Effects of Commercial Probiotics on the Growth Performance, Intestinal Microbiota and Intestinal Histomorphology of Nile Tilapia (Oreochromis niloticus) Reared in Biofloc Technology (BFT)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Consideration
2.2. Experimental Site and Design
2.3. Experimental Fish
2.4. Floc Preparation Using Commercial Probiotics
2.5. Feeding
2.6. Water Quality Parameters
2.7. Growth Monitoring and Data Recording
2.8. Histology
2.9. Intestinal Microbiota Assessment
2.10. Statistical Analysis
3. Results
3.1. Growth Performances of Fish
3.2. Changes in Intestinal Microbiota
3.3. Intestinal Histomorphology and Digestive Response
3.4. Water Quality Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samah, A.A.; Shaffril, H.A.M.; Fadzil, M.F.; Ahmad, N.; Idris, K. A systematic review on adaptation practices in aquaculture towards climate change impacts. Sustainability 2021, 13, 11410. [Google Scholar] [CrossRef]
- Costello, C.; Cao, L.; Gelcich, S.; Cisneros-Mata, M.Á.; Free, C.M.; Froehlich, H.E.; Golden, C.D.; Ishimura, G.; Maier, J.; Macadam-Somer, I.; et al. The future of food from the sea. Nature 2020, 588, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Garlock, T.; Asche, F.; Anderson, J.; Bjørndal, T.; Kumar, G.; Lorenzen, K.; Ropicki, A.; Smith, M.D.; Tveterås, R.A. Global blue revolution: Aquaculture growth across regions, species, and countries. Rev. Fish. Sci. Aquac. 2020, 28, 107–116. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Bashar, A.; Rohani, M.F.; Uddin, M.R.; Hossain, M.S. Ichthyo-diversity assessment of the Old Brahmaputra river, Bangladesh: Present stance and way forward. Heliyon 2020, 6, e05447. [Google Scholar] [CrossRef] [PubMed]
- Mahalder, B.; Haque, M.M.; Siddique, M.A.B.; Hasan, N.A.; Alam, M.M.; Talukdar, M.M.N.; Shohan, M.H.; Ahasan, N.; Hasan, M.M.; Ahammad, A.S. Embryonic and larval development of stinging catfish, Heteropneustes fossilis, in relation to climatic and water quality parameters. Life 2023, 13, 583. [Google Scholar] [CrossRef]
- Aktaruzzaman, M.; Hani, U.; Sayeed, M.A.; Chowdhury, M.A.; Hussain, M.A.; Ahmed, K.T.; Hasan, M.M. Quality assessment and shelf-life of processed tilapia (Oreochromis niloticus) fish sticks: Laboratory based study. Arch. Agric. Environ. Sci. 2022, 7, 514–520. [Google Scholar] [CrossRef]
- DoF. Yearbook of Fisheries Statistics of Bangladesh 2021-22; Fisheries Resources Survey System (FRSS, Department of Fisheries, Ministry of Fisheries and Livestock): Dhaka, Bangladesh, 2022; Volume 39, p. 139. [Google Scholar]
- Pratiwi, D.Y.; Pratiwy, F.M. A review—The Effect of Dietary Supplementation of Ulva on the Growth Performance and Haematological Parameters of Nile tilapia (Oreochromis niloticus). Int. J. Fish. Aquat. 2022, 10, 29–32. [Google Scholar]
- Hasan, M.M.; Haque, M.M.; Hasan, N.A.; Bashar, A.; Ahammad, A.S.; Hossain, M.T. Assessing the impacts of zeolite on water quality, growth performance, heavy metal content and health condition of farmed tilapia (Oreochromis niloticus). Aquac. Rep. 2023, 31, 101678. [Google Scholar] [CrossRef]
- Obiero, K.O.; Opiyo, M.A.; Munguti, J.M.; Orina, P.S.; Kyule, D.; Yongo, E.; Githukia, C.M.; Karisa, H.C. Consumer preference and marketing of farmed Nile tilapia (Oreochromis niloticus) and African Catfish (Clarias gariepinus) in Kenya: Case Study of Kirinyaga and Vihiga Counties. Int. J. Fish. Aquat. 2014, 1, 67–76. [Google Scholar]
- Ogello, E.O.; Musa, S.M.; Aura, C.M.; Abwao, J.O.; Munguti, J.M. An Appraisal of the Feasibility of Tilapia Production in Ponds Using Biofloc Technology: A review. Int. J. Aquat. Sci. 2014, 5, 21–39. [Google Scholar]
- Rahman, M.L.; Shahjahan, M.; Ahmed, N. Tilapia farming in Bangladesh: Adaptation to climate change. Sustainability 2021, 13, 7657. [Google Scholar] [CrossRef]
- Islam, S.M.; Rohani, M.F.; Shahjahan, M. Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine. Aquac. Rep. 2021, 21, 100800. [Google Scholar] [CrossRef]
- Ali, H.; Belton, B.; Haque, M.M.; Murshed-e-Jahan, K. Transformation of the feed supply segment of the aquaculture value chain in Bangladesh. Aquaculture 2023, 576, 739897. [Google Scholar] [CrossRef]
- Mamun-Ur-Rashid, M.; Belton, B.; Phillips, M.; Rosentrater, K.A. Improving Aquaculture Feed in Bangladesh: From Feed Ingredients to Farmer Profit to Safe Consumption; Working Paper; WorldFish: Penang, Malaysia, 2013; Available online: https://hdl.handle.net/20.500.12348/856 (accessed on 19 March 2024).
- Krummenauer, D.; Poersch, L.; Romano, L.A.; Lara, G.R.; Encarnação, P.; Wasielesky, W., Jr. The effect of probiotics in a Litopenaeus vannamei biofloc culture system infected with Vibrio parahaemolyticus. J. Appl. Aquacult. 2014, 26, 370–379. [Google Scholar] [CrossRef]
- Anusha, S.; Neeraja, T.; Haribabu, P.; Akshaya, P. Effect of different biofloc based culture systems on the growth and immune response of Tilapia (Oreochromis niloticus). Int. J. Fish. Aquat. Stud. 2020, 8, 176–180. [Google Scholar] [CrossRef]
- Sohel, A.M.; Shahjahan, M.; Hossain, M.K.; Sumi, K.R.; Hossain, M.S.; Abdul Kari, Z.; Tahiluddin, A.B.; Téllez-Isaías, G. Effects of multispecies probiotics on growth, hematology, and gut health of stinging catfish (Heteropneustes fossilis) in biofloc system. Water 2023, 15, 2519. [Google Scholar] [CrossRef]
- Yu, Y.B.; Choi, J.H.; Lee, J.H.; Jo, A.H.; Lee, K.M.; Kim, J.H. Biofloc technology in fish aquaculture: A review. Antioxidants 2023, 12, 398. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Luo, H.; Wu, J.; Hung, T.C.; Cao, B.; Liu, X.; Yang, J.; Yang, P. A Review of the Emerging Risks of Acute Ammonia Nitrogen Toxicity to Aquatic Decapod Crustaceans. Water 2023, 15, 27. [Google Scholar] [CrossRef]
- Mansour, A.T.; Esteban, M.Á. Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2017, 64, 202–209. [Google Scholar] [CrossRef]
- Hung, W.C.; Hwang, C.; Tosi, L.; Lin, S.H.; Tsai, P.C.; Chen, Y.A.; Wang, W.J.; Li, E.C.; Ge, S. Toward sustainable inland aquaculture: Coastal subsidence monitoring in Taiwan. Remote Sens. Appl. Soc. Environ. 2023, 30, 100930. [Google Scholar] [CrossRef]
- Moreno-Arias, A.; López-Elías, J.A.; Martínez-Córdova, L.R.; Ramírez-Suárez, J.C.; Carvallo-Ruiz, M.G.; García-Sánchez, G.; Lugo-Sánchez, M.E.; Miranda-Baeza, A. Effect of fishmeal replacement with a vegetable protein mixture on the amino acid and fatty acid profiles of diets, biofloc and shrimp cultured in BFT system. Aquaculture 2018, 483, 53–62. [Google Scholar] [CrossRef]
- Méndez-Martínez, Y.; Yamasaki-Granados, S.; García-Guerrero, M.U.; Martínez-Córdova, L.R.; Rivas-Vega, M.E.; Arcos-Ortega, F.G.; Cortés-Jacinto, E. Effect of dietary protein content on growth rate, survival and body composition of juvenile cauque river prawn, Macrobrachium americanum (Bate 1868). Aquac. Res. 2017, 48, 741–751. [Google Scholar] [CrossRef]
- Opiyo, M.A.; Jumbe, J.; Ngugi, C.C.; Charo-Karisa, H. Different levels of probiotics affect growth, survival and body composition of Nile tilapia (Oreochromis niloticus) cultured in low input ponds. Sci. Afr. 2019, 4, e00103. [Google Scholar] [CrossRef]
- Pérez-Fuentes, J.A.; Hernández-Vergara, M.P.; Pérez-Rostro, C.I.; Fogel, I. C: N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture 2016, 452, 247–251. [Google Scholar] [CrossRef]
- Padeniya, U.; Davis, D.A.; Wells, D.E.; Bruce, T.J. Microbial interactions, growth, and health of aquatic species in biofloc systems. Water 2022, 14, 4019. [Google Scholar] [CrossRef]
- Long, L.; Yang, J.; Li, Y.; Guan, C.; Wu, F. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture 2015, 448, 135–141. [Google Scholar] [CrossRef]
- Sethi, J.P.; Choudhary, P.; Sarkar, S.; Kumari, R.; Mohanty, S.; Das, P.C. Screening wheat flour and molasses as carbon sources in biofloc system for increasing growth and non-specific immune responses of pengba, Osteobrama belangeri (Valenciennes). J. Appl. Ichthyol. 2022, 38, 531–539. [Google Scholar] [CrossRef]
- Mugwanya, M.; Dawood, M.A.; Kimera, F.; Sewilam, H. Biofloc systems for sustainable production of economically important aquatic species: A review. Sustainability 2021, 13, 7255. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Mohammadi, A.; Emerenciano, M.G.C. Microorganisms in biofloc aquaculture system. Aquac. Rep. 2022, 26, 101300. [Google Scholar] [CrossRef]
- Meenakshisundaram, M.; Sugantham, F.; Muthukumar, C.; Chandrasekar, M.S. Metagenomic characterization of biofloc in the grow-out culture of Genetically Improved Farmed Tilapia (GIFT). Aquac. Res. 2021, 52, 4249–4262. [Google Scholar] [CrossRef]
- Monroy-Dosta, M.D.C.; De Lara-Andrade, R.; Castro-Mejia, J.; Castro-Mejia, G.; Coelho-Emerenciano, M.G. Microbiology community composition and abundance associated to biofloc in tilapia aquaculture. Rev. Biol. Mar. Oceanogr. 2013, 48, 511–520. [Google Scholar] [CrossRef]
- Ferreira, G.S.; Bolivar, N.C.; Pereira, S.A.; Guertler, C.; do Nascimento Vieira, F.; Mouriño, J.L.P.; Seiffert, W.Q. Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture 2015, 448, 273–279. [Google Scholar] [CrossRef]
- Ninawe, A.S.; Selvin, J. Probiotics in shrimp aquaculture: Avenues and challenges. Crit. Rev. Microbiol. 2009, 35, 43–66. [Google Scholar] [CrossRef] [PubMed]
- Adeoye, A.A.; Yomla, R.; Jaramillo-Torres, A.; Rodiles, A.; Merrifield, D.L.; Davies, S.J. Combined Effects of Exogenous Enzymes and Probiotic on Nile Tilapia (Oreochromis niloticus) Growth, Intestinal Morphology and Microbiome. Aquaculture 2016, 463, 61–70. [Google Scholar] [CrossRef]
- Maas, R.M.; Verdegem, M.C.; Debnath, S.; Marchal, L.; Schrama, J.W. Effect of enzymes (phytase and xylanase), probiotics (B. amyloliquefaciens) and their combination on growth performance and nutrient utilisation in Nile tilapia. Aquaculture 2021, 533, 736226. [Google Scholar] [CrossRef]
- Zaki, M.A.; Alabssawy, A.N.; Nour, A.E.A.M.; El Basuini, M.F.; Dawood, M.A.; Alkahtani, S.; Abdel-Daim, M.M. The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Aquac. Rep. 2020, 16, 100282. [Google Scholar] [CrossRef]
- Samanta Chandan, C.S.; Roy, P. Aquaculture practices in Bangladesh: A synopsis on prospects, productivity, and problems. J. World Aquac. Soc. 2024, 55, 4–25. [Google Scholar] [CrossRef]
- Ahmed, W.; Haque, M.R.; Siddique, M.A.B.; Akbor, M.A.; Hasan, M.; Rahman, M.M. Is Biofloc fish a safe alternative to conventionally cultivated fish regarding metal bioaccumulation in Bangladesh? Environ. Chall. 2023, 11, 100704. [Google Scholar] [CrossRef]
- Uddin, A.S.; Siddique, M.A.M.; Sein, A.; Dey, P.K.; Rashed-Un-Nabi, M.; Haque, M.A. First use of biofloc technology for Penaeus monodon culture in Bangladesh: Effects of stocking density on growth performance of shrimp, water quality and bacterial growth. Aquac. Rep. 2020, 18, 100518. [Google Scholar] [CrossRef]
- Dhar, P.K.; Tonu, N.T.; Dey, S.K.; Chakrabarty, S.; Uddin, M.N.; Haque, M.R. Health risk assessment and comparative studies on some fish species cultured in traditional and biofloc fish farms. Biol. Trace Elem. Res. 2023, 201, 3017–3030. [Google Scholar] [CrossRef]
- Avnimelech, Y.; Kochba, M. Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture 2009, 287, 163–168. [Google Scholar] [CrossRef]
- Aanyu, M.; Betancor, M.B.; Monroig, O. Effects of dietary limonene and thymol on the growth and nutritional physiology of Nile tilapia (Oreochromis niloticus). Aquaculture 2018, 488, 217–226. [Google Scholar] [CrossRef]
- Li, H.; Lu, L.; Wu, M.; Xiong, X.; Luo, L.; Ma, Y.; Liu, Y. The effects of dietary extract of mulberry leaf on growth performance, hypoxia-reoxygenation stress and biochemical parameters in various organs of fish. Aquac. Rep. 2020, 18, 100494. [Google Scholar] [CrossRef]
- Bullerwell, C.N.; Collins, S.A.; Lall, S.P.; Anderson, D.M. Growth performance, proximate and histological analysis of rainbow trout fed diets containing Camelina sativa seeds, meal (high-oil and solvent-extracted) and oil. Aquaculture 2016, 452, 342–350. [Google Scholar] [CrossRef]
- Thomas, P.; Sekhar, A.C.; Upreti, R.; Mujawar, M.M.; Pasha, S.S. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnol. Rep. 2015, 8, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Jini, R.; Swapna, H.; Amit, K.R.; Vrinda, R.; Halami, P.; Sachindra, N.; Bhaskar, N. Isolation and characterization of potential lactic acid bacteria (LAB) from freshwater fish processing wastes for application in fermentative utilisation of fish processing waste. Braz. J. Microbiol. 2011, 42, 1516–1525. [Google Scholar] [CrossRef]
- Ferdous, M.F.; Arefin, M.S.; Rahman, M.M.; Ripon, M.M.R.; Rashid, M.H.; Sultana, M.R.; Hossain, M.T.; Ahammad, M.U.; Rafiq, K. Beneficial effects of probiotic and phytobiotic as growth promoter alternative to antibiotic for safe broiler production. J. Adv. Vet. Anim. Res. 2019, 6, 409. [Google Scholar] [CrossRef] [PubMed]
- Butt, U.D.; Lin, N.; Akhter, N.; Siddiqui, T.; Li, S.; Wu, B. Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture. Fish & Shellfish Immunol. 2021, 114, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Singh, R. Probiotics in aquaculture: A promising emerging alternative approach. Symbiosis 2019, 77, 99–113. [Google Scholar] [CrossRef]
- Haque, M.M.; Hasan, N.A.; Eltholth, M.M.; Saha, P.; Mely, S.S.; Rahman, T.; Murray, F.J. Assessing the impacts of in-feed probiotic on the growth performance and health condition of pangasius (Pangasianodon hypophthalmus) in a farm trial. Aquac. Rep. 2021, 20, 100699. [Google Scholar] [CrossRef]
- Haraz, Y.G.; Shourbela, R.M.; El-Hawarry, W.N.; Mansour, A.M.; Elblehi, S.S. Performance of juvenile Oreochromis niloticus (Nile tilapia) raised in conventional and biofloc technology systems as influenced by probiotic water supplementation. Aquaculture 2023, 566, 739180. [Google Scholar] [CrossRef]
- Hersi, M.A.; Genc, E.; Pipilos, A.; Keskin, E. Effects of dietary synbiotics and biofloc meal on the growth, tissue histomorphology, whole-body composition and intestinal microbiota profile of Nile tilapia (Oreochromis niloticus) cultured at different salinities. Aquaculture 2023, 570, 739391. [Google Scholar] [CrossRef]
- Menaga, M.; Felix, S.; Charulatha, M.; Gopalakannan, A.; Panigrahi, A. Effect of in-situ and ex-situ biofloc on immune response of Genetically Improved Farmed Tilapia. Fish Shellfish Immunol. 2019, 92, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ye, Z.; Liu, D.; Zhao, J.; Sivaramasamy, E.; Deng, Y.; Zhu, S. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish Shellfish immunol. 2018, 81, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Haridas, H.; Verma, A.K.; Rathore, G.; Prakash, C.; Sawant, P.B.; Babitha Rani, A.M. Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res. 2017, 48, 4346–4355. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M. Tilapia Culture, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019; p. 358. [Google Scholar] [CrossRef]
- Xu, W.J.; Pan, L.Q. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Li-topenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture 2012, 356, 147–152. [Google Scholar] [CrossRef]
- Song, H.T.; Gao, Y.; Yang, Y.M.; Xiao, W.J.; Liu, S.H.; Xia, W.C.; Liu, Z.L.; Yi, L.; Jiang, Z.B. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates. Bioresour. Technol. 2016, 219, 710–715. [Google Scholar] [CrossRef]
- Adineh, H.; Naderi, M.; Harsij, M.; Shirangi, S.A.; Yousefi, M.; Hoseinifar, S.H. Interactive effects of culture systems (biofloc and clear water) and dietary protein levels on growth, digestive activity, mucosal immune responses, antioxidant status, and resistance against salinity stress in the Caspian roach (Rutilus caspicus) fry. Aquaculture 2023, 570, 739418. [Google Scholar] [CrossRef]
- Anand, P.S.; Kohli, M.P.S.; Kumar, S.; Sundaray, J.K.; Roy, S.D.; Venkateshwarlu, G.; Sinha, A.; Pailan, G.H. Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture 2014, 418, 108–115. [Google Scholar] [CrossRef]
- Kumar, A.; Reddy, A.; Rani, A.B.; Rathore, G.; Lakra, W. Growth and Digestive Enzymatic Activity of Litopenaeus vannamei Raised in Bio Floc Systems with Different C/N Ratios in Ground Saline Water. J. Entomol. Zool. Stud. 2018, 6, 1166–1171. [Google Scholar]
- Bentzon-Tilia, M.; Sonnenschein, E.C.; Gram, L. Monitoring and managing microbes in aquaculture–Towards a sustainable in-dustry. Microb. Biotechnol. 2016, 9, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, X.; Gooneratne, R.; Lai, R.; Zeng, C.; Zhan, F.; Wang, W. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 2016, 6, 24340. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, A.; Esakkiraj, P.; Saranya, C.; Das, R.R.; Sundaram, M.; Sudheer, N.S.; Biju, I.F.; Jayanthi, M. A biofloc-based aquaculture system bio-augmented with probiotic bacteria Bacillus tequilensis AP BFT3 improves culture environment, production performances, and proteomic changes in Penaeus vannamei. Probiotics Antimicrob. Proteins 2022, 14, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Firdaus-Nawi, M.; Zamri-Saad, M.; Nik-Haiha, N.Y.; Zuki, M.A.B.; Effendy, A.W.M. Histological assessments of intestinal immuno-morphology of tiger grouper juvenile, Epinephelus fuscoguttatus. SpringerPlus 2013, 2, 611. [Google Scholar] [CrossRef] [PubMed]
- Bieczynski, F.; Painefilú, J.C.; Venturino, A.; Luquet, C.M. Expression and function of ABC proteins in fish intestine. Front. Physiol. 2021, 12, 791834. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Islam, M.N. Morphology of the intestinal barrier in different physiological and pathological conditions. In Histopathology-Reviews and Recent Advances; Intech Publishers: Rijeka, Croatia, 2012; pp. 133–152. [Google Scholar] [CrossRef]
- Hossain, M.K.; Hossain, M.M.; Mim, Z.T.; Khatun, H.; Hossain, M.T.; Shahjahan, M. Multi-species probiotics improve growth, intestinal microbiota and morphology of Indian major carp mrigal Cirrhinus cirrhosus. Saudi J. Biol. Sci. 2022, 29, 103399. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, S.; Tasumi, S.; Suetake, H.; Kikuchi, K.; Suzuki, Y. Demonstration of the mucosal lectins in the epithelial cells of internal and external body surface tissues in pufferfish (Fugu rubripes). Dev. Comp. Immunol. 2005, 29, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, M.; Bessat, M.; Fadel, A.; Elblehi, S. Responses of dietary supplementation of probiotic effective microorganisms (EMs) in Oreochromis niloticus on growth, hematological, intestinal histopathological, and antiparasitic activities. Aquac. Int. 2020, 28, 947–963. [Google Scholar] [CrossRef]
- Ferguson, R.M.; Merrifield, D.L.; Harper, G.M.; Rawling, M.D.; Mustafa, S.; Picchietti, S.; Balcàzar, J.L.; Davies, S.J. The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). J. Appl. Microbiol. 2010, 109, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.F.; Nyachoti, M. Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 2017, 3, 331–343. [Google Scholar] [CrossRef]
- McGuckin, M.A.; Lindén, S.K.; Sutton, P.; Florin, T.H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 2011, 9, 265–278. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Chen, T. Interactions between Intestinal Microflora/Probiotics and the Immune System. BioMed Res. Int. 2019, 2019, 6764919. [Google Scholar] [CrossRef]
- Buddington, R.K.; Diamond, J.M. Pyloric Ceca of Fish: A “New” Absorptive Organ. Am. J. Physiol.-Gastrointest. Liver Physiol. 1987, 252, G65–G76. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management; Springer: Boston, MA, USA, 1998. [Google Scholar] [CrossRef]
- Naiel, M.A.E.; Abdelghany, M.F.; Khames, D.K.; Abd El-hameed, S.A.A.; Mansour, E.M.G.; El-Nadi, A.S.M.; Shoukry, A.A. Administration of Some Probiotic Strains in the Rearing Water Enhances the Water Quality, Performance, Body Chemical Analysis, Antioxidant and Immune Responses of Nile tilapia, Oreochromis niloticus. Appl. Water Sci. 2022, 12, 209. [Google Scholar] [CrossRef]
- Khademzade, O.; Zakeri, M.; Haghi, M.; Mousavi, S.M. The Effects of Water Additive Bacillus Cereus and Pediococcus Acidilactici on Water Quality, Growth Performances, Economic Benefits, Immunohematology and Bacterial Flora of Whiteleg Shrimp (Penaeus Vannamei Boone, 1931) Reared in Earthen Ponds. Aquac. Res. 2020, 51, 1759–1770. [Google Scholar] [CrossRef]
- John, E.M.; Krishnapriya, K.; Sankar, T.V. Treatment of Ammonia and Nitrite in Aquaculture Wastewater by an Assembled Bac-terial Consortium. Aquaculture 2020, 526, 735390. [Google Scholar] [CrossRef]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus subtilis: A Universal Cell Factory for Industry, Agriculture, Biomaterials and Medicine. Microb. Cell Fact. 2020, 19, 173. [Google Scholar] [CrossRef]
- Rout, P.R.; Bhunia, P.; Dash, R.R. Simultaneous Removal of Nitrogen and Phosphorous from Domestic Wastewater Using Bacillus Cereus GS-5 Strain Exhibiting Heterotrophic Nitrification, Aerobic Denitrification and Denitrifying Phosphorous Removal. Bioresour. Technol. 2017, 244, 484–495. [Google Scholar] [CrossRef]
- Haque, M.M. Decentralised Fish Seed Networks in Northwest Bangladesh: Impacts on Rural Livelihoods. Ph.D. Thesis, University of Stirling, Stirling, UK, 2007. Available online: http://hdl.handle.net/1893/301 (accessed on 19 March 2024).
- Schneider, P.; Folkens, L.; Meyer, A.; Fauk, T. Sustainability and Dimensions of a Nexus Approach in a Sharing Economy. Sustainability 2019, 11, 909. [Google Scholar] [CrossRef]
Treatment 1 (Pondcare) | Treatment 2 (Aqualife) | Treatment 3 (Everfresh) |
---|---|---|
Bacillus subtilis (22 × 109) Bacillus licheniformis (22 × 109) Bacillus polymyxa (22 × 109) Bacillus pumilus (22 × 109) Bacillus megaterium (22 × 109) Bacillus coagulans (22 × 109) Bacillus amyloliquefaciens (22 × 109) | Bacillus subtilis (10 × 109) Bacillus licheniformis (7 × 109) Bacillus mensentericus (9 × 109) Lactobacillus acidophilus (9.8 × 109) Nitrobacter sp. (7.5 × 109) Nitrosomonas sp. (8 × 109) | Bacillus subtilis (5 × 109) Bacillus licheniformis (5 × 109) Bacillus megaterium (2.5 × 109) Bacillus pumilis (2.5 × 109) Amylase (2000 IU) Protease (3000 IU) Cellulase (3800 IU) Xylanase (18,000 IU) |
Growth Parameters | T1 | T2 | T3 | p-Value | Level of Significance |
---|---|---|---|---|---|
IFL (cm) | 4.53 ± 0.50 | 4.53 ± 0.50 | 4.53 ± 0.50 | 1.000 | NS |
FFL (cm) | 13.15 ± 0.72 | 13.17 ± 0.53 | 12.95 ± 0.58 | 0.446 | NS |
IFW (g) | 3.09 ± 0.55 | 3.11 ± 0.57 | 3.11 ± 0.57 | 0.989 | NS |
FFW (g) | 45.20 ± 3.77 a | 46.66 ± 4.61 a | 54.79 ± 5.03 b | 0.000 | ** |
Weight gain (g) | 42.11 ± 3.71 a | 43.54 ± 4.43 a | 51.68 ± 4.83 b | 0.000 | ** |
PWG (%) | 1395.48 ± 234.31 | 1431.40 ± 253.75 | 1536.92 ± 320.96 | 0.241 | NS |
Intestine weight (g) | 1.63 ± 0.39 a | 1.83 ± 0.15 b | 2.27 ± 0.33 c | 0.000 | ** |
Liver weight (g) | 1.14 ± 0.36 a | 1.24 ± 0.34 a | 1.65 ± 0.15 b | 0.000 | ** |
FCR | 0.73 ± 0.07 | 0.71 ± 0.07 | 0.67 ± 0.10 | 0.052 | NS |
SGR (%/day) | 1.12 ± 0.08 | 1.12 ± 0.08 | 1.15 ± 0.10 | 0.401 | NS |
HSI | 2.53 ± 0.83 | 2.67 ± 0.73 | 3.03 ± 0.40 | 0.068 | NS |
VSI | 3.62 ± 0.86 | 3.95 ± 0.49 | 4.19 ± 0.81 | 0.061 | NS |
Survival rate (%) | 67.65 ± 10.93 a | 85.99 ± 10.14 b | 85.66 ± 1.57 b | 0.000 | ** |
Gut Microbial Content | Treatments | p-Value | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
TVC (×108 CFU/mL) | 2.6 ± 0.45 a | 2.8 ± 0.12 a | 4.63 ± 1.62 b | 0.000 |
TLAB (×104 CFU/mL) | 0.67 ± 0.13 a | 0.83 ± 0.23 a | 1.33 ± 0.18 b | 0.000 |
Gut Morphological Parameters | T1 | T2 | T3 | p-Value | Level of Significance |
---|---|---|---|---|---|
Villi length (μm) | 332.84 ± 22.94 a | 335.69 ± 9.62 a | 443 ± 40.75 b | 0.000 | ** |
Villi width (μm) | 64.69 ± 7.39 a | 62.69 ± 5.58 a | 70.69 ± 8.45 b | 0.021 | * |
Villi area (μm2) | 21,517.07 ± 2816.32 a | 21,062.61 ± 2163.40 a | 31,305.69 ± 4675.42 b | 0.000 | ** |
Crypt depth (μm) | 26.15 ± 2.88 a | 29.08 ± 8.06 a | 36.61 ± 3.94 b | 0.000 | ** |
Wall thickness (μm) | 6.77 ± 1.30 a | 8.46 ± 2.18 b | 13.46 ± 2.29 c | 0.000 | ** |
Muscle thickness (μm) | 27.38 ± 8.22 a | 29.15 ± 4.23 a | 37.38 ± 3.77 b | 0.000 | ** |
Gut Histological Parameters | T1 | T2 | T3 | p-Value | Level of Significance |
---|---|---|---|---|---|
Fattening of mucosal folds (μm) | 19.8 ± 4.44 a | 18.6 ± 2.88 a | 25.3 ± 2.67 b | 0.000 | ** |
Width of lamina propria (μm) | 5.6 ± 2.01 a | 5 ± 1.63 a | 11.5 ± 1.90 b | 0.000 | ** |
Enterocyte width (μm) | 3.9 ± 1.10 a | 3.5 ± 0.71 a | 6.9 ± 1.20 b | 0.000 | ** |
Abundance of goblet cell (GB) | 13.4 ± 5.62 a | 13.3 ± 4.16 a | 21.9 ± 3.14 b | 0.000 | ** |
Parameters | T1 | T2 | T3 | p-Value |
---|---|---|---|---|
pH | 8.30 ± 0.67 | 8.28 ± 0.71 | 8.29 ± 0.63 | 0.995 |
TDS (mg/L) | 553.35 ± 233.19 | 643.65 ± 323.37 | 533.60 ± 191.10 | 0.354 |
DO (mg/L) | 7.81 ± 2.55 | 7.64 ± 2.50 | 7.21 ± 2.54 | 0.746 |
Ammonia (ppm) | 0.19 ± 0.37 | 0.21 ± 0.41 | 0.18 ± 0.36 | 0.951 |
Temperature (°C) | 27.25 ± 1.77 | 27.4 ± 1.85 | 27.35 ± 1.76 | 0.964 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asha, A.A.; Haque, M.M.; Hossain, M.K.; Hasan, M.M.; Bashar, A.; Hasan, M.Z.; Shohan, M.H.; Farin, N.N.; Schneider, P.; Bablee, A.L. Effects of Commercial Probiotics on the Growth Performance, Intestinal Microbiota and Intestinal Histomorphology of Nile Tilapia (Oreochromis niloticus) Reared in Biofloc Technology (BFT). Biology 2024, 13, 299. https://doi.org/10.3390/biology13050299
Asha AA, Haque MM, Hossain MK, Hasan MM, Bashar A, Hasan MZ, Shohan MH, Farin NN, Schneider P, Bablee AL. Effects of Commercial Probiotics on the Growth Performance, Intestinal Microbiota and Intestinal Histomorphology of Nile Tilapia (Oreochromis niloticus) Reared in Biofloc Technology (BFT). Biology. 2024; 13(5):299. https://doi.org/10.3390/biology13050299
Chicago/Turabian StyleAsha, Ayesha Akter, Mohammad Mahfujul Haque, Md. Kabir Hossain, Md. Mahmudul Hasan, Abul Bashar, Md. Zahid Hasan, Mobin Hossain Shohan, Nawshin Nayla Farin, Petra Schneider, and Alif Layla Bablee. 2024. "Effects of Commercial Probiotics on the Growth Performance, Intestinal Microbiota and Intestinal Histomorphology of Nile Tilapia (Oreochromis niloticus) Reared in Biofloc Technology (BFT)" Biology 13, no. 5: 299. https://doi.org/10.3390/biology13050299
APA StyleAsha, A. A., Haque, M. M., Hossain, M. K., Hasan, M. M., Bashar, A., Hasan, M. Z., Shohan, M. H., Farin, N. N., Schneider, P., & Bablee, A. L. (2024). Effects of Commercial Probiotics on the Growth Performance, Intestinal Microbiota and Intestinal Histomorphology of Nile Tilapia (Oreochromis niloticus) Reared in Biofloc Technology (BFT). Biology, 13(5), 299. https://doi.org/10.3390/biology13050299