Phagocytosis in Marine Coccolithophore Gephyrocapsa huxleyi: Comparison between Calcified and Non-Calcified Strains
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Stock Culture Conditions
2.2. Morphology, Cell Size, and Ploidy Examination
2.3. Phagocytosis Experiment
2.4. Statistical Analyses
3. Results
3.1. Differences in Morphotype and Ploidy
3.2. Phagocytosis Capacity
3.2.1. Fluorescence Microscopic Examination
3.2.2. Flow Cytometric Examination
4. Discussion
4.1. Long-Term Phagocytosis Experiments Still Need to Be Completed
4.2. Physiological Differences between Calcified and Non-Calcified G. huxleyi Strains and the Potential Ecological Niches
4.3. Phagocytosis in Calcified and Non-Calcified Gephyrocapsa huxleyi
4.4. Survival under Light Limitation
4.5. Oceanic and Ecological Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, A.R.; Brownlee, C.; Wheeler, G. Coccolithophore cell biology: Chalking up progress. Annu. Rev. Mar. Sci. 2017, 9, 283–310. [Google Scholar] [CrossRef]
- Winter, A. Biogeography of living coccolithophores in ocean waters. In Coccolithophores; Cambridge Univ. Press: Cambridge, UK, 1994; pp. 161–177. [Google Scholar]
- Ziveri, P.; Baumann, K.-H.; Böckel, B.; Bollmann, J.; Young, J.R. Biogeography of selected Holocene coccoliths in the Atlantic Ocean. In Coccolithophores: From Molecular Processes to Global Impact; Springer: Berlin/Heidelberg, Germany, 2004; pp. 403–428. [Google Scholar]
- Guerreiro, C.V.; Baumann, K.H.; Brummer, G.J.A.; Valente, A.; Fischer, G.; Ziveri, P.; Brotas, V.; Stuut, J.B.W. Carbonate fluxes by coccolithophore species between NW Africa and the Caribbean: Implications for the biological carbon pump. Limnol. Oceanogr. 2021, 66, 3190–3208. [Google Scholar] [CrossRef]
- Ziveri, P.; de Bernardi, B.; Baumann, K.-H.; Stoll, H.M.; Mortyn, P.G. Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 659–675. [Google Scholar] [CrossRef]
- Poulton, A.J.; Adey, T.R.; Balch, W.M.; Holligan, P.M. Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 538–557. [Google Scholar] [CrossRef]
- Poulton, A.J.; Painter, S.C.; Young, J.R.; Bates, N.R.; Bowler, B.; Drapeau, D.; Lyczsckowski, E.; Balch, W.M. The 2008 Emiliania huxleyi bloom along the Patagonian Shelf: Ecology, biogeochemistry, and cellular calcification. Glob. Biogeochem. Cycles 2013, 27, 1023–1033. [Google Scholar] [CrossRef]
- Ackleson, S.; Balch, W.; Holligan, P. White waters of the Gulf of Maine. Oceanography 1988, 1, 18–22. [Google Scholar] [CrossRef]
- Holligan, P.; Balch, W. From the ocean to cells: Coccolithophore optics and biogeochemistry. In Particle Analysis in Oceanography; Springer: Berlin/Heidelberg, Germany, 1991; pp. 301–324. [Google Scholar]
- Armstrong, R.A.; Lee, C.; Hedges, J.I.; Honjo, S.; Wakeham, S.G. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 49, 219–236. [Google Scholar] [CrossRef]
- Klaas, C.; Archer, D.E. Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Glob. Biogeochem. Cycles 2002, 16, 63-1–63-14. [Google Scholar] [CrossRef]
- Rixen, T.; Gaye, B.; Emeis, K.-C.; Ramaswamy, V. The ballast effect of lithogenic matter and its influences on the carbon fluxes in the Indian Ocean. Biogeosciences 2019, 16, 485–503. [Google Scholar] [CrossRef]
- Schmidt, S.; Harlay, J.; Borges, A.V.; Groom, S.; Delille, B.; Roevros, N.; Christodoulou, S.; Chou, L. Particle export during a bloom of Emiliania huxleyi in the North-West European continental margin. J. Mar. Syst. 2013, 109, S182–S190. [Google Scholar] [CrossRef]
- Bendif, E.M.; Probert, I.; Archontikis, O.A.; Young, J.R.; Beaufort, L.; Rickaby, R.E.; Filatov, D. Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton. ISME J. 2023, 17, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Turkoglu, M. Bloom dynamics of Emiliania huxleyi (Lohmann) Hay & Mohler, 1967 in the Sea of Marmara: A review. In Algae-Organisms for Imminent Biotechnology; InTechOpen: London, UK, 2016; pp. 29–53. [Google Scholar]
- Wheeler, G.L.; Sturm, D.; Langer, G. Gephyrocapsa huxleyi (Emiliania huxleyi) as a model system for coccolithophore biology. J. Phycol. 2023, 59, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Kooijman, S.; Zonneveld, C.; Westbroek, P. A Model System Approach to Biological Climate Forcing the Example of Emiliania huxleyi; Netherlands Institute for Sea Research (NIOZ): Texel, The Netherlands, 1998. [Google Scholar]
- Marsh, M. Regulation of CaCO3 formation in coccolithophores. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2003, 136, 743–754. [Google Scholar] [CrossRef]
- Paasche, E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 2001, 40, 503–529. [Google Scholar]
- Frada, M.; Probert, I.; Allen, M.J.; Wilson, W.H.; de Vargas, C. The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc. Natl. Acad. Sci. USA 2008, 105, 15944–15949. [Google Scholar] [CrossRef] [PubMed]
- Laguna, R.; Romo, J.; Read, B.A.; Wahlund, T.M. Induction of phase variation events in the life cycle of the marine coccolithophorid Emiliania huxleyi. Appl. Environ. Microbiol. 2001, 67, 3824–3831. [Google Scholar] [CrossRef]
- Skeffington, A.; Fischer, A.; Sviben, S.; Brzezinka, M.; Górka, M.; Bertinetti, L.; Woehle, C.; Huettel, B.; Graf, A.; Scheffel, A. A joint proteomic and genomic investigation provides insights into the mechanism of calcification in coccolithophores. Nat. Commun. 2023, 14, 3749. [Google Scholar] [CrossRef]
- Monteiro, F.M.; Bach, L.T.; Brownlee, C.; Bown, P.; Rickaby, R.E.; Poulton, A.J.; Tyrrell, T.; Beaufort, L.; Dutkiewicz, S.; Gibbs, S. Why marine phytoplankton calcify. Sci. Adv. 2016, 2, e1501822. [Google Scholar] [CrossRef]
- Houdan, A.; Probert, I.; Van Lenning, K.; Lefebvre, S. Comparison of photosynthetic responses in diploid and haploid life-cycle phases of Emiliania huxleyi (Prymnesiophyceae). Mar. Ecol. Prog. Ser. 2005, 292, 139–146. [Google Scholar] [CrossRef]
- Hansen, F.C.; Witte, H.J.; Passarge, J. Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: Size selectivity and preference for calcified Emiliania huxleyi cells. Aquat. Microb. Ecol. 1996, 10, 307–313. [Google Scholar] [CrossRef]
- de Vries, J.; Monteiro, F.; Wheeler, G.; Poulton, A.; Godrijan, J.; Cerino, F.; Malinverno, E.; Langer, G.; Brownlee, C. Haplo-diplontic life cycle expands coccolithophore niche. Biogeosciences 2021, 18, 1161–1184. [Google Scholar] [CrossRef]
- Von Dassow, P.; Ogata, H.; Probert, I.; Wincker, P.; Da Silva, C.; Audic, S.; Claverie, J.-M.; de Vargas, C. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol. 2009, 10, R114. [Google Scholar] [CrossRef]
- Hori, T.; Green, J. An ultrastructural study of mitosis in non-motile coccolith-bearing cells of Emiliania huxleyi (Lohm.) Hay & Mohler (Prymnesiophyceae). Protistologica (Paris 1965) 1985, 21, 107–120. [Google Scholar]
- Klaveness, D. Coccolithus Huxleyi (Lohm.) Kamptner I: Morphological Investigations on the Vegetative Cell and the Process of Coccolith Formation. Br. Phycol. J. 1972, 8, 335–346. [Google Scholar]
- Klaveness, D. Coccolithus huxleyi (Lohm.) Kamptn II. The flagellate cell, aberrant cell types, vegetative propagation and life cycles. Br. Phycol. J. 1972, 7, 309–318. [Google Scholar]
- Pedrotti, M.L.; Fiorini, S.; Kerros, M.-E.; Middelburg, J.J.; Gattuso, J.-P. Variable production of transparent exopolymeric particles by haploid and diploid life stages of coccolithophores grown under different CO2 concentrations. J. Plankton Res. 2012, 34, 388–398. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Li, T.; Cai, T.; Bai, Y. Interstrain Effects of the Coccolithophore Emiliania huxleyi in Response to Warming and Temperature Fluctuations. Oceanol. Limnol. Sin. 2023, 54, 98–112. (in Chinese). [Google Scholar]
- Ruan, Z.; Lu, M.; Lin, H.; Chen, S.; Li, P.; Chen, W.; Xu, H.; Qiu, D. Different photosynthetic responses of haploid and diploid Emiliania huxleyi (Prymnesiophyceae) to high light and ultraviolet radiation. Bioresour. Bioprocess. 2023, 10, 40. [Google Scholar] [CrossRef]
- Olson, M.B.; Wuori, T.A.; Love, B.A.; Strom, S.L. Ocean acidification effects on haploid and diploid Emiliania huxleyi strains: Why changes in cell size matter. J. Exp. Mar. Biol. Ecol. 2017, 488, 72–82. [Google Scholar] [CrossRef]
- Fiorini, S.; Middelburg, J.J.; Gattuso, J.P. Testing the effects of elevated pCO2 on coccolithophores (Prymnesiophyceae): Comparison between haploid and diploid life stages 1. J. Phycol. 2011, 47, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Kolb, A.; Strom, S. An inducible antipredatory defense in haploid cells of the marine microalga Emiliania huxleyi (Prymnesiophyceae). Limnol. Oceanogr. 2013, 58, 932–944. [Google Scholar]
- Frada, M.J.; Bidle, K.D.; Probert, I.; de Vargas, C. In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta). Environ. Microbiol. 2012, 14, 1558–1569. [Google Scholar] [PubMed]
- Avrahami, Y.; Frada, M.J. Detection of phagotrophy in the marine phytoplankton group of the coccolithophores (Calcihaptophycidae, Haptophyta) during nutrient-replete and phosphate-limited growth. J. Phycol. 2020, 56, 1103–1108. [Google Scholar] [PubMed]
- Godrijan, J.; Drapeau, D.; Balch, W.M. Mixotrophic uptake of organic compounds by coccolithophores. Limnol. Oceanogr. 2020, 65, 1410–1421. [Google Scholar]
- Godrijan, J.; Drapeau, D.T.; Balch, W.M. Osmotrophy of dissolved organic carbon by coccolithophores in darkness. New Phytol. 2022, 233, 781–794. [Google Scholar]
- Rokitta, S.D.; De Nooijer, L.J.; Trimborn, S.; de Vargas, C.; Rost, B.; John, U. Transcriptome analyses reveal differential gene expression patterns between the life-cycle stages of Emiliania huxleyi (Haptophyta) and reflect specialization to different ecological niches1. J. Phycol. 2011, 47, 829–838. [Google Scholar] [CrossRef]
- Nam, O.; Park, J.-M.; Lee, H.; Jin, E. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis. PLoS ONE 2019, 14, e0221938. [Google Scholar] [CrossRef] [PubMed]
- Nam, O.; Shiraiwa, Y.; Jin, E. Calcium-related genes associated with intracellular calcification of Emiliania huxleyi (Haptophyta) CCMP 371. Algae-Seoul 2018, 33, 181–189. [Google Scholar]
- Young, J. Function of coccoliths. In Coccolithophores; Cambridge Univ. Press: Cambridge, UK, 1994; pp. 63–82. [Google Scholar]
- Guillard, R.R.; Ryther, J.H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Li, Q.; Dong, K.; Wang, Y.; Edwards, K.F. Relative importance of bacterivorous mixotrophs in an estuary-coast environment. Limnol. Oceanogr. Lett. 2024, 9, 81–91. [Google Scholar] [CrossRef]
- McKie-Krisberg, Z.M.; Gast, R.J.; Sanders, R.W. Physiological responses of three species of Antarctic mixotrophic phytoflagellates to changes in light and dissolved nutrients. Microb. Ecol. 2015, 70, 21–29. [Google Scholar] [PubMed]
- Sanders, R.W.; Porter, K.G.; Caron, D.A. Relationship between phototrophy and phagotrophy in the mixotrophic chrysophyte Poterioochromonas malhamensis. Microb. Ecol. 1990, 19, 97–109. [Google Scholar] [CrossRef]
- Hansen, P.J.; Nielsen, T.G. Mixotrophic feeding of Fragilidium subglobosum (Dinophyceae) on three species of Ceratium: Effects of prey concentration, prey species and light intensity. Mar. Ecol. Prog. Ser. 1997, 147, 187–196. [Google Scholar]
- Pang, M.; Liu, K.; Liu, H. Evidence for mixotrophy in pico-chlorophytes from a new Picochlorum (Trebouxiophyceae) strain. J. Phycol. 2022, 58, 80–91. [Google Scholar] [CrossRef]
- Bohanec, B. Ploidy determination using flow cytometry. In Doubled Haploid Production in Crop Plants: A Manual; Springer: Berlin/Heidelberg, Germany, 2003; pp. 397–403. [Google Scholar]
- von Dassow, P.; Montresor, M. Unveiling the mysteries of phytoplankton life cycles: Patterns and opportunities behind complexity. J. Plankton Res. 2011, 33, 3–12. [Google Scholar] [CrossRef]
- Billard, C. Life cycles. Haptophyte Algae 1994, 51, 167–186. [Google Scholar]
- Frada, M.J.; Rosenwasser, S.; Ben-Dor, S.; Shemi, A.; Sabanay, H.; Vardi, A. Morphological switch to a resistant subpopulation in response to viral infection in the bloom-forming coccolithophore Emiliania huxleyi. PLoS Pathog. 2017, 13, e1006775. [Google Scholar] [CrossRef]
- Roberts, A. Encyclopedia of Rose Science; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Bartal, R.; Shi, B.; Cochlan, W.P.; Carpenter, E.J. A model system elucidating calcification functions in the prymnesiophyte Emiliania huxleyi reveals dependence of nitrate acquisition on coccoliths. Limnol. Oceanogr. 2015, 60, 149–158. [Google Scholar]
- Feng, Y.; Roleda, M.Y.; Armstrong, E.; Summerfield, T.C.; Law, C.S.; Hurd, C.L.; Boyd, P.W. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi. Glob. Chang. Biol. 2020, 26, 5630–5645. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, L.; Lohbeck, K.T.; Gutowska, M.A.; Gröger, J.P.; Riebesell, U.; Reusch, T.B. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Chang. 2014, 4, 1024–1030. [Google Scholar]
- Zhang, Y.; Collins, S.; Gao, K. Reduced growth with increased quotas of particulate organic and inorganic carbon in the coccolithophore Emiliania huxleyi under future ocean climate change conditions. Biogeosciences 2020, 17, 6357–6375. [Google Scholar] [CrossRef]
- Niedergang, F.; Grinstein, S. How to build a phagosome: New concepts for an old process. Curr. Opin. Cell Biol. 2018, 50, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Querol, E.; Rosales, C. Phagocytosis: Our current understanding of a universal biological process. Front. Immunol. 2020, 11, 531655. [Google Scholar] [CrossRef]
- Houdan, A.; Véron, B.; Claquin, P.; Lefebvre, S.; Poncet, J.-M. Cryopreservation of the coccolithophore, Emiliania huxleyi (Haptophyta, Prymnesiophyceae). J. Appl. Phycol. 2005, 17, 413–422. [Google Scholar] [CrossRef]
- Dölger, J.; Nielsen, L.T.; Kiørboe, T.; Andersen, A. Swimming and feeding of mixotrophic biflagellates. Sci. Rep. 2017, 7, 39892. [Google Scholar] [CrossRef] [PubMed]
- Houdan, A.; Probert, I.; Zatylny, C.; Véron, B.; Billard, C. Ecology of oceanic coccolithophores. I. Nutritional preferences of the two stages in the life cycle of Coccolithus braarudii and Calcidiscus leptoporus. Aquat. Microb. Ecol. 2006, 44, 291–301. [Google Scholar] [CrossRef]
- Balch, W.M.; Drapeau, D.T.; Poulton, N.; Archer, S.D.; Cartisano, C.; Burnell, C.; Godrijan, J. Osmotrophy of dissolved organic compounds by coccolithophore populations: Fixation into particulate organic and inorganic carbon. Sci. Adv. 2023, 9, eadf6973. [Google Scholar] [CrossRef] [PubMed]
- Stoecker, D.K.; Hansen, P.J.; Caron, D.A.; Mitra, A. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 2017, 9, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Worden, A.Z.; Follows, M.J.; Giovannoni, S.J.; Wilken, S.; Zimmerman, A.E.; Keeling, P.J. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 2015, 347, 1257594. [Google Scholar] [CrossRef]
- Beisner, B.E.; Grossart, H.-P.; Gasol, J.M. A guide to methods for estimating phago-mixotrophy in nanophytoplankton. J. Plankton Res. 2019, 41, 77–89. [Google Scholar] [CrossRef]
- Renslow, R.S.; Lindemann, S.R.; Cole, J.K.; Zhu, Z.; Anderton, C.R. Quantifying element incorporation in multispecies biofilms using nanoscale secondary ion mass spectrometry image analysis. Biointerphases 2016, 11, 02A322. [Google Scholar] [CrossRef]
- Pinho, B.; Hartman, R.L. Microfluidics with in situ Raman spectroscopy for the characterization of non-polar/aqueous interfaces. React. Chem. Eng. 2017, 2, 189–200. [Google Scholar] [CrossRef]
- Zondervan, I. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—A review. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 521–537. [Google Scholar] [CrossRef]
- Herget, J. Extreme events in the geological past. In Extreme Events in Nature and Society; Springer: Berlin/Heidelberg, Germany, 2006; pp. 145–168. [Google Scholar]
- Winter, A.; Henderiks, J.; Beaufort, L.; Rickaby, R.E.; Brown, C.W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 2014, 36, 316–325. [Google Scholar] [CrossRef]
- Gibbs, S.J.; Bown, P.R.; Ward, B.A.; Alvarez, S.A.; Kim, H.; Archontikis, O.A.; Sauterey, B.; Poulton, A.J.; Wilson, J.; Ridgwell, A. Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness. Sci. Adv. 2020, 6, eabc9123. [Google Scholar] [CrossRef]
- Jones, H.; Cockell, C.S.; Goodson, C.; Price, N.; Simpson, A.; Thomas, B. Experiments on mixotrophic protists and catastrophic darkness. Astrobiology 2009, 9, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Dipper, F. Elements of Marine Ecology; Butterworth-Heinemann: Oxford, UK, 2022. [Google Scholar]
- de Vargas, C.; Aubry, M.-P.; Probert, I.; Young, J. Origin and evolution of coccolithophores: From coastal hunters to oceanic farmers. In Evolution of Primary Producers in the Sea; Elsevier: Amsterdam, The Netherlands, 2007; pp. 251–285. [Google Scholar]
- Rost, B.; Riebesell, U. Coccolithophores and the biological pump: Responses to environmental changes. In Coccolithophores: From Molecular Processes to Global Impact; Springer: Berlin/Heidelberg, Germany, 2004; pp. 99–125. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Wang, Y.; Li, Q.; Hussain, S.; Chen, S.; Zhou, X.; Hou, S.; Feng, Y. Phagocytosis in Marine Coccolithophore Gephyrocapsa huxleyi: Comparison between Calcified and Non-Calcified Strains. Biology 2024, 13, 310. https://doi.org/10.3390/biology13050310
Ye J, Wang Y, Li Q, Hussain S, Chen S, Zhou X, Hou S, Feng Y. Phagocytosis in Marine Coccolithophore Gephyrocapsa huxleyi: Comparison between Calcified and Non-Calcified Strains. Biology. 2024; 13(5):310. https://doi.org/10.3390/biology13050310
Chicago/Turabian StyleYe, Jiayang, Ying Wang, Qian Li, Sarfraz Hussain, Songze Chen, Xunying Zhou, Shengwei Hou, and Yuanyuan Feng. 2024. "Phagocytosis in Marine Coccolithophore Gephyrocapsa huxleyi: Comparison between Calcified and Non-Calcified Strains" Biology 13, no. 5: 310. https://doi.org/10.3390/biology13050310
APA StyleYe, J., Wang, Y., Li, Q., Hussain, S., Chen, S., Zhou, X., Hou, S., & Feng, Y. (2024). Phagocytosis in Marine Coccolithophore Gephyrocapsa huxleyi: Comparison between Calcified and Non-Calcified Strains. Biology, 13(5), 310. https://doi.org/10.3390/biology13050310