Applying a Random Encounter Model to Estimate the Asiatic Black Bear (Ursus thibetanus) Density from Camera Traps in the Hindu Raj Mountains, Pakistan
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
2.4. Hotspot Analysis
2.5. Exploratory Regression Analysis
3. Results
3.1. Bear Density
3.2. Hotspots of Bear Encounter Rates
3.3. Results of Exploratory Regression Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morin, D.J.; Boulanger, J.; Bischof, R.; Lee, D.C.; Ngoprasert, D.; Fuller, A.K.; McLellan, B.; Steinmetz, R.; Sharma, S.; Garshelis, D. Comparison of Methods for Estimating Density and Population Trends for Low-Density Asian Bears. Glob. Ecol. Conserv. 2022, 35, e02058. [Google Scholar] [CrossRef]
- Garshelis, D.; Steinmetz, R. Ursus Thibetanus. The IUCN Red List of Threatened Species 2020: E.T22824A166528664. 2016. Available online: https://www.iucnredlist.org/species/22824/166528664 (accessed on 15 October 2023).
- Sheikh, K.M. The Status and Conservation on Bears in Pakistan. In Understanding Asian Bears Secure Their Future; Japan Bear Network: Ibaraki, Japan, 2006; pp. 1–6. [Google Scholar]
- Molur, S. Status and Red List of Pakistan’s Mammals. In Proceedings of the Pakistan Mammal Conservation Assessment & Management Plan Workshop, Islamabad, Pakistan, 18–22 August 2003. [Google Scholar]
- Escobar, L.E.; Awan, M.N.; Qiao, H. Anthropogenic Disturbance and Habitat Loss for the Red-Listed Asiatic Black Bear (Ursus Thibetanus): Using Ecological Niche Modeling and Nighttime Light Satellite Imagery. Biol. Conserv. 2015, 191, 400–407. [Google Scholar] [CrossRef]
- Goursi, U.H.; Anwar, M.; Bosso, L.; Nawaz, M.A.; Kabir, M. Spatial distribution of the threatened Asiatic black bear in northern Pakistan. Ursus 2021, 2021, 1–5. [Google Scholar] [CrossRef]
- Galaverni, M.; Caniglia, R.; Fabbri, E.; Milanesi, P.; Randi, E. One, No One, or One Hundred Thousand: How Many Wolves Are There Currently in Italy? Mammal Res. 2016, 61, 13–24. [Google Scholar] [CrossRef]
- Lewis, J.S.; Farnsworth, M.L.; Burdett, C.L.; Theobald, D.M.; Gray, M.; Miller, R.S. Biotic and Abiotic Factors Predicting the Global Distribution and Population Density of an Invasive Large Mammal. Sci. Rep. 2017, 7, 44152. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Nawaz, M.A.; Salim, M.; Rehan, M.; Farhadinia, M.; Bosso, L.; Kabir, M. Patterns of Spatial Distribution, Diel Activity and Human-Bear Conflict of Ursus Thibetanus in the Hindu Kush Mountains, Pakistan. Glob. Ecol. Conserv. 2022, 37, e02145. [Google Scholar] [CrossRef]
- Broekhuis, F.; Cushman, S.A.; Elliot, N.B. Identification of Human–Carnivore Conflict Hotspots to Prioritize Mitigation Efforts. Ecol. Evol. 2017, 7, 10630–10639. [Google Scholar] [CrossRef] [PubMed]
- Rosell, C.; Llimona, F. Human–Wildlife Interactions. Anim. Biodivers. Conserv. 2012, 35, 219–220. [Google Scholar] [CrossRef]
- Santini, L.; Benítez-López, A.; Dormann, C.F.; Huijbregts, M.A.J. Population Density Estimates for Terrestrial Mammal Species. Glob. Ecol. Biogeogr. 2022, 31, 978–994. [Google Scholar] [CrossRef]
- Fidino, M.; Lehrer, E.W.; Kay, C.A.M.; Yarmey, N.T.; Murray, M.H.; Fake, K.; Adams, H.C.; Magle, S.B. Integrated Species Distribution Models Reveal Spatiotemporal Patterns of Human–Wildlife Conflict. Ecol. Appl. 2022, 32, e2647. [Google Scholar] [CrossRef]
- Williams, B.K.; Nichols, J.D.; Conroy, M.J. Analysis and Management of Animal Populations; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Nichols, J.; Williams, B. Monitoring for Conservation. Trends Ecol. Evol. 2006, 21, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Morellet, N.; Gaillard, J.; Hewison, A.J.M.; Ballon, P.; Boscardin, Y.; Duncan, P.; Klein, F.; Maillard, D. Indicators of Ecological Change: New Tools for Managing Populations of Large Herbivores. J. Appl. Ecol. 2007, 44, 634–643. [Google Scholar] [CrossRef]
- Vine, S.J.; Crowther, M.S.; Lapidge, S.J.; Dickman, C.R.; Mooney, N.; Piggott, M.P.; English, A.W. Comparison of Methods to Detect Rare and Cryptic Species: A Case Study Using the Red Fox (Vulpes vulpes). Wildl. Res. 2009, 36, 436. [Google Scholar] [CrossRef]
- O’Connell, A.F.; Nichols, J.D.; Karanth, K.U. (Eds.) Camera Traps in Animal Ecology; Springer: Tokyo, Japan, 2011; ISBN 978-4-431-99494-7. [Google Scholar]
- Noss, A.J.; Gardner, B.; Maffei, L.; Cuéllar, E.; Montaño, R.; Romero-Muñoz, A.; Sollman, R.; O’Connell, A.F. Comparison of Density Estimation Methods for Mammal Populations with Camera Traps in the K Aa- I Ya Del G Ran C Haco Landscape. Anim. Conserv. 2012, 15, 527–535. [Google Scholar] [CrossRef]
- Wearn, O.R.; Glover-Kapfer, P. Snap Happy: Camera Traps Are an Effective Sampling Tool When Compared with Alternative Methods. R. Soc. Open Sci. 2019, 6, 181748. [Google Scholar] [CrossRef]
- Efford, M.G.; Dawson, D.K.; Borchers, D.L. Population Density Estimated from Locations of Individuals on a Passive Detector Array. Ecology 2009, 90, 2676–2682. [Google Scholar] [CrossRef]
- Gopalaswamy, A.M.; Royle, J.A.; Delampady, M.; Nichols, J.D.; Karanth, K.U.; Macdonald, D.W. Density Estimation in Tiger Populations: Combining Information for Strong Inference. Ecology 2012, 93, 1741–1751. [Google Scholar] [CrossRef] [PubMed]
- Royle, J.A.; Chandler, R.B.; Gazenski, K.D.; Graves, T.A. Spatial Capture–Recapture Models for Jointly Estimating Population Density and Landscape Connectivity. Ecology 2013, 94, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.C.; Vaughan, I.P.; Liew, L.P.; Goossens, B. Using Natural Marks in a Spatially Explicit Capture-Recapture Framework to Estimate Preliminary Population Density of Cryptic Endangered Wild Cattle in Borneo. Glob. Ecol. Conserv. 2019, 20, e00748. [Google Scholar] [CrossRef]
- Gray, T.N.E.; Prum, S. Leopard Density in Post-conflict Landscape, Cambodia: Evidence from Spatially Explicit Capture–Recapture. J. Wildl. Manag. 2012, 76, 163–169. [Google Scholar] [CrossRef]
- Athreya, V.; Odden, M.; Linnell, J.D.C.; Krishnaswamy, J.; Karanth, U. Big Cats in Our Backyards: Persistence of Large Carnivores in a Human Dominated Landscape in India. PLoS ONE 2013, 8, e57872. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, R.; Tôrres, N.M.; Furtado, M.M.; De Almeida Jácomo, A.T.; Palomares, F.; Roques, S.; Silveira, L. Combining Camera-Trapping and Noninvasive Genetic Data in a Spatial Capture–Recapture Framework Improves Density Estimates for the Jaguar. Biol. Conserv. 2013, 167, 242–247. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Field, J.; Turvey, S.T.; Carbone, C. Estimating Animal Density Using Camera Traps without the Need for Individual Recognition. J. Appl. Ecol. 2008, 45, 1228–1236. [Google Scholar] [CrossRef]
- Palencia, P.; Barroso, P.; Vicente, J.; Hofmeester, T.R.; Ferreres, J.; Acevedo, P. Random Encounter Model Is a Reliable Method for Estimating Population Density of Multiple Species Using Camera Traps. Remote Sens. Ecol. Conserv. 2022, 8, 670–682. [Google Scholar] [CrossRef]
- Gilbert, N.A.; Clare, J.D.J.; Stenglein, J.L.; Zuckerberg, B. Abundance Estimation of Unmarked Animals Based on Camera-trap Data. Conserv. Biol. 2021, 35, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Palencia, P.; Fernández-López, J.; Vicente, J.; Acevedo, P. Innovations in Movement and Behavioural Ecology from Camera Traps: Day Range as Model Parameter. Methods Ecol. Evol. 2021, 12, 1201–1212. [Google Scholar] [CrossRef]
- Zero, V.H.; Sundaresan, S.R.; O’Brien, T.G.; Kinnaird, M.F. Monitoring an Endangered Savannah Ungulate, Grevy’s Zebra Equus Grevyi: Choosing a Method for Estimating Population Densities. Oryx 2013, 47, 410–419. [Google Scholar] [CrossRef]
- Cusack, J.J.; Swanson, A.; Coulson, T.; Packer, C.; Carbone, C.; Dickman, A.J.; Kosmala, M.; Lintott, C.; Rowcliffe, J.M. Applying a Random Encounter Model to Estimate Lion Density from Camera Traps in Serengeti National Park, Tanzania: Density Estimation of Serengeti Lions. J. Wildl. Manag. 2015, 79, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Palencia, P.; Rowcliffe, J.M.; Vicente, J.; Acevedo, P. Assessing the Camera Trap Methodologies Used to Estimate Density of Unmarked Populations. J. Appl. Ecol. 2021, 58, 1583–1592. [Google Scholar] [CrossRef]
- Hildebrand, P.R.; Searle, M.P.; Khan, Z.; Van Heijst, H.J. Geological Evolution of the Hindu Kush, NW Frontier Pakistan: Active Margin to Continent-Continent Collision Zone. Geol. Soc. Lond. Spec. Publ. 2000, 170, 277–293. [Google Scholar] [CrossRef]
- Rahman, G.; Rahman, A.; Anwar, M.M.; Dawood, M.; Miandad, M. Spatio-Temporal Analysis of Climatic Variability, Trend Detection, and Drought Assessment in Khyber Pakhtunkhwa, Pakistan. Arab. J. Geosci. 2022, 15, 81. [Google Scholar] [CrossRef]
- Baqi Kakakhel, S.F.; Ullah, A.; Rashid, A. Population and Distribution of Flare-Horned Markhor (Capra Falconeri Falconeri Wagner 1839) in District Swat, Khyber Pakhtunkhwa, Pakistan. Pak. J. Zool. 2017, 49, 747–750. [Google Scholar] [CrossRef]
- ARC-GIS Desktop, E.A. Release 10.8. 1; Environmental Systems Research Institute: Redlands, CA, USA, 2020. [Google Scholar]
- Jayasekara, D.; Mahaulpatha, D.; Miththapala, S. Population Density Estimation of Meso-Mammal Carnivores Using Camera Traps without the Individual Recognition in Maduru Oya National Park, Sri Lanka. 2021. Available online: http://dr.lib.sjp.ac.lk/handle/123456789/10183 (accessed on 15 October 2023).
- Linkie, M.; Ridout, M.S. Assessing Tiger–Prey Interactions in Sumatran Rainforests. J. Zool. 2011, 284, 224–229. [Google Scholar] [CrossRef]
- Rowcliffe, J.M.; Kays, R.; Kranstauber, B.; Carbone, C.; Jansen, P.A. Quantifying Levels of Animal Activity Using Camera Trap Data. Methods Ecol. Evol. 2014, 5, 1170–1179. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Rowcliffe, M. Package “Activity”. Animal Activity Statistics 2023. Available online: https://cran.irsn.fr/web/packages/activity/activity.pdf (accessed on 15 October 2023).
- Rowcliffe, J.M.; Jansen, P.A.; Kays, R.; Kranstauber, B.; Carbone, C. Wildlife Speed Cameras: Measuring Animal Travel Speed and Day Range Using Camera Traps. Remote Sens. Ecol. Conserv. 2016, 2, 84–94. [Google Scholar] [CrossRef]
- Rasch, D. Seber, G.A.F.: The Estimation of Animal Abundance and Related Parameters. Griffin, London 1973, 1. Aufl. XII, 506 S., 34 Abb., 116 Tab., £ 12,—. Biom. Z. 1974, 16, 80. [Google Scholar] [CrossRef]
- Powell, L.A. Approximating Variance of Demographic Parameters Using the Delta Method: A Reference for Avian Biologists. Condor 2007, 109, 949–954. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: London, UK, 2018. [Google Scholar]
- De Smith, M.J.; Goodchild, M.F.; Longley, P. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools; Troubador Publishing Ltd.: Market Harborough, UK, 2007. [Google Scholar]
- Ruda, A.; Kolejka, J.; Silwal, T. GIS-Assisted Prediction and Risk Zonation of Wildlife Attacks in the Chitwan National Park in Nepal. ISPRS Int. J. Geo-Inf. 2018, 7, 369. [Google Scholar] [CrossRef]
- Kalinic, M.; Krisp, J.M. Kernel Density Estimation (KDE) vs. Hot-Spot Analysis–Detecting Criminal Hot Spots in the City of San Francisco. 2018. Available online: https://www.researchgate.net/profile/Maja-Kalinic-2/publication/325825793_Kernel_Density_Estimation_KDE_vs_Hot-Spot_Analysis_-_Detecting_Criminal_Hot_Spots_in_the_City_of_San_Francisco/links/5b27de230f7e9b332a31af55/Kernel-Density-Estimation-KDE-vs-Hot-Spot-Analysis-Detecting-Criminal-Hot-Spots-in-the-City-of-San-Francisco.pdf (accessed on 15 October 2023).
- Fenglin, W.; Ahmad, I.; Zelenakova, M.; Fenta, A.; Dar, M.A.; Teka, A.H.; Belew, A.Z.; Damtie, M.; Berhan, M.; Shafi, S.N. Exploratory Regression Modeling for Flood Susceptibility Mapping in the GIS Environment. Sci. Rep. 2023, 13, 247. [Google Scholar] [CrossRef]
- Mission NASA Shuttle Radar Topography. Shuttle Radar Topography Mission (SRTM) Global. Distrib. OpenTopography 2013, 10, G9445JDF. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2 and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Philippe, M.T.; Malengera, K.; Karume, K. Key Factors Driving Deforestation in North-Kivu Province, Eastern DR-Congo Using GIS and Remote Sensing. Am. J. Geogr. Inf. Syst. 2019, 8, 11–25. [Google Scholar]
- Faircloth, J. Exploratory Regression Analysis of Crime Trends in Richmond, Virginia; The University of Arizona: Tucson, AZ, USA, 2022. [Google Scholar]
- Miura, K.; Mori, T.; Ogawa, H.; Umano, S.; Kato, H.; Izumiyama, S.; Niizuma, Y. Density Estimations of the Asiatic Black Bear: Application of the Random Encounter Model. J. Nat. Hist. 2022, 56, 1123–1138. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Chatterjee, N.; Angrish, K.; Meena, D.; Sinha, B.C.; Habib, B. Population Estimation of Asiatic Black Bear in the Himalayan Region of India Using Camera Traps. Ursus 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Saberwal, V. Distribution and Movement Patterns of the Himalayan Black Bear (Selenarctos Thibetanus Cuvier) in Dachigam National Park. Ph.D. Thesis, Saurashtra University Rajkot, Gujarat, India, 1989. [Google Scholar]
- Servheen, C. Bears: Status Survey and Conservation Action Plan; IUCN: Gland, Switzerland, 1999; Volume 44. [Google Scholar]
- Sathyakumar, S.; Sharma, L.K.; Charoo, S.A. Ecology of Asiatic Black Bear in Dachigam National Park, Kashmir, India; Final Project Report; Wildlife Institute of India: Dehradun, India, 2013. [Google Scholar]
- Sunar, D.; Chakraborty, R.; Sharma, B.K.; Ghose, P.S.; Bhutia, P.; Pradhan, S. Status and Distribution of Asiatic Black Bear and the Status of Human-Bear Conflict at Senchal Wildlife Sanctuary. WWF Tech. Rep. 2012. Available online: https://www.researchgate.net/publication/273453558_Status_and_Distribution_of_Asiatic_Black_Bear_and_the_Status_of_Human-Bear_Conflict_at_Senchal_Wildlife_Sanctuary_Darjeeling_West_Bengal_India?channel=doi&linkId=5502b6f20cf2d60c0e644f1c&showFulltext=true (accessed on 15 October 2023).
- Ngoprasert, D.; Reed, D.H.; Steinmetz, R.; Gale, G.A. Density Estimation of Asian Bears Using Photographic Capture–Recapture Sampling Based on Chest Marks. Ursus 2012, 23, 117–133. [Google Scholar] [CrossRef]
- Mukesh; Sharma, L.K.; Charoo, S.A.; Sathyakumar, S. Conflict Bear Translocation: Investigating Population Genetics and Fate of Bear Translocation in Dachigam National Park, Jammu and Kashmir, India. PLoS ONE 2015, 10, e0132005. [Google Scholar] [CrossRef] [PubMed]
- Kadariya, R. Genetics, Ecology and Conservation of Himalayan Black Bears (Ursus Thibetanus Laniger) in Annapurna Conservation Area of Nepal. Ph.D. Dissertation, Hokkaido University, Sapporo, Japan, 2019. [Google Scholar]
- Aramilev, V.V. The Conservation Status of Asiatic Black Bears in the Russian Far East. In Understanding Asian Bears Secure Their Future; Japan Bear Network: Ibaraki, Japan, 2006; pp. 86–89. [Google Scholar]
- Popova, E.; Ahmed, A.; Stepanov, I.; Zlatanova, D.; Genov, P. Estimating Brown Bear Population Density with Camera Traps in Central Balkan Mountain, Bulgaria. Annu. L’Université Sofia “St Kliment Ohridski” Fac. Biol. 2018, 103, 145–151. [Google Scholar]
- Izumiyama, S.; Shiraishi, T. Seasonal Changes in Elevation and Habitat Use of the Asiatic Black Bear (Ursus Thibetanus) in the Northern Japan Alps. Mammal Study 2004, 29, 1–8. [Google Scholar] [CrossRef]
- Sayakumar, S.; CououRY, A. Distribution and Status of the Asiatic Black Bear Ursus Thibetanus in India. J. Bombay Nat. Hist. Soc. 2007, 104, 316–323. [Google Scholar]
- Hwang, M.-H.; Garshelis, D.L.; Wu, Y.-H.; Wang, Y. Home Ranges of Asiatic Black Bears in the Central Mountains of Taiwan: Gauging Whether a Reserve Is Big Enough. Ursus 2010, 21, 81–96. [Google Scholar] [CrossRef]
- Kozakai, C.; Yamazaki, K.; Nemoto, Y.; Nakajima, A.; Koike, S.; Abe, S.; Masaki, T.; Kaji, K. Effect of Mast Production on Home Range Use of Japanese Black Bears. J. Wildl. Manag. 2011, 75, 867–875. [Google Scholar] [CrossRef]
- Shabi-Ul-Hassan Kazmi, S.; Minhas, R.A.; Ahmad, B.; Awan, M.S.; Abbasi, S.; Ali, U.; Shakeel, U.; Dar, N.I. Crop Raiding by Himalayan Black Bear: A Major Cause of Human-Bear Conflict in Machiara National Park, Pakistan. JAPS J. Anim. Plant Sci. 2019, 29, 854. [Google Scholar]
- Takahata, C.; Nielsen, S.E.; Takii, A.; Izumiyama, S. Habitat Selection of a Large Carnivore along Human-Wildlife Boundaries in a Highly Modified Landscape. PLoS ONE 2014, 9, e86181. [Google Scholar] [CrossRef] [PubMed]
- Hellgren, E.C.; Onorato, D.P.; Skiles, J.R. Dynamics of a Black Bear Population within a Desert Metapopulation. Biol. Conserv. 2005, 122, 131–140. [Google Scholar] [CrossRef]
- Laufenberg, J.S.; Johnson, H.E.; Doherty, P.F.; Breck, S.W. Compounding Effects of Human Development and a Natural Food Shortage on a Black Bear Population along a Human Development-Wildland Interface. Biol. Conserv. 2018, 224, 188–198. [Google Scholar] [CrossRef]
- Arimoto, I.; Goto, Y.; Nagai, C.; Furubayashi, K. Autumn Food Habits and Home-Range Elevations of Japanese Black Bears in Relation to Hard Mast Production in the Beech Family in Toyama Prefecture. Mammal Study 2011, 36, 199–208. [Google Scholar] [CrossRef]
- Boudreau, M.R.; Gantchoff, M.G.; Conlee, L.; Anderson, C.; Bowersock, N.R.; Belant, J.L.; Iglay, R.B. A harvest framework for a recovering American black bear population. J. Wildl. Manag. 2024, 88, e22508. [Google Scholar] [CrossRef]
- Zahoor, B.; Liu, X.; Kumar, L.; Dai, Y.; Tripathy, B.R.; Songer, M. Projected Shifts in the Distribution Range of Asiatic Black Bear (Ursus thibetanus) in the Hindu Kush Himalaya Due to Climate Change. Ecol. Inform. 2021, 63, 101312. [Google Scholar] [CrossRef]
- Ali Nawaz, M. Status of the Brown Bear in Pakistan. Ursus 2007, 18, 89–100. [Google Scholar] [CrossRef]
- Kabir, M.; Hameed, S.; Ali, H.; Bosso, L.; Din, J.U.; Bischof, R.; Redpath, S.; Nawaz, M.A. Habitat suitability and movement corridors of grey wolf (Canis lupus) in Northern Pakistan. PLoS ONE 2017, 12, e0187027. [Google Scholar] [CrossRef]
- Ali, H.; Din, J.U.; Bosso, L.; Hameed, S.; Kabir, M.; Younas, M.; Nawaz, M.A. Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan. PLoS ONE 2021, 16, e0260031. [Google Scholar] [CrossRef] [PubMed]
Species | Y/H (ind.·(cam·day)−1) | v (km day)−1 | r (km) | θ (rad) | Density (N.ind./km2) | SE |
---|---|---|---|---|---|---|
Asiatic black bear | 0.143 | 21.39 | 0.0045 | 0.426 | 1.875 | 0.185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, F.; Mori, T.; Rehan, M.; Bosso, L.; Kabir, M. Applying a Random Encounter Model to Estimate the Asiatic Black Bear (Ursus thibetanus) Density from Camera Traps in the Hindu Raj Mountains, Pakistan. Biology 2024, 13, 341. https://doi.org/10.3390/biology13050341
Ahmad F, Mori T, Rehan M, Bosso L, Kabir M. Applying a Random Encounter Model to Estimate the Asiatic Black Bear (Ursus thibetanus) Density from Camera Traps in the Hindu Raj Mountains, Pakistan. Biology. 2024; 13(5):341. https://doi.org/10.3390/biology13050341
Chicago/Turabian StyleAhmad, Faizan, Tomoki Mori, Muhammad Rehan, Luciano Bosso, and Muhammad Kabir. 2024. "Applying a Random Encounter Model to Estimate the Asiatic Black Bear (Ursus thibetanus) Density from Camera Traps in the Hindu Raj Mountains, Pakistan" Biology 13, no. 5: 341. https://doi.org/10.3390/biology13050341
APA StyleAhmad, F., Mori, T., Rehan, M., Bosso, L., & Kabir, M. (2024). Applying a Random Encounter Model to Estimate the Asiatic Black Bear (Ursus thibetanus) Density from Camera Traps in the Hindu Raj Mountains, Pakistan. Biology, 13(5), 341. https://doi.org/10.3390/biology13050341