Engineering a Microphysiological Model for Regenerative Endodontic Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Cell Culture
2.3. 2D Cytotoxicity Assay
2.4. Microphysiological Device Design
2.5. Microphysiological Device Fabrication
2.6. Microphysiological System Biocompatibility
2.7. Small Molecule Diffusion
2.8. Microphysiological Device Treatment and Cell Culture
2.9. Cellular Attachment Efficiency and Viability
2.10. Calcein and CellTracker Staining
2.11. Statistical Analysis
3. Results
3.1. Endodontic Irrigating Solutions Reduce Cell Viability of DSCS Cells in a 2D Culture Model
3.2. Microphysiological System Biocompatibility
3.3. Small Molecule Diffusion
3.4. Endodontic Irrigants Affect Cell Adhesion and Viability in Three-Dimensional Culture
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunavant, T.R.; Regan, J.D.; Glickman, G.N.; Solomon, E.S.; Honeyman, A.L. Comparative Evaluation of Endodontic Irrigants against Enterococcus Faecalis Biofilms. J. Endod. 2006, 32, 527–531. [Google Scholar] [CrossRef]
- Trope, M. Treatment of the Immature Tooth with a Non-Vital Pulp and Apical Periodontitis. Dent. Clin. N. Am. 2010, 54, 313–324. [Google Scholar] [CrossRef]
- Siqueira, J.F.; Rôças, I.N. Present Status and Future Directions: Microbiology of Endodontic Infections. Int. Endod. J. 2022, 55, 512–530. [Google Scholar] [CrossRef]
- Zehnder, M. Root Canal Irrigants. J. Endod. 2006, 32, 389–398. [Google Scholar] [CrossRef]
- De-Deus, G.; Zehnder, M.; Reis, C.; Fidel, S.; Fidel, R.A.S.; Galan, J.; Paciornik, S. Longitudinal Co-Site Optical Microscopy Study on the Chelating Ability of Etidronate and EDTA Using a Comparative Single-Tooth Model. J. Endod. 2008, 34, 71–75. [Google Scholar] [CrossRef]
- Galler, K.M.; Buchalla, W.; Hiller, K.; Federlin, M.; Eidt, A.; Schiefersteiner, M.; Schmalz, G. Influence of Root Canal Disinfectants on Growth Factor Release from Dentin. J. Endod. 2015, 41, 363–368. [Google Scholar] [CrossRef]
- Zehnder, M.; Schmidlin, P.; Sener, B. Chelation in Root Canal Therapy Reconsidered. J. Endod. 2005, 31, 817–820. [Google Scholar] [CrossRef]
- Estrela, C.R.; Estrela, C.R.; Barbin, E.L.; Spano, J.C.; Marchesan, M.A.; Pecora, J.D. Mechanism of Action of Sodium Hypochlorite. Braz. Dent. J. 2002, 13, 113–117. [Google Scholar] [CrossRef]
- Mönkkönen, J.; Taskinen, M.; Auriola, S.O.K.; Urtti, A. Growth Inhibition of Macrophage-like and Other Cell Types by Liposome-Encapsulated, Calcium-Bound, and Free Bisphosphonates In Vitro. J. Drug Target. 2003, 11, 279–286. [Google Scholar] [CrossRef]
- Russell, R.G.G.; Rogers, M.J. Bisphosphonates: From the Laboratory to the Clinic and Back Again. Bone 1999, 25, 97–106. [Google Scholar] [CrossRef]
- Lottanti, S.; Gautschi, H.; Sener, B.; Zehnder, M. Effects of Ethylenediaminetetraacetic, Etidronic and Peracetic Acid Irrigation on Human Root Dentine and the Smear Layer. Int. Endod. J. 2009, 42, 335–343. [Google Scholar] [CrossRef]
- Arias-Moliz, M.T.; Ordinola-Zapata, R.; Baca, P.; Ruiz-Linares, M.; Ferrer-Luque, C.M. Antimicrobial Activity of a Sodium Hypochlorite/Etidronic Acid Irrigant Solution. J. Endod. 2014, 40, 1999–2002. [Google Scholar] [CrossRef]
- Yuan, S.M.; Yang, X.T.; Zhang, S.Y.; Tian, W.D.; Yang, B. Therapeutic Potential of Dental Pulp Stem Cells and Their Derivatives: Insights from Basic Research toward Clinical Applications. World J. Stem Cells 2022, 14, 435–452. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Ren, J.Y.; Yang, B. Priming Strategies for Controlling Stem Cell Fate: Applications and Challenges In Dental Tissue Regeneration. World J. Stem Cells 2021, 13, 1625–1646. [Google Scholar] [CrossRef]
- Bischel, L.L.; Sung, K.E.; Jiménez-Torres, J.A.; Mader, B.; Keely, P.J.; Beebe, D.J. The Importance of Being a Lumen. FASEB J. 2014, 28, 4583–4590. [Google Scholar] [CrossRef]
- Rosa, V.; Sriram, G.; McDonald, N.; Cavalcanti, B.N. A Critical Analysis of Research Methods and Biological Experimental Models to Study Pulp Regeneration. Int. Endod. J. 2022, 55, 446–455. [Google Scholar] [CrossRef]
- Lee, J.; Cuddihy, M.J.; Kotov, N.A. Three-Dimensional Cell Culture Matrices: State of the Art. Tissue Eng. Part. B Rev. 2008, 14, 61–86. [Google Scholar] [CrossRef]
- Liu, R.; Meng, X.; Yu, X.; Wang, G.; Dong, Z.; Zhou, Z.; Qi, M.; Yu, X.; Ji, T.; Wang, F. From 2D to 3D Co-Culture Systems: A Review of Co-Culture Models to Study the Neural Cells Interaction. Int. J. Mol. Sci. 2022, 23, 13116. [Google Scholar] [CrossRef]
- de Jongh, R.; Spijkers, X.M.; Pasteuning-Vuhman, S.; Vulto, P.; Pasterkamp, R.J. Neuromuscular Junction-on-a-Chip: ALS Disease Modeling and Read-out Development in Microfluidic Devices. J. Neurochem. 2021, 157, 393–412. [Google Scholar] [CrossRef]
- Granum, P.E.; Magnussen, J. The Effect of PH on Hypochlorite as Disinfectant. Int. J. Food Microbiol. 1987, 4, 183–186. [Google Scholar] [CrossRef]
- Serper, A.; Çalt, S. The Demineralizing Effects of EDTA at Different Concentrations and PH. J. Endod. 2002, 28, 501–502. [Google Scholar] [CrossRef]
- Sanz-Serrano, D.; Sánchez-de-Diego, C.; Mercade, M.; Ventura, F. Dental Stem Cells SV40, a new cell line developed in vitro from human stem cells of the apical papilla. Int. Endod. J. 2023, 56, 502–513. [Google Scholar] [CrossRef]
- Virumbrales-Muñoz, M.; Chen, J.; Ayuso, J.; Lee, M.; Jason Abel, E.; Beebe, J.D. Organotypic Primary Blood Vessel Models of Clear Cell Renal Cell Carcinoma for Single-Patient Clinical Trials. Lab Chip 2020, 20, 4420–4432. [Google Scholar] [CrossRef]
- Galler, K.M.; Krastl, G.; Simon, S.; Van Gorp, G.; Meschi, N.; Vahedi, B.; Lambrechts, P. European Society of Endodontology Position Statement: Revitalization Procedures. Int. Endod. J. 2016, 49, 717–723. [Google Scholar] [CrossRef]
- Widbiller, M.; Althumairy, R.I.; Diogenes, A. Direct and Indirect Effect of Chlorhexidine on Survival of Stem Cells from the Apical Papilla and Its Neutralization. J. Endod. 2019, 45, 156–160. [Google Scholar] [CrossRef]
- Martin, D.E.; De Almeida, J.F.A.; Henry, M.A.; Khaing, Z.Z.; Schmidt, C.E.; Teixeira, F.B.; Diogenes, A. Concentration-Dependent Effect of Sodium Hypochlorite on Stem Cells of Apical Papilla Survival and Differentiation. J. Endod. 2014, 40, 51–55. [Google Scholar] [CrossRef]
- Trevino, E.G.; Patwardhan, A.N.; Henry, M.A.; Perry, G.; Dybdal-Hargreaves, N.; Hargreaves, K.M.; Diogenes, A. Effect of Irrigants on the Survival of Human Stem Cells of the Apical Papilla in a Platelet-Rich Plasma Scaffold in Human Root Tips. J. Endod. 2011, 37, 1109–1115. [Google Scholar] [CrossRef]
- Niu, W.; Yoshioka, T.; Kobayashi, C.; Suda, H. A Scanning Electron Microscopic Study of Dentinal Erosion by Final Irrigation with EDTA and NaOCl Solutions. Int. Endod. J. 2002, 35, 934–939. [Google Scholar] [CrossRef]
- Boutsioukis, C.; Arias-Moliz, M.T. Present Status and Future Directions–Irrigants and Irrigation Methods. Int. Endod. J. 2022, 55, 588–612. [Google Scholar] [CrossRef]
- Tartari, T.; Borges, M.M.B.; de Araújo, L.B.B.; Vivan, R.R.; Bonjardim, L.R.; Duarte, M.A.H. Effects of Heat in the Properties of NaOCl Alone and Mixed with Etidronate and Alkaline Tetrasodium EDTA. Int. Endod. J. 2021, 54, 616–627. [Google Scholar] [CrossRef]
- Wright, P.P.; Kahler, B.; Walsh, L.J. The Effect of Heating to Intracanal Temperature on the Stability of Sodium Hypochlorite Admixed with Etidronate or EDTA for Continuous Chelation. J. Endod. 2019, 45, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Ballal, N.V.; Das, S.; Rao, B.S.S.; Zehnder, M.; Mohn, D. Chemical, Cytotoxic and Genotoxic Analysis of Etidronate in Sodium Hypochlorite Solution. Int. Endod. J. 2019, 52, 1228–1234. [Google Scholar] [CrossRef]
- Deniz Sungur, D.; Aksel, H.; Ozturk, S.; Yılmaz, Z.; Ulubayram, K. Effect of Dentine Conditioning with Phytic Acid or Etidronic Acid on Growth Factor Release, Dental Pulp Stem Cell Migration and Viability. Int. Endod. J. 2019, 52, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, Ö.İ.; Mantı, A.; Çelik, B. Nanohardness Reduction and Root Dentine Erosion after Final Irrigation with Ethylenediaminetetraacetic, Etidronic and Peracetic Acids. Int. Endod. J. 2020, 53, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Sismanoglu, S.; Ercal, P. The Cytotoxic Effects of Various Endodontic Irrigants on the Viability of Dental Mesenchymal Stem Cells. Aust. Endod. J. 2022, 48, 305–312. [Google Scholar] [CrossRef]
- De Almeida, J.F.A.; Chen, P.; Henry, M.A.; Diogenes, A. Stem Cells of the Apical Papilla Regulate Trigeminal Neurite Outgrowth and Targeting through a BDNF-Dependent Mechanism. Tissue Eng. Part A 2014, 20, 3089–3100. [Google Scholar] [CrossRef]
Control | DMEM (Merck, Darmstadt, Germany) |
Irrigating solutions | 17% EDTA (Sigma-Aldrich, Darmstadt, Germany) |
10% Citric acid (Sigma-Aldrich, Darmstadt, Germany) | |
9% HEBP (Dual Rinse, Medcem, Laudongasse, Vienna) | |
1.5% NaOCl (Panreac, Barcelona, Spain) | |
6% NaOCl (Panreac, Barcelona, Spain) |
Control | 10% Citric Acid | 17% EDTA | HEBP 9% | 1.5% NaOCl | 6% NaOCl | |
---|---|---|---|---|---|---|
Mean | 100 | 28.4 | 64.32 | 42.55 | 22.01 | 8.22 |
Std. Deviation | 22.57 | 0.6639 | 9.129 | 3.071 | 0.249 | 1.17 |
p-value | N/A | 0.0019 | 0.0600 | 0.0061 | 0.0012 | 0.0005 |
Control | Citric Acid 10% | EDTA 17% | HEBP 9% | NaOCl 1.5% | NaOCl 6% | |
---|---|---|---|---|---|---|
Mean | 1139 | 453.5 | 880.7 | 782.7 | 222.7 | 16.33 |
Std. Deviation | 450.9 | 145.8 | 335.1 | 515.6 | 97.43 | 5.508 |
p-value | - | 0.0081 | 0.6030 | 0.2979 | 0.0045 | 0.0005 |
Control | Citric Acid 10% | EDTA 17% | HEBP 9% | NaOCl 1.5% | NaOCl 6% | |
---|---|---|---|---|---|---|
Mean | 87.14 | 86.82 | 82.13 | 88.50 | 76.63 | 65.30 |
Std. Deviation | 11.01 | 8.94 | 16.37 | 9.50 | 19.20 | 71.01 |
p-value | - | >0.9999 | 0.9311 | 0.9998 | 0.6437 | 0.0472 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz-Serrano, D.; Mercade, M.; Ventura, F.; Sánchez-de-Diego, C. Engineering a Microphysiological Model for Regenerative Endodontic Studies. Biology 2024, 13, 221. https://doi.org/10.3390/biology13040221
Sanz-Serrano D, Mercade M, Ventura F, Sánchez-de-Diego C. Engineering a Microphysiological Model for Regenerative Endodontic Studies. Biology. 2024; 13(4):221. https://doi.org/10.3390/biology13040221
Chicago/Turabian StyleSanz-Serrano, Diana, Montse Mercade, Francesc Ventura, and Cristina Sánchez-de-Diego. 2024. "Engineering a Microphysiological Model for Regenerative Endodontic Studies" Biology 13, no. 4: 221. https://doi.org/10.3390/biology13040221
APA StyleSanz-Serrano, D., Mercade, M., Ventura, F., & Sánchez-de-Diego, C. (2024). Engineering a Microphysiological Model for Regenerative Endodontic Studies. Biology, 13(4), 221. https://doi.org/10.3390/biology13040221