The Impact of Eucalyptus and Pine Plantations on the Taxonomic and Functional Diversity of Dung Beetles (Coleoptera: Scarabaeidae) in the Southern Region of Ecuador
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dung Beetle Sample
2.3. Morphometric Measurement
2.3.1. Taxonomic Diversity
2.3.2. Functional Diversity Based on Morphological Traits
3. Results
3.1. Taxonomical Diversity
3.2. Functional Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Llorente-Culebras, S.; Ladle, R.J.; Santos, A.M.C. Publication Trends in Global Biodiversity Research on Protected Areas. Biol. Conserv. 2023, 281, 109988. [Google Scholar] [CrossRef]
- Poorter, L.; Craven, D.; Jakovac, C.C.; Van Der Sande, M.T.; Amissah, L.; Bongers, F.; Chazdon, R.L.; Farrior, C.E.; Kambach, S.; Meave, J.A.; et al. Multidimensional Tropical Forest Recovery. Science 2021, 374, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Rozendaal, D.M.A.; Bongers, F.; Aide, T.M.; Alvarez-Dávila, E.; Ascarrunz, N.; Balvanera, P.; Becknell, J.M.; Bentos, T.V.; Brancalion, P.H.S.; Cabral, G.A.L.; et al. Biodiversity Recovery of Neotropical Secondary Forests. Sci. Adv. 2019, 5, eaau3114. [Google Scholar] [CrossRef] [PubMed]
- Soto, C.S.; Giombini, M.I.; Giménez Gómez, V.C.; Zurita, G.A. Phenotypic Differentiation in a Resilient Dung Beetle Species Induced by Forest Conversion into Cattle Pastures. Evol. Ecol. 2019, 33, 385–402. [Google Scholar] [CrossRef]
- Maciel, R.; Braga, R.F.; Carvalho, R.L.; Louzada, J.; Slade, E.M. Tropical Savanna Conversion to Exotic Pastures Negatively Affects Taxonomic and Functional Diversity of Dung Beetle Assemblages, but Not Dung Removal. Insect Conserv. Divers. 2023, 16, 588–599. [Google Scholar] [CrossRef]
- Pessôa, M.B.; Souza do Amaral, T.; De Marco Júnior, P.; Hortal, J. Forest Conversion into Pasture Selects Dung Beetle Traits at Different Biological Scales Depending on Species Pool Composition. Ecol. Evol. 2023, 13, e9950. [Google Scholar] [CrossRef]
- Correa, C.M.A.; Braga, R.F.; Puker, A.; Korasaki, V. Patterns of Taxonomic and Functional Diversity of Dung Beetles in a Human-Modified Variegated Landscape in Brazilian Cerrado. J. Insect Conserv. 2019, 23, 89–99. [Google Scholar] [CrossRef]
- Larsen, T.H.; Lopera, A.; Forsyth, A. Understanding Trait-Dependent Community Disassembly: Dung Beetles, Density Functions, and Forest Fragmentation. Conserv. Biol. 2008, 22, 1288–1298. [Google Scholar] [CrossRef]
- Nunes, C.A.; Barlow, J.; França, F.; Berenguer, E.; Solar, R.R.C.; Louzada, J.; Leitão, R.P.; Maia, L.F.; Oliveira, V.H.F.; Braga, R.F.; et al. Functional Redundancy of Amazonian Dung Beetles Confers Community-level Resistance to Primary Forest Disturbance. Biotropica 2021, 53, 1510–1521. [Google Scholar] [CrossRef]
- Cepic, M.; Bechtold, U.; Wilfing, H. Modelling Human Influences on Biodiversity at a Global Scale–A Human Ecology Perspective. Ecol. Model. 2022, 465, 109854. [Google Scholar] [CrossRef]
- Salomão, R.P.; Pordeus, L.M.; De Araujo Lira, A.F.; Iannuzzi, L. Edaphic Beetle (Insecta: Coleoptera) Diversity over a Forest-Matrix Gradient in a Tropical Rainforest. J. Insect Conserv. 2018, 22, 511–519. [Google Scholar] [CrossRef]
- Nichols, E.; Spector, S.; Louzada, J.; Larsen, T.; Amezquita, S.; Favila, M.E. Ecological Functions and Ecosystem Services Provided by Scarabaeinae Dung Beetles. Biol. Conserv. 2008, 141, 1461–1474. [Google Scholar] [CrossRef]
- Portela Salomão, R.; González-Tokman, D.; Dáttilo, W.; López-Acosta, J.C.; Favila, M.E. Landscape Structure and Composition Define the Body Condition of Dung Beetles (Coleoptera: Scarabaeinae) in a Fragmented Tropical Rainforest. Ecol. Indic. 2018, 88, 144–151. [Google Scholar] [CrossRef]
- Raine, E.H.; Gray, C.L.; Mann, D.J.; Slade, E.M. Tropical Dung Beetle Morphological Traits Predict Functional Traits and Show Intraspecific Differences across Land Uses. Ecol. Evol. 2018, 8, 8686–8696. [Google Scholar] [CrossRef] [PubMed]
- Arellano, L.; Noriega, J.A.; Ortega-Martínez, I.J.; Rivera, J.D.; Correa, C.M.A.; Gómez-Cifuentes, A.; Ramírez-Hernández, A.; Barragán, F. Dung Beetles (Coleoptera: Scarabaeidae) in Grazing Lands of the Neotropics: A Review of Patterns and Research Trends of Taxonomic and Functional Diversity, and Functions. Front. Ecol. Evol. 2023, 11, 1084009. [Google Scholar] [CrossRef]
- Griffiths, H.M.; Louzada, J.; Bardgett, R.D.; Beiroz, W.; Beiroz, W.; França, F.; Tregidgo, D.J.; Barlow, J. Biodiversity and Environmental Context Predict Dung Beetle-Mediated Seed Dispersal in a Tropical Forest Field Experiment. Ecology 2015, 96, 1607–1619. [Google Scholar] [CrossRef]
- Legendre, P.; Borcard, D.; Peres-Neto, P.R. Analyzing Beta Diversity: Partitioning the Spatial Variation of Community Composition Data. Ecol. Monogr. 2005, 75, 435–450. [Google Scholar] [CrossRef]
- Whittaker, R.J.; Willis, K.J.; Field, R. Scale and Species Richness: Towards a General, Hierarchical Theory of Species Diversity. J. Biogeogr. 2001, 28, 453–470. [Google Scholar] [CrossRef]
- López-Bedoya, P.A.; Magura, T.; Méndez-Rojas, D.M.; Noriega, J.A.; Horgan, F.G.; Edwards, D.P. Knowledge of Ground-dwelling Beetle Communities in the Tropical Andes: Gaps and Trends. Austral Ecol. 2024, 49, e13413. [Google Scholar] [CrossRef]
- Sánchez Hernández, G.; Gómez, B.; Delgado, L.; Rodríguez-López, M.E.; Chamé-Vázquez, E.R. Diversidad de escarabajos copronecrófagos (Coleoptera: Scarabaeidae: Scarabaeinae) en la Reserva de la Biosfera Selva El Ocote, Chiapas, México. Caldasia 2018, 40, 144–160. [Google Scholar] [CrossRef]
- deCastro-Arrazola, I.; Andrew, N.R.; Berg, M.P.; Curtsdotter, A.; Lumaret, J.; Menéndez, R.; Moretti, M.; Nervo, B.; Nichols, E.S.; Sánchez-Piñero, F.; et al. A Trait-based Framework for Dung Beetle Functional Ecology. J. Anim. Ecol. 2023, 92, 44–65. [Google Scholar] [CrossRef]
- Hébert, M.-P.; Beisner, B.E.; Maranger, R. Linking Zooplankton Communities to Ecosystem Functioning: Toward an Effect-Trait Framework. J. Plankton Res. 2017, 39, 3–12. [Google Scholar] [CrossRef]
- Moretti, M.; De Bello, F.; Ibanez, S.; Fontana, S.; Pezzatti, G.B.; Dziock, F.; Rixen, C.; Lavorel, S. Linking Traits between Plants and Invertebrate Herbivores to Track Functional Effects of Land-use Changes. J. Veg. Sci. 2013, 24, 949–962. [Google Scholar] [CrossRef]
- Myers, N. Tropical Forests: Much More than Stocks of Wood. J. Trop. Ecol. 1988, 4, 209–221. [Google Scholar] [CrossRef]
- Costa-Batista, M.; da Silva, G.; Pereira, L.; Vieira, A. The Dung Beetle Assemblage (Coleoptera: Scarabaeinae) Is Differently Affected by Land Use and Seasonality in Northeastern Brazil. Entomotropica 2016, 31, 95–104. [Google Scholar]
- Anchaluisa, S.B.; Suárez, E. Efectos del fuego sobre la estructura, microclima y funciones ecosistémicas de plantaciones de eucalipto (Eucalyptus globulus; Myrtaceae) en el Distrito Metropolitano de Quito, Ecuador. ACI Av. Cienc. Ing. 2013, 5, 14–23. [Google Scholar] [CrossRef]
- Merizalde-Veliz, D.; Vera-Valdivieso, N.; Cobo-Litardo, E.; Maldonado-Castro, Á.; Mata-Anchundia, D. La silvicultura y su aporte al crecimiento económico del Ecuador en el periodo 2007–2021. Pol. Con. 2023, 8, 147–169. [Google Scholar] [CrossRef]
- FAO. El Eucalipto en la Repoblación Forestal; FAO: Rome, Italy, 1981; ISBN 92-5-300570-X. [Google Scholar]
- Aguirre Mendoza, Z. Biodiversidad de la provincia de Loja, Ecuador. Arnaldoa 2017, 24, 523–542. [Google Scholar] [CrossRef]
- Mora-Aguilar, E.F.; Arriaga-Jiménez, A.; Correa, C.M.A.; Da Silva, P.G.; Korasaki, V.; López-Bedoya, P.A.; Hernández, M.I.M.; Pablo-Cea, J.D.; Salomão, R.P.; Valencia, G.; et al. Toward a Standardized Methodology for Sampling Dung Beetles (Coleoptera: Scarabaeinae) in the Neotropics: A Critical Review. Front. Ecol. Evol. 2023, 11, 1096208. [Google Scholar] [CrossRef]
- Chamorro, W.; Marín-Armijos, D.; Granda, V.; Vaz-de-Mello, F.Z. Listado de especies y clave de géneros y subgéneros de escarabajos estercoleros (Coleoptera: Scarabaeidae: Scarabaeinae) presentes y presuntos para Ecuador. Rev. Colomb. Entomol. 2018, 44, 72. [Google Scholar] [CrossRef]
- Chamorro, W.; Marin-Armijos, D.; Asenjo, A.; Vaz-De-Mello, F.Z. Scarabaeinae Dung Beetles from Ecuador: A Catalog, Nomenclatural Acts, and Distribution Records. ZooKeys 2019, 826, 1–343. [Google Scholar] [CrossRef] [PubMed]
- Salas-Lopez, A.; Violle, C.; Mallia, L.; Orivel, J. Land-use Change Effects on the Taxonomic and Morphological Trait Composition of Ant Communities in French Guiana. Insect Conserv. Divers. 2018, 11, 162–173. [Google Scholar] [CrossRef]
- Alves, V.; Hernández, M. Morphometric Modifications in Canthon Quinquemaculatus Castelnau 1840 (Coleoptera: Scarabaeinae): Sublethal Effects of Transgenic Maize? Insects 2017, 8, 115. [Google Scholar] [CrossRef]
- Marín-Armijos, D.; Chamba-Carrillo, A.; Pedersen, K.M. Morphometric Changes on Dung Beetle Dichotomius problematicus (Coleoptera: Scarabaeidae: Scarabaeinae) Related to Conversion of Forest into Grassland: A Case of Study in the Ecuadorian Amazonia. Ecol. Evol. 2023, 13, e9831. [Google Scholar] [CrossRef]
- Seibold, S.; Gossner, M.M.; Simons, N.K.; Blüthgen, N.; Müller, J.; Ambarlı, D.; Ammer, C.; Bauhus, J.; Fischer, M.; Habel, J.C.; et al. Arthropod Decline in Grasslands and Forests Is Associated with Landscape-Level Drivers. Nature 2019, 574, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and Extrapolation with Hill Numbers: A Framework for Sampling and Estimation in Species Diversity Studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Dufrene, M.; Legendre, P. Species Assemblages and Indicator Species: The Need for a Flexible Asymmetrical Approach. Ecol. Monogr. 1997, 67, 345. [Google Scholar] [CrossRef]
- R-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bates, A.E.; Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Da Silva, P.G.; Salomão, R.P.; González-Tokman, D.; Neves, F.S.; Favila, M.E. Temporal Changes of Taxonomic and Functional Diversity in Dung Beetles Inhabiting Forest Fragments and Pastures in Los Tuxtlas Biosphere Reserve, Mexico. Rev. Mex. Biodivers. 2023, 94, e945059. [Google Scholar] [CrossRef]
- Gómez-Cifuentes, A.; Munevar, A.; Gimenez, V.C.; Gatti, M.G.; Zurita, G.A. Influence of Land Use on the Taxonomic and Functional Diversity of Dung Beetles (Coleoptera: Scarabaeinae) in the Southern Atlantic Forest of Argentina. J. Insect Conserv. 2017, 21, 147–156. [Google Scholar] [CrossRef]
- Alvarado, F.; Salomão, R.P.; Hernandez-Rivera, Á.; De Araujo Lira, A.F. Different Responses of Dung Beetle Diversity and Feeding Guilds from Natural and Disturbed Habitats across a Subtropical Elevational Gradient. Acta Oecol. 2020, 104, 103533. [Google Scholar] [CrossRef]
- Braga, R.F.; Korasaki, V.; Andresen, E.; Louzada, J. Dung Beetle Community and Functions along a Habitat-Disturbance Gradient in the Amazon: A Rapid Assessment of Ecological Functions Associated to Biodiversity. PLoS ONE 2013, 8, e57786. [Google Scholar] [CrossRef] [PubMed]
- Gardner, T.A.; Hernández, M.I.M.; Barlow, J.; Peres, C.A. Understanding the Biodiversity Consequences of Habitat Change: The Value of Secondary and Plantation Forests for Neotropical Dung Beetles. J. Appl. Ecol. 2008, 45, 883–893. [Google Scholar] [CrossRef]
- Filgueiras, B.K.C.; Peres, C.A.; Iannuzzi, L.; Tabarelli, M.; Leal, I.R. Functional Reorganization of Dung Beetle Assemblages in Forest-Replacing Sugarcane Plantations. J. Insect Conserv. 2022, 26, 683–695. [Google Scholar] [CrossRef]
- Correa, C.M.A.; Da Silva, P.G.; Puker, A.; Ad’Vincula, H.L. Exotic Pastureland Is Better than Eucalyptus Monoculture: β-Diversity Responses of Flower Chafer Beetles to Brazilian Atlantic Forest Conversion. Int. J. Trop. Insect Sci. 2021, 41, 137–144. [Google Scholar] [CrossRef]
- Beiroz, W.; Barlow, J.; Slade, E.M.; Borges, C.; Louzada, J.; Sayer, E.J. Biodiversity in Tropical Plantations Is Influenced by Surrounding Native Vegetation but Not Yield: A Case Study with Dung Beetles in Amazonia. For. Ecol. Manag. 2019, 444, 107–114. [Google Scholar] [CrossRef]
- López-Bedoya, P.A.; Magura, T.; Edwards, F.A.; Edwards, D.P.; Rey-Benayas, J.M.; Lövei, G.L.; Noriega, J.A. What Level of Native Beetle Diversity Can Be Supported by Forestry Plantations? A Global Synthesis. Insect Conserv. Divers. 2021, 14, 736–747. [Google Scholar] [CrossRef]
- Barlow, J.; Gardner, T.A.; Araujo, I.S.; Ávila-Pires, T.C.; Bonaldo, A.B.; Costa, J.E.; Esposito, M.C.; Ferreira, L.V.; Hawes, J.; Hernandez, M.I.M.; et al. Quantifying the Biodiversity Value of Tropical Primary, Secondary, and Plantation Forests. Proc. Natl. Acad. Sci. USA 2007, 104, 18555–18560. [Google Scholar] [CrossRef]
- Rivera, J.D.; Da Silva, P.G.; Favila, M.E. Landscape Effects on Taxonomic and Functional Diversity of Dung Beetle Assemblages in a Highly Fragmented Tropical Forest. For. Ecol. Manag. 2021, 496, 119390. [Google Scholar] [CrossRef]
- Salomão, R.P.; Arriaga-Jiménez, A.; Kohlmann, B. The Relationship between Altitudinal Gradients, Diversity, and Body Size in a Dung Beetle (Coleoptera: Scarabaeinae: Onthophagus) Model System. Can. J. Zool. 2021, 99, 33–43. [Google Scholar] [CrossRef]
- Noble, C.D.; Gilroy, J.J.; Berenguer, E.; Vaz-de-Mello, F.Z.; Peres, C.A. Many Losers and Few Winners in Dung Beetle Responses to Amazonian Forest Fragmentation. Biol. Conserv. 2023, 281, 110024. [Google Scholar] [CrossRef]
- Audino, L.D.; Louzada, J.; Comita, L. Dung Beetles as Indicators of Tropical Forest Restoration Success: Is It Possible to Recover Species and Functional Diversity? Biol. Conserv. 2014, 169, 248–257. [Google Scholar] [CrossRef]
- Bremer, L.L.; Farley, K.A. Does Plantation Forestry Restore Biodiversity or Create Green Deserts? A Synthesis of the Effects of Land-Use Transitions on Plant Species Richness. Biodivers. Conserv. 2010, 19, 3893–3915. [Google Scholar] [CrossRef]
- Chowdhury, S.; Jennions, M.D.; Zalucki, M.P.; Maron, M.; Watson, J.E.M.; Fuller, R.A. Protected Areas and the Future of Insect Conservation. Trends Ecol. Evol. 2023, 38, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Lucatero, A.; Jha, S.; Philpott, S.M. Local Habitat Complexity and Its Effects on Herbivores and Predators in Urban Agroecosystems. Insects 2024, 15, 41. [Google Scholar] [CrossRef]
- Philpott, S.M.; Lucatero, A.; Andrade, S.; Hernandez, C.; Bichier, P. Promoting Beneficial Arthropods in Urban Agroecosystems: Focus on Flowers, Maybe Not Native Plants. Insects 2023, 14, 576. [Google Scholar] [CrossRef]
- Moctezuma, V. Spatial Autocorrelation in a Mexican Dung Beetle Ensemble: Implications for Biodiversity Assessment and Monitoring. Ecol. Indic. 2021, 125, 107548. [Google Scholar] [CrossRef]
- Verdú, J.R.; Galante, E. Climatic Stress, Food Availability and Human Activity as Determinants of Endemism Patterns in the Mediterranean Region: The Case of Dung Beetles (Coleoptera, Scarabaeoidea) in the Iberian Peninsula. Divers. Distrib. 2002, 8, 259–274. [Google Scholar] [CrossRef]
- Ratoni, B.; Ahuatzin, D.; Corro, E.J.; Salomão, R.P.; Escobar, F.; López-Acosta, J.C.; Dáttilo, W. Landscape Composition Shapes Biomass, Taxonomic and Functional Diversity of Dung Beetles within Human-Modified Tropical Rainforests. J. Insect Conserv. 2023, 27, 717–728. [Google Scholar] [CrossRef]
- Portela, M.B.; Rodrigues, E.I.; De Sousa Rodrigues Filho, C.A.D.S.R.; Rezende, C.F.; De Oliveira, T.S.D. Do Ecological Corridors Increase the Abundance of Soil Fauna? Écoscience 2020, 27, 45–57. [Google Scholar] [CrossRef]
Area | Land Uses | Codes | Coordinates | Altitude (m a.s.l.) | |
---|---|---|---|---|---|
Latitude | Longitude | ||||
Area 1 (Loja) | Forest | FL1 | −4.036 | −79.196 | 2207 |
FL2 | −4.047 | −79.174 | 2383 | ||
Pinus | PL1 | −4.014 | −79.192 | 2220 | |
PL2 | −4.033 | −79.196 | 2218 | ||
Eucalyptus | EL1 | −4.015 | −79.214 | 2204 | |
EL2 | −4.034 | −79.198 | 2195 | ||
Area 2 (Saraguro) | Forest | FS1 | −3.660 | −79.268 | 2963 |
FS2 | −3.683 | −79.270 | 2944 | ||
Pinus | PS1 | −3.615 | −79.266 | 2877 | |
PS2 | −3.652 | −79.263 | 2962 | ||
Eucalyptus | ES1 | −3.615 | −79.250 | 2615 | |
ES2 | −3.611 | −79.230 | 2353 |
Area 1 | Area 2 | |||||
---|---|---|---|---|---|---|
Species | FL | PL | EL | FS | PS | ES |
Ateuchus aenomicans | 0.7 ± 1.0 | - | - | - | - | - |
Cryptocanthon paradoxus | 3.0 ± 5.5 | - | - | - | - | - |
Deltochilum robustus | - | 0.3 ± 0.8 | - | - | - | - |
Dichotomius cotopaxi | 1.3 ± 1.2 | 0.8 ± 0.8 | 0.2 ± 0.4 | - | 0.06 ± 0.24 | 0.06 ± 0.24 |
Homocopris buckleyi | - | - | - | 6.94 ± 4.01 | 0.94 ± 1.30 | - |
Onoreidium aff. cristatum | - | 0.2 ± 0.4 | 0.2 ± 0.4 | - | - | - |
Onoreidium ohausi | - | - | - | - | - | 0.06 ± 0.24 |
Onthophagus curvicornis | 3.0 ± 4.7 | 12.0 ± 7.5 | 15.0 ± 4.5 | - | 0.11 ± 0.32 | 0.83 ± 1.95 |
Uroxys sp. 1 | 2.8 ± 3.0 | 25.5 ± 24.0 | 1.8 ± 1.8 | - | - | - |
Uroxys sp. 2 | 28.0 ± 34.8 | 120.5 ± 129.0 | 24.8 ± 51.3 | - | - | - |
Richness | 6 | 6 | 5 | 1 | 3 | 3 |
Abundance | 249 | 956 | 250 | 125 | 19 | 17 |
Richness—area | 8 | 4 | ||||
Abundance—area | 1455 | 161 |
Area 1 | Area 2 | |||||
---|---|---|---|---|---|---|
FL | PL | EL | FS | PS | ES | |
Species richness (q0) | 7 | 7.5 | 7.99 | 1 | 3.47 | 2 |
CI | 7–7 | 7–10.10 | 6–12.79 | 1–1 | 3–5.80 | 2–2.93 |
Shannon diversity (q1) | 4 | 2.29 | 2.46 | 1 | 1.85 | 1.31 |
CI | 3.65–4.37 | 2.14–2.45 | 2.22–2.70 | 1–1 | 1.10–2.60 | 0.84–1.78 |
Simpson diversity (q2) | 3.06 | 1.72 | 2.15 | 1 | 1.41 | 1.14 |
CI | 2.77–3.35 | 1.62–1.83 | 2–2.29 | 1–1 | 0.93–1.90 | 0.80–1.48 |
Sample coverage (%) | 100 | 99 | 99 | 100 | 95 | 100 |
Area | Response Variable | Explanatory Variable | Standard Error | Z-Value | p-Value |
---|---|---|---|---|---|
Area 1 | Abundance | Land Uses | |||
(Intercept) | 0.065 | 55.856 | <0.001 | ||
Eucalyptus | 0.091 | 0.773 | 0.439 | ||
Pinus | 0.073 | 19.323 | <0.001 | ||
Chi test: | |||||
Land uses | <0.001 | ||||
Area 2 | Abundance | Land Uses | |||
(Intercept) | 0.089 | 33.950 | <0.001 | ||
Eucalyptus | 0.258 | −6.149 | <0.001 | ||
Pinus | 0.246 | −6.910 | <0.001 | ||
Chi test: | |||||
Land uses | <0.001 |
Area | Variables | Standard Error | t-Value | p-Value |
---|---|---|---|---|
Area 1 | Land uses | |||
(Intercept) | −0.062 | −5.475 | <0.001 | |
Forest | 0.004 | 0.660 | 0.580 | |
Pinus | 0.015 | 2.524 | 0.157 | |
Traits | ||||
Elytra length (EL) | 0.008 | 53.663 | <0.001 | |
Head length (HL) | 0.008 | 23.058 | <0.001 | |
Head width (HW) | 0.008 | 32.493 | <0.001 | |
Metatibia length (mTL) | 0.008 | 23.512 | <0.001 | |
Pronotum high (PH) | 0.008 | 28.123 | <0.001 | |
Pronotum length (PL) | 0.008 | 35.507 | <0.001 | |
Protibia length (pTL) | 0.008 | 24.234 | <0.001 | |
Protibia width (pTW) | 0.008 | 8.389 | <0.001 | |
Pronotum width (PW) | 0.008 | 55.190 | <0.001 | |
Species | ||||
Cryptocanthon paradoxus | −0.054 | −4.577 | <0.001 | |
Deltochilum robustus | 0.429 | 21.375 | <0.001 | |
Dichotomius cotopaxi | 0.395 | 33.996 | <0.001 | |
Onoreidium cristatum | −0.067 | −3.336 | <0.001 | |
Onthophagus curvicornis | 0.069 | 7.308 | <0.001 | |
Uroxys sp. 1 | 0.060 | 6.415 | <0.001 | |
Uroxys sp. 2 | −0.003 | −0.307 | 0.759 | |
Area 2 | Land uses | |||
(Intercept) | 0.0670 | 3.931 | <0.001 | |
Forest | 0.0580 | 0.628 | 0.530 | |
Pinus | 0.0501 | 0.562 | 0.575 | |
Traits | ||||
Elytra length (EL) | 0.048 | 13.589 | <0.001 | |
Head length (HL) | 0.048 | 5.651 | <0.001 | |
Head width (HW) | 0.048 | 9.056 | <0.001 | |
Metatibia length (mTL) | 0.048 | 5.106 | <0.001 | |
Pronotum high (PH) | 0.048 | 8.687 | <0.001 | |
Pronotum length (PL) | 0.048 | 9.488 | <0.001 | |
Protibia length (pTL) | 0.048 | 4.544 | <0.001 | |
Protibia width (pTW) | 0.048 | 0.686 | 0.493 | |
Pronotum width (PW) | 0.048 | 15.682 | <0.001 | |
Species | ||||
Homocopris buckleyi | 0.064 | −1.515 | 0.130 | |
Onoreidium ohausi | 0.096 | −0.118 | 0.907 | |
Onthophagus curvicornis | 0.060 | −6.507 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanmartín-Vivar, K.; Guachizaca-Macas, J.; Marín-Armijos, D. The Impact of Eucalyptus and Pine Plantations on the Taxonomic and Functional Diversity of Dung Beetles (Coleoptera: Scarabaeidae) in the Southern Region of Ecuador. Biology 2024, 13, 841. https://doi.org/10.3390/biology13100841
Sanmartín-Vivar K, Guachizaca-Macas J, Marín-Armijos D. The Impact of Eucalyptus and Pine Plantations on the Taxonomic and Functional Diversity of Dung Beetles (Coleoptera: Scarabaeidae) in the Southern Region of Ecuador. Biology. 2024; 13(10):841. https://doi.org/10.3390/biology13100841
Chicago/Turabian StyleSanmartín-Vivar, Karen, Jessica Guachizaca-Macas, and Diego Marín-Armijos. 2024. "The Impact of Eucalyptus and Pine Plantations on the Taxonomic and Functional Diversity of Dung Beetles (Coleoptera: Scarabaeidae) in the Southern Region of Ecuador" Biology 13, no. 10: 841. https://doi.org/10.3390/biology13100841
APA StyleSanmartín-Vivar, K., Guachizaca-Macas, J., & Marín-Armijos, D. (2024). The Impact of Eucalyptus and Pine Plantations on the Taxonomic and Functional Diversity of Dung Beetles (Coleoptera: Scarabaeidae) in the Southern Region of Ecuador. Biology, 13(10), 841. https://doi.org/10.3390/biology13100841