Physio-Biochemical Insights into the Cold Resistance Variations among Nectarine (Prunus persica (L.) Batsch var. nectarina) Cultivars
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Determination of Semi-Lethal Low Temperature (LT50)
2.3. Cold Injury Investigation and Cold Resistance Classification of Nectarine Cultivars in Field
2.4. Determination of Relative Water Content (RW) and Relative Electrolytic Conductivity (RE)
2.5. Determinations of Osmoregulatory Substances Contents, Antioxidant Enzymes Activities and Phytohormones Contents
2.6. Statistical Analyses
3. Results
3.1. The LT50 Values of the Five Nectarine Cultivars
3.2. Field Cold Resistance Evaluation Results for the Five Nectarine Cultivars
3.3. The RW Content and RE Changes of the Five Nectarine Cultivars during Overwintering
3.4. Osmoregulatory Substances Contents Changes of the Five Nectarine Cultivars during Natural Overwintering
3.5. Changes of Antioxidant Enzyme Activities in Shoots of the Five Nectarine Cultivars
3.6. Changes of Phytohormones Accumulations in Shoots of the Five Nectarine Cultivars
3.7. Correlation Analysis Results of Cold Resistance Related Parameters
3.8. Principal Component Analysis (PCA) Results
3.9. Redundancy Analysis Results
4. Discussion
4.1. High Cold Resistant Nectarine Cultivars Have Higher RW, PRO, SS and SP Contents and Stronger Water and Osmoregulatory Substances Adaptabilities to Low Temperature Compared to Low Cold Resistant Ones
4.2. High Cold Resistant Nectarine Cultivars Are of Higher SOD and POD Activities but Lower CAT Ability, and IAA and GA3 Contents
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dirlewanger, E.; Graziano, E.; Joobeur, T.; Garriga-Calderé, F.; Cosson, P.; Howad, W.; Arús, P. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc. Natl. Acad. Sci. USA 2004, 101, 9891–9896. [Google Scholar] [CrossRef]
- Alisoltani, A.; Karimi, M.; Ravash, R.; Fallahi, H.; Shiran, B. Molecular responses to cold stress in temperate fruit crops with focus on Rosaceae family. Genom. Assist. Breed. Crops Abiotic Stress Toler. 2019, 11, 105–130. [Google Scholar]
- Sharma, G.K.; Lata, S.; Yadav, A. Low chill peaches and nectarines. Int. J. Farm Sci. 2014, 4, 47–50. [Google Scholar]
- Yang, L.; Li, P.; Qiu, L.; Ahmad, S.; Wang, J.; Zheng, T. Identification and comparative analysis of the Rosaceae RCI2 gene family and characterization of the cold stress response in Prunus mume. Horticulturae 2022, 8, 997. [Google Scholar] [CrossRef]
- Shafi, K.M.; Sowdhamini, R. Computational analysis of potential candidate genes involved in the cold stress response of ten Rosaceae members. BMC Genom. 2022, 23, 516. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, J.; Sun, P.; Ma, X.; Yang, Q.; Hu, J.; Sun, S.; Li, Y.; Yu, J.; Feng, S.; et al. Preferential gene retention increases the robustness of cold regulation in Brassicaceae and other plants after polyploidization. Hortic. Res-Engl. 2020, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Alisoltani, A.; Shiran, B.; Fallahi, H.; Ebrahimie, E. Gene regulatory network in almond (Prunus dulcis Mill.) in response to frost stress. Tree. Genet. Genomes 2015, 11, 100. [Google Scholar] [CrossRef]
- Li, B.; Fan, R.; Sun, G.; Sun, T.; Fan, Y.; Bai, S.; Guo, S.; Huang, S.; Liu, J.; Zhang, H.; et al. Flavonoids improve drought tolerance of maize seedlings by regulating the homeostasis of reactive oxygen species. Plant. Soil 2021, 461, 389–405. [Google Scholar] [CrossRef]
- Nath, M.; Bhatt, D.; Prasad, R.; Gill, S.S.; Anjum, N.A.; Tuteja, N.K. Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Front. Plant. Sci 2016, 7, 1574. [Google Scholar] [CrossRef] [PubMed]
- Yeshvekar, R.K.; Nitnavare, R.B.; Chakradhar, T.; Bhatnagar-Mathur, P.; Reddy, M.K.; Reddy, P.S. Molecular characterization and expression analysis of pearl millet plasma membrane proteolipid 3 (Pmp3) genes in response to abiotic stress conditions. Plant. Gene 2017, 10, 37–44. [Google Scholar] [CrossRef]
- Niu, R.; Zhao, X.; Wang, C.; Wang, F. Physiochemical responses and ecological adaptations of peach to low-temperature stress: Assessing the cold resistance of local peach varieties from Gansu, China. Plants 2023, 12, 4183. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Zhao, X.; Wang, C.; Wang, F. Transcriptome profiling of Prunus persica branches reveals candidate genes potentially involved in freezing tolerance. Sci. Hortic-Amst. 2020, 259, 108775. [Google Scholar] [CrossRef]
- Vasileva, A.; Durakova, A.G.; Kalaydzhiev, H.R.; Dimitrova-Dicheva, M.; Goranova, Z.; Vasilev, V.; Temelkova, M. Nectarine powder of Bulgarian origin: Physicochemical composition, antioxidant activity, microbiological and sorption characteristics. Heliyon 2024, 10, e24059. [Google Scholar] [CrossRef] [PubMed]
- Hoang, X.L.T.; Nhi, D.N.H.; Thu, N.B.A.; Thao, N.T.P.; Tran, L.S.P. Transcription factors and their roles in signal transduction in plants under abiotic stresses. Curr. Genom. 2017, 18, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gu, Y.; Mao, Q.; Wang, J. Physiological response to low temperature of four genotypes of Cyclocarya paliurus and their preliminary evaluation to cold resistance. Forests 2023, 14, 1680. [Google Scholar] [CrossRef]
- Chen, X. Study on the mechanism of the influence of soil water content on cold resistance of thermophilic crops based on principal component analysis. IOP Conf. Ser. Earth Environ. Sci. 2021, 784, 012040. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, D.-L.; Hui, M.; Wang, Y.; Han, X.; Yao, F.; Cao, X.; Li, Y.-h.; Li, H.; Wang, H. Screening of cold hardiness-related indexes and establishment of a comprehensive evaluation method for grapevines (V. vinifera). Front. Plant. Sci 2022, 13, 1014330. [Google Scholar] [CrossRef] [PubMed]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Bento, C.; Gonçalves, A.C.; Silva, B.M.; Silva, L.R. Peach (Prunus Persica): Phytochemicals and health benefits. Food. Rev. Int. 2020, 38, 1703–1734. [Google Scholar] [CrossRef]
- Font i Forcada, C.; Gradziel, T.M.; Gogorcena, Y.; Moreno, M.Á. Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions. Euphytica 2014, 197, 261–277. [Google Scholar] [CrossRef]
- Muto, A.; Christofides, S.R.; Sirangelo, T.M.; Bartella, L.; Muller, C.; Di Donna, L.; Muzzalupo, I.; Bruno, L.; Ferrante, A.; Chiappetta, A.; et al. Fruitomics: The importance of combining sensory and chemical analyses in assessing cold storage responses of six peach (Prunus persica L. Batsch) cultivars. Foods 2022, 11, 2554. [Google Scholar] [CrossRef] [PubMed]
- Bassi, D.; Mignani, I.; Spinardi, A.; Tura, D. PEACH (Prunus persica (L.) Batsch). Nutr. Compos. Fruit Cultiv. 2016, 12, 535–571. [Google Scholar]
- Muthuramalingam, P.; Jeyasri, R.; Park, Y.; Lee, S.; Jeong, J.H.; Shin, Y.; Kim, J.; Jung, S.; Shin, H. Emerging research advancements to overcome the peach spring frost. Res. Plant. Dis 2023, 29, 220–233. [Google Scholar] [CrossRef]
- Abidi, W.; Akrimi, R. Phenotypic diversity of nutritional quality attributes and chilling injury symptoms in four early peach [Prunus persica (L.) Batsch] cultivars grown in west central Tunisia. Adv. J. Food. Sci. Technol 2022, 59, 3938–3950. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Long, F.; Li, Y.; Xu, Y.; Hu, L.; Yao, T.; Huang, Y.; Hu, D.; Yang, Y.; Fei, Y. Comparative transcriptome analysis revealing the potential mechanism of low-temperature stress in Machilus microcarpa. Front. Plant. Sci 2022, 13, 900870. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.J.; Lee, H. Evaluation of freezing injury in temperate fruit trees. Hortic. Environ. Biotechnol 2020, 61, 787–794. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Gong, Z.; Hu, X.; Ma, J.; Ren, D.; Liu, H.; Ni, Y.J. Predicting yield loss in winter wheat due to frost damage during stem elongation in the central area of Huang-huai plain in China. Field. Crop. Res 2022, 276, 108399. [Google Scholar] [CrossRef]
- Gulyaeva, A.A.; Berlova, T.N.; Galkova, A.A.; Bezlepkina, E.V.; Efremov, I.N. Winter resistance of sour cherry and sweet cherry flower buds in extreme winter 2009–2010 and 2020–2021. Bio. Web. Conf. 2022, 47, 02011. [Google Scholar] [CrossRef]
- Sun, C.-H.; Zhang, R.; Yuan, Z.; Cao, H.; Martin, J.J.J. Physiology response and resistance evaluation of twenty coconut germplasm resources under low temperature stress. Horticulturae 2021, 7, 234. [Google Scholar] [CrossRef]
- Niu, Y.; Ye, L.; Wang, Y.; Shi, Y.; Luo, A. Salicylic acid mitigates ‘Hayward’ kiwifruit chilling injury by regulating hormone and proline metabolism, as well as maintaining cellular structure. Food. Biosci 2024, 57, 103573. [Google Scholar] [CrossRef]
- Dou, N.; Li, L.; Fang, Y.; Fan, S.; Wu, C. Comparative physiological and transcriptome analyses of tolerant and susceptible cultivars reveal the molecular mechanism of cold tolerance in Anthurium andraeanum. Int. J. Mol. Sci 2023, 25, 250. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Wang, X.; Yan, L.-S.; Hu, X.; Lian, M. Effect of foliar calcium fertilization on fruit quality, cell wall enzyme activity and expression of key genes in Chinese cherry. Int. J. Fruit. Sci. 2023, 23, 200–216. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, P.L.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Liu, B.; Xin, G.; Zhang, X.-Z.; Li, J.; Wang, Y. Evaluation of cold tolerance of seven walnut varieties. CryoLetters 2022, 43, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Xy, H.; Ye, H.; Ma, J.; Zhang, R.; Chen, G.; Xia, Y. Semi-lethal high temperature and heat tolerance of eight Camellia species. Phyton-Int. J. Exp. Bot. 2012, 81, 177–180. [Google Scholar] [CrossRef]
- Hillmann, L.; Elsysy, M.A.; Goeckeritz, C.Z.; Hollender, C.A.; Rothwell, N.L.; Blanke, M.M.; Einhorn, T.C. Preanthesis changes in freeze resistance, relative water content, and ovary growth preempt bud phenology and signify dormancy release of sour cherry floral buds. Planta 2021, 254, 74. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, J.A.; Howell, G.S. Cold acclimation of Concord grapevines III. Relationship between cold hardiness, tissue water content, and shoot maturation. Vitis 2015, 25, 151. [Google Scholar]
- Ouyang, L.; Leus, L.; De Keyser, E.; Van Labeke, M.C. Seasonal changes in cold hardiness and carbohydrate metabolism in four garden rose cultivars. J. Plant. Physiol. 2019, 232, 188–199. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Soil, rapid determination of free proline for water-stress studies. Plant 1973, 39, 205–207. [Google Scholar]
- Wang, Y.; Hu, Y.; Chen, B.; Zhu, Y.F.; Dawuda, M.M.; Svetla, S. Physiological mechanisms of resistance to cold stress associated with 10 elite apple rootstocks. J. Integr. Agr 2018, 17, 857–866. [Google Scholar] [CrossRef]
- Ji, L.; Li, P.; Su, Z.W.; Li, M.; Guo, S. Behavior, cold-tolerant introgression line construction and low-temperature stress response analysis for bell pepper. Plant. Signal. Behav. 2020, 15, 1773097. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Wang, Z.-X.; Yiming, Y.; Haishuang, L.; Shi, G.; Ai, J. Analysis of the cold tolerance and physiological response differences of amur grape (Vitis amurensis) germplasms during overwintering. Sci. Hortic-Amst. 2020, 259, 108760. [Google Scholar]
- Asadi-Sanam, S.; Pirdashti, H.; Hashempour, A.; Zavareh, M.; Nematzadeh, G.; Yaghoubian, Y. The physiological and biochemical responses of eastern purple coneflower to freezing stress. Russ. J. Plant. Physl. 2015, 62, 515–523. [Google Scholar] [CrossRef]
- Afshari, H.; Parvane, T. Study the effect of cold treatments on some physiological parameters of 3 cold resistance Almond cultivars. Life. Sci. J. 2013, 10, 4–16. [Google Scholar]
- Karami, H.; Rezaei, M.; Sarkhosh, A.; Rahemi, M.; Jafari, M. Cold hardiness assessment in seven commercial fig cultivars (Ficus carica L.). Gesunde. Pflanz 2018, 70, 195–203. [Google Scholar] [CrossRef]
- Ravari, A.; Karimi, H.; Mohammadi Mirik, A.A. Cold hardiness evaluation of some Pistacia species based on electrolyte leakage and eco-physiological parameters. Plant Genet. Resour. Charact. Util. 2023, 21, 254–259. [Google Scholar] [CrossRef]
- Li, X.-X.; Liu, C.; Zhang, W.D.; Shao, H.; Wu, H.M.; Wang, Z.; Yang, Y.N.; Li, J.L. Studies on cold resistance of hazel determined and analyzed by atomic absorption spectrometry. Guang. Pu 2010, 30, 1666–1669. [Google Scholar] [PubMed]
- Sanie Khatam, A.; Rastegar, S.; Aboutalebi Jahromi, A.; Hassanzadeh Khankahdani, H.; Bagherian, S.A.A. Physio-biochemical mechanisms of acetic acid involved in cold and freezing tolerance in Mexican lime plants (Citrus aurantifolia Swingle). Erwerbs-Obstbau 2023, 65, 1693–1704. [Google Scholar] [CrossRef]
- Fan, J.; Wang, J.Y.; Liu, X.; Zhao, C.C.; Zhou, C.; Saba, T.; Wu, J.; Hui, W.K.; Gong, W. Responses of antioxidant enzyme activity to different fertilizer and soil moisture conditions in relation to cold resistance in Zanthoxylum armatum. Weon’ye. Gwahag. Gi’sulji 2022, 45, 261–272. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant. Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Huang, Z.; Mi, L.; Xu, K.; Wu, J.; Fan, Y.; Ma, S.; Jiang, D. Effects of Low Temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet. Front. Plant. Sci. 2019, 10, 498. [Google Scholar] [CrossRef] [PubMed]
- Kosová, K.; Prášil, I.; Vítámvás, P.; Dobrev, P.I.; Motyka, V.; Floková, K.; Novák, O.; Turečková, V.; Rolcik, J.; Pešek, B.; et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. Front. Plant. Sci. 2012, 169, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Niu, N.; Liang, W.; Yang, X.; Jin, W.; Wilson, Z.A.; Hu, J.; Zhang, D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat. Commun. 2013, 4, 1445. [Google Scholar] [CrossRef] [PubMed]
- Heidari, P.; Entazari, M.; Ebrahimi, A.; Ahmadizadeh, M.; Vannozzi, A.; Palumbo, F.; Barcaccia, G. Exogenous EBR ameliorates endogenous hormone contents in tomato species under low-temperature stress. Horticulturae 2021, 7, 84. [Google Scholar] [CrossRef]
Cultivar | Relative Electrolytic Leakage Rate/% | Regression Equation | R2 | LT50/°C | |||||
---|---|---|---|---|---|---|---|---|---|
0 °C | −10 °C | −15 °C | −20 °C | −25 °C | −30 °C | ||||
NL | 17.81 | 27.46 | 31.36 | 32.39 | 38.83 | 53.26 | 0.9356 | −31.33 | |
LP | 20.07 | 25.46 | 30.46 | 32.28 | 46.83 | 54.26 | 0.9430 | −29.50 | |
QH | 19.07 | 26.46 | 32.46 | 39.28 | 47.83 | 62.26 | 0.9628 | −25.09 | |
LY | 27.00 | 35.62 | 39.05 | 42.25 | 50.26 | 65.64 | 0.9370 | −23.25 | |
ZY | 24.00 | 35.62 | 39.05 | 42.25 | 48.26 | 63.64 | 0.9084 | −22.32 |
Cultivar | Total No. | Grade 0 | Grade 1 | Grade 2 | Grade 3 | Freezing Damage Index | ||||
---|---|---|---|---|---|---|---|---|---|---|
No. | Rate % | No. | Rate % | No. | Rate % | No. | Rate % | |||
NL | 30 | 20 | 66.67 | 9 | 30.00 | 1 | 3.33 | 0 | 0 | 0.34 e |
LP | 30 | 19 | 63.33 | 8 | 26.67 | 2 | 6.67 | 1 | 3.30 | 0.38 d |
QH | 30 | 18 | 60.00 | 8 | 26.67 | 2 | 6.67 | 2 | 6.67 | 0.40 c |
LY | 30 | 12 | 40.00 | 6 | 20.00 | 7 | 23.33 | 5 | 16.67 | 0.54 a |
ZY | 30 | 14 | 46.67 | 5 | 16.67 | 8 | 26.67 | 3 | 10.00 | 0.50 b |
Time | Cultivar | PRO (μg/g) | MDA (mmol/g) | SS (mg/g) | SP (mg/g) |
---|---|---|---|---|---|
T1 | NL | 54.38 ± 2.72 bcdefg | 3.61 ± 0.13 de | 56.94 ± 0.60 efghij | 0.54 ± 0.03 hij |
LP | 52.58 ± 2.90 bcdefg | 3.37 ± 0.30 e | 57.96 ± 1.87 efghi | 0.47 ± 0.03 j | |
QH | 46.63 ± 2.92 defg | 4.23 ± 0.13 bcde | 58.27 ± 0.83 efghi | 0.34 ± 0.01 k | |
ZY | 35.09 ± 2.99 g | 4.67 ± 0.23 bcde | 46.35 ± 2.57 fghijk | 0.19 ± 0.02 l | |
LY | 38.90 ± 0.96 fg | 5.16 ± 0.28 abcde | 48.47 ± 1.00 fghijk | 0.21 ± 0.03 l | |
T2 | NL | 69.50 ± 2.96 abc | 4.72 ± 0.27 bcde | 71.18 ± 1.35 de | 0.84 ± 0.02 abc |
LP | 62.70 ± 1.77 abcde | 4.18 ± 0.79 bcde | 70.13 ± 0.86 de | 0.88 ± 0.01 ab | |
QH | 61.03 ± 10.83 abcde | 5.00 ± 0.25 abcde | 70.10 ± 1.66 de | 0.84 ± 0.01 abc | |
ZY | 55.37 ± 1.50 bcdefg | 5.80 ± 0.51 abc | 60.13 ± 0.13 efgh | 0.68 ± 0.02 defg | |
LY | 48.95 ± 3.52 defg | 5.76 ± 0.51 abc | 62.36 ± 2.53 ef | 0.75 ± 0.02 cdef | |
T3 | NL | 70.66 ± 6.74 ab | 5.87 ± 0.48 ab | 117.37 ± 10.30 a | 0.84 ± 0.02 abc |
LP | 77.52 ± 4.40 a | 5.52 ± 0.53 abcd | 104.68 ± 7.81 ab | 0.92 ± 0.01 a | |
QH | 63.56 ± 6.24 abcd | 6.57 ± 0.15 a | 101.73 ± 4.33 bc | 0.89 ± 0.00 ab | |
ZY | 56.98 ± 4.86 bcdef | 6.90 ± 0.35 a | 85.71 ± 5.32 d | 0.75 ± 0.01 cdef | |
LY | 52.80 ± 4.25 bcdefg | 6.85 ± 0.44 a | 87.00 ± 3.16 cd | 0.80 ± 0.03 abcd | |
T4 | NL | 56.87 ± 1.79 bcdef | 4.79 ± 0.48 bcde | 71.61 ± 0.95 de | 0.78 ± 0.03 bcde |
LP | 58.29 ± 4.36 bcdef | 4.38 ± 0.39 bcde | 56.81 ± 1.92 efghij | 0.74 ± 0.03 cdef | |
QH | 53.27 ± 10.44 bcdefg | 5.27 ± 0.35 abcde | 60.38 ± 5.45 efg | 0.74 ± 0.02 cdef | |
ZY | 48.34 ± 3.52 defg | 5.51 ± 0.26 abcd | 54.57 ± 3.66 efghij | 0.67 ± 0.02 efg | |
LY | 47.51 ± 4.09 defg | 5.93 ± 0.59 ab | 41.61 ± 4.55 hijkl | 0.66 ± 0.02 efgh | |
T5 | NL | 52.62 ± 2.39 bcdefg | 3.73 ± 0.11 cde | 45.70 ± 3.55 fghijk | 0.64 ± 0.02 fghi |
LP | 55.06 ± 6.24 bcdefg | 3.94 ± 0.13 bcde | 38.65 ± 0.77 jkl | 0.67 ± 0.03 efg | |
QH | 50.21 ± 4.03 cdefg | 4.49 ± 0.35 bcde | 42.15 ± 2.42 ghijkl | 0.64 ± 0.03 fghi | |
ZY | 44.55 ± 4.79 defg | 4.58 ± 0.19 bcde | 31.35 ± 2.60 kl | 0.54 ± 0.01 ij | |
LY | 42.03 ± 5.56 efg | 4.75 ± 0.42 bcde | 25.39 ± 2.16 l | 0.51 ± 0.02 j | |
T6 | NL | 58.01 ± 0.78 bcdef | 4.19 ± 0.35 bcde | 53.15 ± 3.98 efghij | 0.68 ± 0.05 defg |
LP | 60.13 ± 1.44 abcde | 3.97 ± 0.49 bcde | 39.99 ± 2.07 ijkl | 0.72 ± 0.03 cdef | |
QH | 55.51 ± 2.73 bcdef | 4.60 ± 0.28 abcde | 45.04 ± 2.88 fghijk | 0.67 ± 0.02 efgh | |
ZY | 49.53 ± 5.82 cdefg | 4.80 ± 0.43 bcde | 32.33 ± 2.12 kl | 0.56 ± 0.04 ghij | |
LY | 47.80 ± 2.19 defg | 5.17 ± 0.50 abcde | 31.65 ± 2.99 kl | 0.54 ± 0.03 ij |
Time | Cultivar | SOD (U/g FW) | POD (U/g FW) | CAT (U/g FW) |
---|---|---|---|---|
T1 | NL | 330.00 ± 1.56 efgh | 33.73 ± 2.26 abc | 47.00 ± 4.79 abc |
LP | 325.13 ± 4.71 fgh | 35.53 ± 1.74 abc | 45.03 ± 4.28 abc | |
QH | 303.10 ± 12.48 gh | 34.18 ± 0.88 abc | 51.33 ± 4.68 ab | |
ZY | 283.50 ± 9.89 h | 27.33 ± 1.90 bc | 53.33 ± 2.92 a | |
LY | 298.46 ± 9.74 gh | 26.67 ± 3.84 c | 54.33 ± 2.34 a | |
T2 | NL | 582.62 ± 16.32 ab | 45.67 ± 2.08 abc | 38.33 ± 4.49 abc |
LP | 574.41 ± 12.49 ab | 46.00 ± 0.33 abc | 36.33 ± 1.75 abc | |
QH | 563.11 ± 6.00 abc | 43.33 ± 4.33 abc | 44.00 ± 4.55 abc | |
ZY | 510.85 ± 13.03 abcd | 37.33 ± 4.63 abc | 47.33 ± 2.36 abc | |
LY | 505.43 ± 4.39 abcd | 36.33 ± 3.84 abc | 49.67 ± 2.47 ab | |
T3 | NL | 600.43 ± 17.95 a | 50.33 ± 3.76 abc | 27.33 ± 0.94 c |
LP | 594.91 ± 10.54 a | 54.33 ± 0.88 a | 26.67 ± 1.65 c | |
QH | 584.02 ± 20.81 ab | 53.33 ± 3.18 ab | 30.53 ± 3.63 bc | |
ZY | 541.04 ± 9.36 abcd | 47.00 ± 3.84 abc | 34.00 ± 4.09 abc | |
LY | 529.05 ± 5.82 abcd | 46.67 ± 3.61 abc | 36.67 ± 4.50 abc | |
T4 | NL | 556.62 ± 15.23 abc | 47.33 ± 7.24 abc | 31.00 ± 3.07 bc |
LP | 560.27 ± 8.62 abc | 44.00 ± 5.32 abc | 32.00 ± 5.86 bc | |
QH | 532.64 ± 9.63 abcd | 47.67 ± 5.87 abc | 34.00 ± 8.34 abc | |
ZY | 453.84 ± 11.09 bcde | 44.33 ± 3.29 abc | 37.33 ± 1.97 abc | |
LY | 472.45 ± 25.27 abcd | 42.67 ± 4.11 abc | 39.00 ± 7.73 abc | |
T5 | NL | 492.13 ± 6.94 abcd | 39.00 ± 4.61 abc | 44.33 ± 3.10 abc |
LP | 488.54 ± 76.32 abcd | 40.00 ± 4.50 abc | 42.67 ± 2.62 abc | |
QH | 465.12 ± 44.90 abcd | 37.33 ± 3.06 abc | 46.00 ± 4.26 abc | |
ZY | 412.17 ± 8.08 defg | 31.00 ± 5.15 abc | 47.67 ± 5.71 abc | |
LY | 428.51 ± 61.86 cdef | 32.00 ± 8.00 abc | 49.85 ± 4.22 ab | |
T6 | NL | 508.45 ± 8.48 abcd | 41.33 ± 2.52 abc | 35.33 ± 2.67 abc |
LP | 506.80 ± 22.12 abcd | 42.00 ± 4.37 abc | 36.00 ± 4.96 abc | |
QH | 484.65 ± 15.22 abcd | 39.67 ± 4.04 abc | 39.00 ± 2.13 abc | |
ZY | 447.27 ± 30.07 bcdef | 35.33 ± 2.85 abc | 42.67 ± 0.76 abc | |
LY | 450.63 ± 61.71 bcdef | 36.00 ± 3.18 abc | 41.33 ± 4.15 abc |
Time | Cultivar | GA3 (ng/g FW) | IAA (ng/g FW) | ABA (ng/g FW) | ABA/GA3 |
---|---|---|---|---|---|
T1 | NL | 8.07 ± 0.44 abcd | 116.09 ± 3.74 a | 294.61 ± 8.88 ghij | 36.51 ± 3.88 defg |
LP | 7.97 ± 0.07 abcd | 98.08 ± 3.86 abcde | 307.1 ± 13.54 fghi | 38.55 ± 0.94 defg | |
QH | 8.01 ± 0.30 abcd | 114.49 ± 6.32 cde | 292.09 ± 16.64 ghij | 36.49 ± 4.97 defg | |
ZY | 8.78 ± 0.13 ab | 98.78 ± 6.75 abcde | 258.80 ± 14.57 ij | 29.47 ± 1.90 fg | |
LY | 9.16 ± 0.38 a | 100.60 ± 4.02 abcde | 239.41 ± 14.94 j | 26.13 ± 5.72 g | |
sT2 | NL | 6.75 ± 0.28 bcd | 99.45 ± 5.31 abcde | 380.58 ± 21.61 abcde | 56.39 ± 5.04 abcd |
LP | 6.83 ± 0.27 bcd | 88.03 ± 8.22 de | 374.44 ± 4.65 abcde | 54.79 ± 1.28 abcde | |
QH | 6.48 ± 0.24 cd | 101.60 ± 6.70 abcde | 394.65 ± 22.85 abcd | 60.87 ± 5.38 abc | |
ZY | 7.46 ± 0.50 abcd | 91.26 ± 4.47 ab | 328.17 ± 25.29 efgh | 44.02 ± 4.68 cdefg | |
LY | 7.80 ± 0.36 abcd | 87.03 ± 6.11 de | 338.26 ± 8.45 defgh | 43.34 ± 3.08 cdefg | |
T3 | NL | 5.96 ± 0.58 d | 90.76 ± 2.32 cde | 400.78 ± 33.17 abc | 67.28 ± 5.86 a |
LP | 6.17 ± 0.10 d | 86.96 ± 5.83 de | 416.96 ± 3.54 a | 67.62 ± 0.35 a | |
QH | 6.02 ± 0.10 d | 92.95 ± 0.85 cde | 403.73 ± 14.36 ab | 67.06 ± 1.37 ab | |
ZY | 6.72 ± 0.11 bcd | 85.54 ± 0.65 de | 351.90 ± 31.78 bcdefg | 52.36 ± 3.56 abcde | |
LY | 6.58 ± 0.24 cd | 81.07 ± 5.34 e | 363.57 ± 9.16 abcdef | 55.28 ± 2.17 abcde | |
T4 | NL | 6.83 ± 0.58 bcd | 105.87 ± 4.43 abcd | 369.67 ± 25.99 abcde | 54.09 ± 3.41 abcde |
LP | 7.07 ± 0.16 abcd | 92.29 ± 2.32 cde | 377.18 ± 18.98 abcde | 53.37 ± 3.03 abcde | |
QH | 6.96 ± 0.69 bcd | 104.74 ± 5.61 abcd | 362.07 ± 21.00 abcdef | 52.00 ± 5.51 abcde | |
ZY | 7.34 ± 0.15 abcd | 88.85 ± 7.29 de | 334.77 ± 25.03 efgh | 45.64 ± 3.70 bcdefg | |
LY | 7.36 ± 0.37 abcd | 90.57 ± 3.51 cde | 329.9 ± 14.21 efgh | 44.81 ± 5.21 bcdefg | |
T5 | NL | 7.36 ± 0.72 abcd | 110.22 ± 9.64 abc | 347.47 ± 14.81 bcdefg | 47.22 ± 7.00 abcdefg |
LP | 7.48 ± 0.09 abcd | 102.10 ± 4.09 abcde | 356.41 ± 16.04 bcdef | 47.63 ± 1.43 abcdefg | |
QH | 7.59 ± 0.41 abcd | 105.74 ± 6.66 abcd | 343.15 ± 34.50 cdefg | 45.18 ± 5.90 bcdefg | |
ZY | 8.36 ± 0.44 abc | 95.70 ± 10.68 abcde | 282.71 ± 29.51 hij | 33.83 ± 8.62 efg | |
LY | 8.12 ± 0.10 abcd | 94.24 ± 2.31 bcde | 293.47 ± 20.74 ghij | 36.16 ± 2.04 defg | |
T6 | NL | 7.25 ± 0.63 abcd | 104.35 ± 7.05 abcd | 362.44 ± 26.91 abcdef | 50.02 ± 4.34 abcdef |
LP | 7.25 ± 0.29 abcd | 95.59 ± 5.88 abcde | 359.77 ± 12.64 abcdef | 49.61 ± 3.63 abcdef | |
QH | 7.14 ± 0.78 abcd | 103.45 ± 6.24 abcd | 357.50 ± 23.65 abcdef | 50.04 ± 6.79 abcdef | |
ZY | 7.76 ± 0.32 abcd | 97.77 ± 8.63 abcde | 338.74 ± 41.90 defgh | 43.68 ± 4.73 cdefg | |
LY | 7.78 ± 0.40 abcd | 93.64 ± 10.42 bcde | 342.41 ± 27.77 cdefgh | 44.04 ± 3.10 cdefg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, G.; Liu, Y.; Liu, J.; Bian, G.; Zhang, S.; Liu, Y.; Zuo, L.; Cheng, C. Physio-Biochemical Insights into the Cold Resistance Variations among Nectarine (Prunus persica (L.) Batsch var. nectarina) Cultivars. Biology 2024, 13, 222. https://doi.org/10.3390/biology13040222
Qin G, Liu Y, Liu J, Bian G, Zhang S, Liu Y, Zuo L, Cheng C. Physio-Biochemical Insights into the Cold Resistance Variations among Nectarine (Prunus persica (L.) Batsch var. nectarina) Cultivars. Biology. 2024; 13(4):222. https://doi.org/10.3390/biology13040222
Chicago/Turabian StyleQin, Guojie, Yifan Liu, Jianzi Liu, Gefang Bian, Shikai Zhang, Yi Liu, Lixiang Zuo, and Chunzhen Cheng. 2024. "Physio-Biochemical Insights into the Cold Resistance Variations among Nectarine (Prunus persica (L.) Batsch var. nectarina) Cultivars" Biology 13, no. 4: 222. https://doi.org/10.3390/biology13040222
APA StyleQin, G., Liu, Y., Liu, J., Bian, G., Zhang, S., Liu, Y., Zuo, L., & Cheng, C. (2024). Physio-Biochemical Insights into the Cold Resistance Variations among Nectarine (Prunus persica (L.) Batsch var. nectarina) Cultivars. Biology, 13(4), 222. https://doi.org/10.3390/biology13040222