmans, M.M. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue. J. Assist. Reprod. Genet. 2020, 37, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ozkavukcu, S.; Ku, S.-Y. Current and Future Perspectives for Improving Ovarian Tissue Cryopreservation and Transplantation Outcomes for Cancer Patients. Reprod. Sci. 2021, 28, 1746–1758. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, G.; Isachenko, V.; Kreienberg, R.; Sauer, H.; Todorov, P.; Tawadros, S.; Mallmann, P.; Nawroth, F.; Isachenko, E. Re-Vascularisation in Human Ovarian Tissue after Conventional Freezing or Vitrification and Xenotransplantation. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 149, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Fransolet, M.; Henry, L.; Labied, S.; Masereel, M.-C.; Blacher, S.; Noël, A.; Foidart, J.-M.; Nisolle, M.; Munaut, C. Influence of Mouse Strain on Ovarian Tissue Recovery after Engraftment with Angiogenic Factor. J. Ovarian. Res. 2015, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Man, L.; Park, L.; Bodine, R.; Ginsberg, M.; Zaninovic, N.; Man, O.A.; Schattman, G.; Rosenwaks, Z.; James, D. Engineered Endothelium Provides Angiogenic and Paracrine Stimulus to Grafted Human Ovarian Tissue. Sci. Rep. 2017, 7, 8203. [Google Scholar] [CrossRef] [PubMed]
- Kolusari, A.; Okyay, A.G.; Koçkaya, E.A. The Effect of Erythropoietin in Preventing Ischemia-Reperfusion Injury in Ovarian Tissue Transplantation. Reprod. Sci. 2018, 25, 406–413. [Google Scholar] [CrossRef]
- Man, L.; Park, L.; Bodine, R.; Ginsberg, M.; Zaninovic, N.; Schattman, G.; Schwartz, R.E.; Rosenwaks, Z.; James, D. Co-Transplantation of Human Ovarian Tissue with Engineered Endothelial Cells: A Cell-Based Strategy Combining Accelerated Perfusion with Direct Paracrine Delivery. J. Vis. Exp. 2018, 135, 57472. [Google Scholar]
- Labied, S.; Delforge, Y.; Munaut, C.; Blacher, S.; Colige, A.; Delcombel, R.; Henry, L.; Fransolet, M.; Jouan, C.; Perrier d’Hauterive, S.; et al. Isoform 111 of Vascular Endothelial Growth Factor (VEGF111) Improves Angiogenesis of Ovarian Tissue Xenotransplantation. Transplantation 2013, 95, 426–433. [Google Scholar] [CrossRef]
- Li, S.-H.; Hwu, Y.-M.; Lu, C.-H.; Chang, H.-H.; Hsieh, C.-E.; Lee, R.K.-K. VEGF and FGF2 Improve Revascularization, Survival, and Oocyte Quality of Cryopreserved, Subcutaneously-Transplanted Mouse Ovarian Tissues. Int. J. Mol. Sci. 2016, 17, 1237. [Google Scholar] [CrossRef] [PubMed]
- Olesen, H.Ø.; Pors, S.E.; Jensen, L.B.; Grønning, A.P.; Lemser, C.E.; Nguyen Heimbürger, M.T.H.; Mamsen, L.S.; Getreu, N.; Christensen, S.T.; Andersen, C.Y.; et al. N-Acetylcysteine Protects Ovarian Follicles from Ischemia-Reperfusion Injury in Xenotransplanted Human Ovarian Tissue. Hum. Reprod. 2021, 36, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.S.; Lee, J.; Youm, H.W.; Kim, S.K.; Lee, J.R.; Suh, C.S.; Kim, S.H. Effect of Treatment with Angiopoietin-2 and Vascular Endothelial Growth Factor on the Quality of Xenografted Bovine Ovarian Tissue in Mice. PLoS ONE 2017, 12, e0184546. [Google Scholar] [CrossRef] [PubMed]
- Des Rieux, A.; Ucakar, B.; Mupendwa, B.P.K.; Colau, D.; Feron, O.; Carmeliet, P.; Préat, V. 3D Systems Delivering VEGF to Promote Angiogenesis for Tissue Engineering. J. Control. Release 2011, 150, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Dath, C.; Dethy, A.; Van Langendonckt, A.; Van Eyck, A.S.; Amorim, C.A.; Luyckx, V.; Donnez, J.; Dolmans, M.M. Endothelial Cells Are Essential for Ovarian Stromal Tissue Restructuring after Xenotransplantation of Isolated Ovarian Stromal Cells. Hum. Reprod. 2011, 26, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, M.M.; Donnez, J.; Cacciottola, L. Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends. Mol. Med. 2021, 27, 777–791. [Google Scholar] [CrossRef]
- Gook, D.A.; Edgar, D.H.; Borg, J.; Archer, J.; Lutjen, P.J.; McBain, J.C. Oocyte maturation, follicle rupture and luteinization in human cryopreserved ovarian tissue following xenografting. Hum. Reprod. 2003, 18, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Oktem, O.; Urman, B. Understanding follicle growth in vivo. Hum. Reprod. 2010, 25, 2944–2954. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Kyoya, T.; Nakamura, Y.; Sato, E.; Tomiyama, T.; Kyono, K. Oxygen consumption rate of early pre-antral follicles from vitrified human ovarian cortical tissue. J. Reprod. Dev. 2014, 60, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Jakimiuk, A.J.; Grzybowski, W. Ovarian Tissue Preservation, Present and Clinical Perspectives. Gynecol. Endocrinol. 2007, 23, 87–93. [Google Scholar] [CrossRef]
- Gosden, R.G. Gonadal Tissue Cryopreservation and Transplantation. Reprod. Biomed. Online 2002, 4, 64–67. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaninović, L.; Bašković, M.; Ježek, D.; Habek, D.; Pogorelić, Z.; Katušić Bojanac, A.; Elveđi Gašparović, V.; Škrgatić, L. Enhancement of Vascularization and Ovarian Follicle Survival Using Stem Cells in Cryopreserved Ovarian Tissue Transplantation—A Systematic Review. Biology 2024, 13, 342. https://doi.org/10.3390/biology13050342
Zaninović L, Bašković M, Ježek D, Habek D, Pogorelić Z, Katušić Bojanac A, Elveđi Gašparović V, Škrgatić L. Enhancement of Vascularization and Ovarian Follicle Survival Using Stem Cells in Cryopreserved Ovarian Tissue Transplantation—A Systematic Review. Biology. 2024; 13(5):342. https://doi.org/10.3390/biology13050342
Chicago/Turabian StyleZaninović, Luca, Marko Bašković, Davor Ježek, Dubravko Habek, Zenon Pogorelić, Ana Katušić Bojanac, Vesna Elveđi Gašparović, and Lana Škrgatić. 2024. "Enhancement of Vascularization and Ovarian Follicle Survival Using Stem Cells in Cryopreserved Ovarian Tissue Transplantation—A Systematic Review" Biology 13, no. 5: 342. https://doi.org/10.3390/biology13050342
APA StyleZaninović, L., Bašković, M., Ježek, D., Habek, D., Pogorelić, Z., Katušić Bojanac, A., Elveđi Gašparović, V., & Škrgatić, L. (2024). Enhancement of Vascularization and Ovarian Follicle Survival Using Stem Cells in Cryopreserved Ovarian Tissue Transplantation—A Systematic Review. Biology, 13(5), 342. https://doi.org/10.3390/biology13050342