Using the Constrained Disorder Principle to Navigate Uncertainties in Biology and Medicine: Refining Fuzzy Algorithms
Simple Summary
Abstract
1. Introduction
2. The CDP Defines Systems in the Universe by Their Degree of Variability
3. The CDP Accounts for Quantum-Based Variability
4. Uncertainties, Unknowns, Risks, and Variabilities Characterize Complex Systems
5. The CDP Distinguishes between Biological Uncertainties, Noise, Variability, and Variation
6. The CDP and Evolutionary Dynamics
7. The CDP Defines Decision-Making under Uncertainties
8. The CDP Defines Biological Variability, Adding to the Medical Challenges Posed by Biological Uncertainties
9. The CDP Refines Strategies for Dealing with Uncertainties in Biology
10. CDP Is Utilized to Refine Fuzzy Logic Methods to Address Biological Uncertainties
11. Using the CDP to Refine Fuzzy Control Charts
12. CDP-Based Artificial Intelligence Platforms Assist in Navigating Unknowns and Overcoming Uncertainties, Which Constitute a Method for Using Variability and Regulating It
13. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CDP | Constrained Disorder Principle |
References
- Anchukaitis, K.J.; Smerdon, J.E. Progress and uncertainties in global and hemispheric temperature reconstructions of the Common Era. Quat. Sci. Rev. 2022, 286, 107537. [Google Scholar] [CrossRef]
- Bendowska, A.; Baum, E. The Significance of Cooperation in Interdisciplinary Health Care Teams as Perceived by Polish Medical Students. Int. J. Environ. Res. Public Health 2023, 20, 954. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. The constrained disorder principle defines living organisms and provides a method for correcting disturbed biological systems. Comput. Struct. Biotechnol. J. 2022, 20, 6087–6096. [Google Scholar] [CrossRef]
- Ilan, Y. Making use of noise in biological systems. Prog. Biophys. Mol. Biol. 2023, 178, 83–90. [Google Scholar] [CrossRef]
- Van Strien, M. Was physics ever deterministic? The historical basis of determinism and the image of classical physics. Eur. Phys. J. H 2021, 46, 8. [Google Scholar] [CrossRef]
- Chen, E. Does quantum theory imply the entire Universe is preordained? Nature 2023, 624, 513–515. [Google Scholar] [CrossRef]
- Pernu, T.K. Can Physics Make Us Free? Front. Phys. 2017, 5, 64. [Google Scholar] [CrossRef]
- Rendall, A.D. Theorems on Existence and Global Dynamics for the Einstein Equations. Living Rev. Relativ. 2002, 5, 6. [Google Scholar] [CrossRef]
- Tamm, M. Is Causality a Necessary Tool for Understanding Our Universe, or Is It a Part of the Problem? Entropy 2021, 23, 886. [Google Scholar] [CrossRef]
- Landsman, K. Penrose’s 1965 singularity theorem: From geodesic incompleteness to cosmic censorship. Gen. Relativ. Gravit. 2022, 54, 115. [Google Scholar] [CrossRef]
- Eastwood, M.A. Heisenberg’s uncertainty principle. QJM Int. J. Med. 2016, 110, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Vaidman, L. Quantum theory and determinism. Quantum Stud. Math. Found. 2014, 1, 5–38. [Google Scholar] [CrossRef]
- Aerts, D.; Coecke, B.; Smets, S. On the Origin of Probabilities in Quantum Mechanics: Creative and Contextual Aspects. In Metadebates on Science: The Blue Book of “Einstein Meets Magritte”; Cornelis, G.C., Smets, S., van Bendegem, J.P., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 291–302. [Google Scholar]
- Glattfelder, J.B. A Universe Built of Information. In Information—Consciousness—Reality: How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence; Glattfelder, J.B., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 473–514. [Google Scholar]
- Irwin, K.; Amaral, M.; Chester, D. The Self-Simulation Hypothesis Interpretation of Quantum Mechanics. Entropy 2020, 22, 247. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, J.J.; Hartle, J.B.; Hertog, T. What is the no-boundary wave function of the Universe? Phys. Rev. D 2019, 99, 043526. [Google Scholar] [CrossRef]
- Simpson, W.M.R. Cosmic hylomorphism. Eur. J. Philos. Sci. 2021, 11, 28. [Google Scholar] [CrossRef]
- Zurek, W.H. Quantum theory of the classical: Quantum jumps, Born’s Rule and objective classical reality via quantum Dar-winism. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20180107. [Google Scholar] [CrossRef]
- Ilan, Y. Constrained disorder principle-based variability is fundamental for biological processes: Beyond biological relativity and physiological regulatory networks. Prog. Biophys. Mol. Biol. 2023, 180–181, 37–48. [Google Scholar] [CrossRef]
- Bevan, L.D. The ambiguities of uncertainty: A review of uncertainty frameworks relevant to the assessment of environmental change. Futures 2022, 137, 102919. [Google Scholar] [CrossRef]
- Chow, C.; Sarin, R. Known, Unknown, and Unknowable Uncertainties. Theory Decis. 2002, 52, 127–138. [Google Scholar] [CrossRef]
- Perera, T.; Higgins, D. Theoretical Overview of Known, Unknown and Unknowable Risks for Property Decision Makings. In Proceedings of the 23rd Annual Pacific Rim Real Estate Society Conference, Sydney, NSW, Australia, 15–18 January 2017. [Google Scholar]
- Di Baldassarre, G.; Brandimarte, L.; Beven, K. The seventh facet of uncertainty: Wrong assumptions, unknowns and surprises in the dynamics of human–water systems. Hydrol. Sci. J. 2016, 61, 1748–1758. [Google Scholar] [CrossRef]
- Lele, S.R. How Should We Quantify Uncertainty in Statistical Inference? Front. Ecol. Evol. 2020, 8, 35. [Google Scholar] [CrossRef]
- Loucks, D.P.; van Beek, E. An Introduction to Probability, Statistics, and Uncertainty. In Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications; Loucks, D.P., van Beek, E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 213–300. [Google Scholar]
- Uusitalo, L.; Lehikoinen, A.; Helle, I.; Myrberg, K. An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ. Model. Softw. 2015, 63, 24–31. [Google Scholar] [CrossRef]
- Cooksey, R.W. Descriptive Statistics for Summarising Data. Illus. Stat. Proced. Find. Mean. Quant. Data 2020, 61–139. [Google Scholar] [CrossRef]
- Sigawi, T.; Ilan, Y. Using Constrained-Disorder Principle-Based Systems to Improve the Performance of Digital Twins in Bio-logical Systems. Biomimetics 2023, 8, 359. [Google Scholar] [CrossRef]
- Forkosh, E.; Kenig, A.; Ilan, Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacol. Res. Perspect. 2020, 8, e00616. [Google Scholar] [CrossRef]
- Ilan, Y. Overcoming randomness does not rule out the importance of inherent randomness for functionality. J. Biosci. 2019, 44, 132. [Google Scholar] [CrossRef]
- Ilan, Y. Generating randomness: Making the most out of disordering a false order into a real one. J. Transl. Med. 2019, 17, 49. [Google Scholar] [CrossRef]
- Ilan, Y. Advanced Tailored Randomness: A Novel Approach for Improving the Efficacy of Biological Systems. J. Comput. Biol. 2020, 27, 20–29. [Google Scholar] [CrossRef]
- Ilan, Y. Order Through Disorder: The Characteristic Variability of Systems. Front. Cell Dev. Biol. 2020, 8, 186. [Google Scholar] [CrossRef]
- El-Haj, M.; Kanovitch, D.; Ilan, Y. Personalized inherent randomness of the immune system is manifested by an individualized response to immune triggers and immunomodulatory therapies: A novel platform for designing personalized immunotherapies. Immunol. Res. 2019, 67, 337–347. [Google Scholar] [CrossRef]
- Ilan, Y. Randomness in microtubule dynamics: An error that requires correction or an inherent plasticity required for normal cellular function? Cell Biol. Int. 2019, 43, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J. Cell Physiol. 2019, 234, 7923–7937. [Google Scholar] [CrossRef] [PubMed]
- Ilan-Ber, T.; Ilan, Y. The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Mol. Immunol. 2019, 111, 73–82. [Google Scholar] [CrossRef]
- Ilan, Y. beta-Glycosphingolipids as Mediators of Both Inflammation and Immune Tolerance: A Manifestation of Randomness in Biological Systems. Front. Immunol. 2019, 10, 1143. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Microtubules as a potential platform for energy transfer in biological systems: A target for implementing individualized, dynamic variability patterns to improve organ function. Mol. Cell Biochem. 2022, 478, 375–392. [Google Scholar] [CrossRef]
- Ilan, Y. Enhancing the plasticity, proper function and efficient use of energy of the Sun, genes and microtubules using varia-bility. Clin. Transl. Discov. 2022, 2, e103. [Google Scholar] [CrossRef]
- Shabat, Y.; Lichtenstein, Y.; Ilan, Y. Short-Term Cohousing of Sick with Healthy or Treated Mice Alleviates the Inflammatory Response and Liver Damage. Inflammation 2021, 44, 518–525. [Google Scholar] [CrossRef]
- Thorogood, R.; Mustonen, V.; Aleixo, A.; Aphalo, P.J.; Asiegbu, F.O.; Cabeza, M.; Cairns, J.; Candolin, U.; Cardoso, P.; Eronen, J.T.; et al. Understanding and applying biological resilience, from genes to ecosystems. Npj Biodivers. 2023, 2, 16. [Google Scholar] [CrossRef]
- Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya, U.R.; et al. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf. Fusion 2021, 76, 243–297. [Google Scholar] [CrossRef]
- Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. Mach. Learn. 2021, 110, 457–506. [Google Scholar] [CrossRef]
- Kirchner, M.; Mitter, H.; Schneider, U.A.; Sommer, M.; Falkner, K.; Schmid, E. Uncertainty concepts for integrated modeling-Review and application for identifying uncertainties and uncertainty propagation pathways. Environ. Model. Softw. 2021, 135, 104905. [Google Scholar] [CrossRef]
- Pancaldi, V. Biological noise to get a sense of direction: An analogy between chemotaxis and stress response. Front. Genet. 2014, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Rotnemer-Golinkin, D.; Ilan, Y. Personalized-Inherent Variability in a Time-Dependent Immune Response: A Look into the Fifth Dimension in Biology. Pharmacology 2022, 107, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Finn, E.H.; Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 2019, 365, eaaw9498. [Google Scholar] [CrossRef]
- Schutte, A.E.; Kollias, A.; Stergiou, G.S. Blood pressure and its variability: Classic and novel measurement techniques. Nat. Rev. Cardiol. 2022, 19, 643–654. [Google Scholar] [CrossRef]
- Van den Bosch, O.F.C.; Alvarez-Jimenez, R.; de Grooth, H.J.; Girbes, A.R.J.; Loer, S.A. Breathing variability-implications for anaesthesiology and intensive care. Crit. Care 2021, 25, 280. [Google Scholar] [CrossRef]
- Boripuntakul, S.; Kamnardsiri, T.; Lord, S.R.; Maiarin, S.; Worakul, P.; Sungkarat, S. Gait variability during abrupt slow and fast speed transitions in older adults with mild cognitive impairment. PLoS ONE 2022, 17, e0276658. [Google Scholar] [CrossRef]
- Genon, S.; Eickhoff, S.B.; Kharabian, S. Linking interindividual variability in brain structure to behaviour. Nat. Rev. Neurosci. 2022, 23, 307–318. [Google Scholar] [CrossRef]
- Saha, S.; Baumert, M. Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review. Front. Comput. Neurosci. 2019, 13, 87. [Google Scholar] [CrossRef]
- Crawford, L.; Mills, E.; Meylakh, N.; Macey, P.M.; Macefield, V.G.; Henderson, L.A. Brain activity changes associated with pain perception variability. Cereb. Cortex 2022, 33, 4145–4155. [Google Scholar] [CrossRef]
- Summers, R.L. Entropic Dynamics in a Theoretical Framework for Biosystems. Entropy 2023, 25, 528. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- McEntire, K.D.; Gage, M.; Gawne, R.; Hadfield, M.G.; Hulshof, C.; Johnson, M.A.; Levesque, D.L.; Segura, J.; Pinter-Wollman, N. Understanding Drivers of Variation and Predicting Variability Across Levels of Biological Organization. Integr. Comp. Biol. 2021, 61, 2119–2131. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, S.; Carobene, A.; Bartlett, B.; Coskun, A.; Fernandez-Calle, P.; Jonker, N.; Díaz-Garzón, J.; Aarsand, A.K. Biological variation: Recent development and future challenges. Clin. Chem. Lab. Med. 2023, 61, 741–750. [Google Scholar] [CrossRef]
- Niketa, M.V.; Biren, D.P.; Alex, R.; Shashi, M. The Generation and Applications of Biological Variation Data in Laboratory Medicine. Am. Soc. Clin. Lab. Sci. 2018, 31, 37. [Google Scholar] [CrossRef]
- Sebastian-Gambaro, M.A.; Liron-Hernandez, F.J.; Fuentes-Arderiu, X. Intra- and inter-individual biological variability data bank. Eur. J. Clin. Chem. Clin. Biochem. 1997, 35, 845–852. [Google Scholar] [CrossRef]
- Ali, M.A.; Hossain, M.S.; Juliana, F.M.; Reza, M.S. Evaluation of Biological Variation of Different Clinical Laboratory Analytes in the Blood of Healthy Subjects. Cureus 2023, 15, e36242. [Google Scholar] [CrossRef]
- Hansen, K.D.; Wu, Z.; Irizarry, R.A.; Leek, J.T. Sequencing technology does not eliminate biological variability. Nat. Biotechnol. 2011, 29, 572–573. [Google Scholar] [CrossRef]
- Badrick, T. Biological variation: Understanding why it is so important? Pract. Lab. Med. 2021, 23, e00199. [Google Scholar] [CrossRef]
- Strippoli, P.; Canaider, S.; Noferini, F.; D’Addabbo, P.; Vitale, L.; Facchin, F.; Lenzi, L.; Casadei, R.; Carinci, P.; Zannotti, M.; et al. Uncertainty principle of genetic information in a living cell. Theor. Biol. Med. Model. 2005, 2, 40. [Google Scholar] [CrossRef]
- Brodin, P.; Davis, M.M. Human immune system variation. Nat. Rev. Immunol. 2017, 17, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Next-Generation Personalized Medicine: Implementation of Variability Patterns for Overcoming Drug Resistance in Chronic Diseases. J. Pers. Med. 2022, 12, 1303. [Google Scholar] [CrossRef] [PubMed]
- Sgrò, C.M.; Lowe, A.J.; Hoffmann, A.A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 2011, 4, 326–337. [Google Scholar] [CrossRef]
- Wortel, M.T.; Agashe, D.; Bailey, S.F.; Bank, C.; Bisschop, K.; Blankers, T.; Cairns, J.; Colizzi, E.S.; Cusseddu, D.; Desai, M.M.; et al. Towards evolutionary predictions: Current promises and challenges. Evol. Appl. 2023, 16, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Shivanna, K.R. Climate change and its impact on biodiversity and human welfare. Proc. Indian Natl. Sci. Acad. 2022, 88, 160–171. [Google Scholar] [CrossRef]
- Matsuno, K. The uncertainty principle as an evolutionary engine. Biosystems 1992, 27, 63–76. [Google Scholar] [CrossRef]
- Sahlin, N.-E. Unreliable Probabilities, Paradoxes, and Epistemic Risks. In Handbook of Risk Theory: Epistemology, Decision Theory, Ethics, and Social Implications of Risk; Roeser, S., Hillerbrand, R., Sandin, P., Peterson, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 477–498. [Google Scholar]
- Hoti, F.; Perko, T.; Tafili, V.; Sala, R.; Zeleznik, N.; Tomkiv, Y.; Turcanu, C.; Thijssen, P.; Renn, O. Knowing the unknowns: Uncertainties during radiological emergencies. Int. J. Disaster Risk Reduct. 2021, 59, 102240. [Google Scholar] [CrossRef]
- Faulkner, P.; Feduzi, A.; Runde, J. Unknowns, Black Swans and the risk/uncertainty distinction. Camb. J. Econ. 2017, 41, 1279–1302. [Google Scholar] [CrossRef]
- Speekenbrink, M. Chasing Unknown Bandits: Uncertainty Guidance in Learning and Decision Making. Curr. Dir. Psychol. Sci. 2022, 31, 419–427. [Google Scholar] [CrossRef]
- Kim, I.; Gamble, K.J. Too much or too little information: How unknown uncertainty fuels time inconsistency. SN Bus. Econ. 2022, 2, 17. [Google Scholar] [CrossRef]
- Fischhoff, B.; Broomell, S.B. Judgment and Decision Making. Annu. Rev. Psychol. 2020, 71, 331–355. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Free Will as Defined by the Constrained Disorder Principle: A Restricted, Mandatory, Personalized, Regulated Process for Decision-Making. Integr. Psychol. Behav. Sci. 2024, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Sigawi, T.; Hamtzany, O.; Shakargy, J.D.; Ilan, Y. The Constrained Disorder Principle May Account for Consciousness. Brain Sci. 2024, 14, 209. [Google Scholar] [CrossRef] [PubMed]
- Adler-Milstein, J.; Aggarwal, N.; Ahmed, M.; Castner, J.; Evans, B.J.; Gonzalez, A.A.; James, C.A.; Lin, S.; Mandl, K.D.; Matheny, M.E.; et al. Meeting the Moment: Addressing Barriers and Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis. NAM Perspect. 2022, 2022. [Google Scholar] [CrossRef]
- Han, P.K.; Klein, W.M.; Arora, N.K. Varieties of uncertainty in health care: A conceptual taxonomy. Med. Decis. Mak. 2011, 31, 828–838. [Google Scholar] [CrossRef]
- Theissinger, K.; Fernandes, C.; Formenti, G.; Bista, I.; Berg, P.R.; Bleidorn, C.; Bombarely, A.; Crottini, A.; Gallo, G.R.; Godoy, J.A.; et al. How genomics can help biodiversity conservation. Trends Genet. 2023, 39, 545–559. [Google Scholar] [CrossRef]
- Torres, A.; Nieto, J.J. Fuzzy logic in medicine and bioinformatics. J. Biomed. Biotechnol. 2006, 2006, 91908. [Google Scholar] [CrossRef]
- Rojo-Ramos, J.; Polo-Campos, I.; García-Gordillo, M.Á.; Adsuar, J.C.; Galán-Arroyo, C.; Gómez-Paniagua, S. The Importance of Gender in Body Mass Index, Age, and Body Self-Perception of University Students in Spain. Sustainability 2023, 15, 4848. [Google Scholar] [CrossRef]
- Goetz, L.H.; Schork, N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef]
- Hampel, H.; Au, R.; Mattke, S.; van der Flier, W.M.; Aisen, P.; Apostolova, L.; Chen, C.; Cho, M.; de Santi, S.; Gao, P.; et al. Designing the next-generation clinical care pathway for Alzheimer’s disease. Nat. Aging 2022, 2, 692–703. [Google Scholar] [CrossRef]
- Ilan, Y. Overcoming Compensatory Mechanisms toward Chronic Drug Administration to Ensure Long-Term, Sustainable Beneficial Effects. Mol. Ther. Methods Clin. Dev. 2020, 18, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Bayatra, A.; Nasserat, R.; Ilan, Y. Overcoming Low Adherence to Chronic Medications by Improving their Effectiveness Using a Personalized Second-generation Digital System. Curr. Pharm. Biotechnol. 2024, 25, 2078–2088. [Google Scholar] [CrossRef] [PubMed]
- Hurvitz, N.; Ilan, Y. The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from “Nice to Have” to Mandatory Systems. Clin. Pract. 2023, 13, 994–1014. [Google Scholar] [CrossRef] [PubMed]
- Crespi, E.; Burnap, R.; Chen, J.; Das, M.; Gassman, N.; Rosa, E.; Simmons, R.; Wada, H.; Wang, Z.Q.; Xiao, J.; et al. Resolving the Rules of Robustness and Resilience in Biology Across Scales. Integr. Comp. Biol. 2022, 61, 2163–2179. [Google Scholar] [CrossRef]
- Légaré, F.; Adekpedjou, R.; Stacey, D.; Turcotte, S.; Kryworuchko, J.; Graham, I.D.; Lyddiatt, A.; Politi, M.C.; Thomson, R.; Elwyn, G.; et al. Interventions for increasing the use of shared decision making by healthcare professionals. Cochrane Data Base Syst. Rev. 2018, 7, Cd006732. [Google Scholar] [CrossRef]
- Ilan, Y. Why targeting the microbiome is not so successful: Can randomness overcome the adaptation that occurs following gut manipulation? Clin. Exp. Gastroenterol. 2019, 12, 209–217. [Google Scholar] [CrossRef]
- Van de Velde, C.; Joseph, C.; Simoens, K.; Raes, J.; Bernaerts, K.; Faust, K. Technical versus biological variability in a synthetic human gut community. Gut Microbes 2023, 15, 2155019. [Google Scholar] [CrossRef]
- Chicco, D.; Spolaor, S.; Nobile, M.S. Ten quick tips for fuzzy logic modeling of biomedical systems. PLoS Comput. Biol. 2023, 19, e1011700. [Google Scholar] [CrossRef]
- Ahmadi, H.; Gholamzadeh, M.; Shahmoradi, L.; Nilashi, M.; Rashvand, P. Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review. Comput. Methods Programs Biomed. 2018, 161, 145–172. [Google Scholar] [CrossRef]
- Kaur, J.; Khehra, B.S.; Singh, A. Significance of Fuzzy Logic in the Medical Science. In Computer Vision and Robotics: Proceedings of CVR 2021; Springer Singapore: Singapore, 2022; pp. 497–509. [Google Scholar]
- Liu, F.; Heiner, M.; Gilbert, D. Fuzzy Petri nets for modelling of uncertain biological systems. Brief. Bioinform. 2018, 21, 198–210. [Google Scholar] [CrossRef]
- Baldissera Pacchetti, M. Structural uncertainty through the lens of model building. Synthese 2021, 198, 10377–10393. [Google Scholar] [CrossRef]
- Nica, I.; Delcea, C.; Chiriță, N. Mathematical Patterns in Fuzzy Logic and Artificial Intelligence for Financial Analysis: A Bibliometric Study. Mathematics 2024, 12, 782. [Google Scholar] [CrossRef]
- Liu, F.; Chen, S.; Heiner, M.; Song, H. Modeling biological systems with uncertain kinetic data using fuzzy continuous Petri nets. BMC Syst. Biol. 2018, 12, 42. [Google Scholar] [CrossRef]
- Ilan, Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front. Digit. Health 2020, 2, 569178. [Google Scholar] [CrossRef]
- Njage, P.M.K.; Leekitcharoenphon, P.; Hansen, L.T.; Hendriksen, R.S.; Faes, C.; Aerts, M.; Hald, T. Quantitative Microbial Risk Assessment Based on Whole Genome Sequencing Data: Case of Listeria monocytogenes. Microorganisms 2020, 8, 1772. [Google Scholar] [CrossRef]
- Delignette-Muller, M.L.; Rosso, L. Biological variability and exposure assessment. Int. J. Food Microbiol. 2000, 58, 203–212. [Google Scholar] [CrossRef]
- Weiskopf, D. Uncertainty Visualization: Concepts, Methods, and Applications in Biological Data Visualization. Front. Bioinform. 2022, 2, 3819. [Google Scholar] [CrossRef]
- Beklaryan, A.; Akopov, A. Simulation of Agent-rescuer Behaviour in Emergency Based on Modified Fuzzy Clustering. In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, Singapore, 9–13 May 2016. [Google Scholar]
- Perinot, E.; Fritz, J.; Fusani, L.; Voelkl, B.; Nobile, M.S. Characterization of bird formations using fuzzy modelling. J. R. Soc. Interface 2023, 20, 20220798. [Google Scholar] [CrossRef]
- Batko, K.; Ślęzak, A. The use of Big Data Analytics in healthcare. J. Big Data 2022, 9, 3. [Google Scholar] [CrossRef]
- Aslam, M.U.; Xu, S.; Noor-ul-Amin, M.; Hussain, S.; Waqas, M. Fuzzy control charts for individual observations to analyze variability in health monitoring processes. Appl. Soft Comput. 2024, 164, 111961. [Google Scholar] [CrossRef]
- Alizadehsani, R.; Roshanzamir, M.; Hussain, S.; Khosravi, A.; Koohestani, A.; Zangooei, M.H.; Abdar, M.; Beykikhoshk, A.; Shoeibi, A.; Zare, A.; et al. Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991–2020). Ann. Oper. Res. 2021, 339, 1077–1118. [Google Scholar] [CrossRef] [PubMed]
- Uzun Ozsahin, D.; Uzun, B.; Ozsahin, I.; Mustapha, M.; Musa, M. Fuzzy logic in medicine. In Biomedical Signal Processing and Artificial Intelligence in Healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 153–182. [Google Scholar]
- Zahlmann, G.; Kochner, B.; Ugi, I.; Schuhmann, D.; Liesenfeld, B.; Wegner, A.; Obermaier, M.; Mertz, M. Hybrid fuzzy image processing for situation assessment. IEEE Eng. Med. Biol. Mag. Q. Mag. Eng. Med. Biol. Soc. 2000, 19, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Bhise, V.; Rajan, S.S.; Sittig, D.F.; Morgan, R.O.; Chaudhary, P.; Singh, H. Defining and Measuring Diagnostic Uncertainty in Medicine: A Systematic Review. J. Gen. Intern. Med. 2018, 33, 103–115. [Google Scholar] [CrossRef]
- Zlaugotne, B.; Zihare, L.; Balode, L.; Kalnbaļķīte, A.; Khabdullin, A.; Blumberga, D. Multi-Criteria Decision Analysis Methods Comparison. Environ. Clim. Technol. 2020, 24, 454–471. [Google Scholar] [CrossRef]
- Thokala, P.; Devlin, N.; Marsh, K.; Baltussen, R.; Boysen, M.; Kalo, Z.; Longrenn, T.; Mussen, F.; Peacock, S.; Watkins, J.; et al. Multiple Criteria Decision Analysis for Health Care Decision Making—An Introduction: Report 1 of the ISPOR MCDA Emerging Good Practices Task Force. Value Health 2016, 19, 1–13. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Gareev, I.; Beylerli, O.; Ilyasova, T.; Mashkin, A.; Shi, H. The use of bioinformatic analysis to study intracerebral hemorrhage. Brain Hemorrhages 2024, 5, 188–196. [Google Scholar] [CrossRef]
- Hooshyar, L.; Hernández-Jiménez, M.B.; Khastan, A.; Vasighi, M. An efficient and accurate approach to identify similarities between biological sequences using pair amino acid composition and physicochemical properties. Soft Comput. 2024, 1–17. [Google Scholar] [CrossRef]
- Ku, R.; Jena, R.; Aqel, M.; Srivastava, P.; Mahanti, P. Soft Computing Methodologies in Bioinformatics. Eur. J. Sci. Res. ISSN 2009, 26, 1216–1450. [Google Scholar]
- Al Mohamed, A.A.; Al Mohamed, S.; Zino, M. Application of fuzzy multicriteria decision-making model in selecting pandemic hospital site. Future Bus. J. 2023, 9, 14. [Google Scholar] [CrossRef]
- Slyngstad, L. The Contribution of Variable Control Charts to Quality Improvement in Healthcare: A Literature Review. J. Healthc. Leadersh. 2021, 13, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, A.; Johannssen, A.; Chukhrova, N.; Rasouli, M. Monitoring multistage healthcare processes using state space models and a machine learning based framework. Artif. Intell. Med. 2024, 151, 102826. [Google Scholar] [CrossRef] [PubMed]
- Pérez, B.; Tercero Gómez, V.; Khakifirooz, M. A Review on Statistical Process Control in Healthcare: Data-Driven Monitoring Schemes. IEEE Access 2023, 11, 56248–56272. [Google Scholar] [CrossRef]
- Naveed, M.; Azam, M.; Khan, N.; Aslam, M.; Saleem, M.; Saeed, M. Control charts using half-normal and half-exponential power distributions using repetitive sampling. Sci. Rep. 2024, 14, 226. [Google Scholar] [CrossRef]
- Okezue, M.; Clase, K.; Byrn, S. Instituting Process Control Mechanisms in a Quality Control Analytical Chemistry Laboratory. In Proceedings of the IPAT Transition to BIRS Symposium, Purdue University, West Lafayette, IN, USA, 9–10 March 2019. [Google Scholar]
- Chaudhary, A.M.; Sanaullah, A.; Hanif, M.; Almazah, M.M.A.; Albasheir, N.A.; Al-Duais, F.S. Efficient Monitoring of a Pa-rameter of Non-Normal Process Using a Robust Efficient Control Chart: A Comparative Study. Mathematics 2023, 11, 4157. [Google Scholar] [CrossRef]
- Fretheim, A.; Tomic, O. Statistical process control and interrupted time series: A golden opportunity for impact evaluation in quality improvement. BMJ Qual. Saf. 2015, 24, 748–752. [Google Scholar] [CrossRef]
- Kaya, I.; Kahraman, C. Process capability analyses based on fuzzy measurements and fuzzy control charts. Expert. Syst. Appl. 2011, 38, 3172–3184. [Google Scholar] [CrossRef]
- Roy, S.; Nahar, S.; Akter, M.; Alim, M. Determining the Shortest Distance Using. Fuzzy Triangular Method 2023, 12, 2188–2194. [Google Scholar]
- Li, H.; Liao, X.; Li, Z.; Pan, L.; Yuan, M.; Qin, K. The Operational Laws of Symmetric Triangular Z-Numbers. Mathematics 2024, 12, 1443. [Google Scholar] [CrossRef]
- Mohd Razali, N.; Abdullah, L.; Ghani, A.; Aimran, A. Application of Fuzzy Control Charts: A Review of Its Analysis and Findings. Adv. Mater. Sci. Eng. 2020, 483–490. [Google Scholar]
- Ostertagova, E.; Ostertag, O. Forecasting Using Simple Exponential Smoothing Method. Acta Electrotech. Inform. 2012, 12, 62–66. [Google Scholar] [CrossRef]
- De Camargo, A.A.R.; de Oliveira, M.A. Analysis of the Application of Different Forecasting Methods for Time Series in the Context of the Aeronautical Industry. Eng. Proc. 2023, 39, 74. [Google Scholar] [CrossRef]
- Phuong, N.H.; Kreinovich, V. Fuzzy logic and its applications in medicine. Int. J. Med. Inform. 2001, 62, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Improving Global Healthcare and Reducing Costs Using Second-Generation Artificial Intelligence-Based Digital Pills: A Market Disruptor. Int. J. Environ. Res. Public Health 2021, 18, 811. [Google Scholar] [CrossRef]
- Gelman, R.; Bayatra, A.; Kessler, A.; Schwartz, A.; Ilan, Y. Targeting SARS-CoV-2 receptors as a means for reducing infectivity and improving antiviral and immune response: An algorithm-based method for overcoming resistance to antiviral agents. Emerg. Microbes Infect. 2020, 9, 1397–1406. [Google Scholar] [CrossRef]
- Ishay, Y.; Potruch, A.; Schwartz, A.; Berg, M.; Jamil, K.; Agus, S.; Ilan, Y. A digital health platform for assisting the diagnosis and monitoring of COVID-19 progression: An adjuvant approach for augmenting the antiviral response and mitigating the immune-mediated target organ damage. Biomed. Pharmacother. 2021, 143, 112228. [Google Scholar] [CrossRef]
- Ilan, Y.; Spigelman, Z. Establishing patient-tailored variability-based paradigms for anti-cancer therapy: Using the inherent trajectories which underlie cancer for overcoming drug resistance. Cancer Treat. Res. Commun. 2020, 25, 100240. [Google Scholar] [CrossRef]
- Hurvitz, N.; Azmanov, H.; Kesler, A.; Ilan, Y. Establishing a second-generation artificial intelligence-based system for im-proving diagnosis, treatment, and monitoring of patients with rare diseases. Eur. J. Hum. Genet. 2021, 29, 1485–1490. [Google Scholar] [CrossRef]
- Ilan, Y. Digital Medical Cannabis as Market Differentiator: Second-Generation Artificial Intelligence Systems to Improve Re-sponse. Front. Med. 2021, 8, 788777. [Google Scholar] [CrossRef]
- Gelman, R.; Berg, M.; Ilan, Y. A Subject-Tailored Variability-Based Platform for Overcoming the Plateau Effect in Sports Training: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 1722. [Google Scholar] [CrossRef]
- Azmanov, H.; Bayatra, A.; Ilan, Y. Digital Analgesic Comprising a Second-Generation Digital Health System: Increasing Ef-fectiveness by Optimizing the Dosing and Minimizing Side Effects. J. Pain. Res. 2022, 15, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Hurvitz, N.; Elkhateeb, N.; Sigawi, T.; Rinsky-Halivni, L.; Ilan, Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. Front. Aging 2022, 3, 1044038. [Google Scholar] [CrossRef]
- Kolben, Y.; Azmanov, H.; Gelman, R.; Dror, D.; Ilan, Y. Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections. Ann. Med. 2023, 55, 311–318. [Google Scholar] [CrossRef]
- Adar, O.; Hollander, A.; Ilan, Y. The Constrained Disorder Principle Accounts for the Variability That Characterizes Breathing: A Method for Treating Chronic Respiratory Diseases and Improving Mechanical Ventilation. Adv. Respir. Med. 2023, 91, 350–367. [Google Scholar] [CrossRef]
- Ilan, Y. Special Issue “Computer-Aided Drug Discovery and Treatment”. Int. J. Mol. Sci. 2024, 25, 2683. [Google Scholar] [CrossRef]
- Mackintosh, N.; Armstrong, N. Understanding and managing uncertainty in health care: Revisiting and advancing sociological contributions. Sociol. Health Illn. 2020, 42, 1–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilan, Y. Using the Constrained Disorder Principle to Navigate Uncertainties in Biology and Medicine: Refining Fuzzy Algorithms. Biology 2024, 13, 830. https://doi.org/10.3390/biology13100830
Ilan Y. Using the Constrained Disorder Principle to Navigate Uncertainties in Biology and Medicine: Refining Fuzzy Algorithms. Biology. 2024; 13(10):830. https://doi.org/10.3390/biology13100830
Chicago/Turabian StyleIlan, Yaron. 2024. "Using the Constrained Disorder Principle to Navigate Uncertainties in Biology and Medicine: Refining Fuzzy Algorithms" Biology 13, no. 10: 830. https://doi.org/10.3390/biology13100830
APA StyleIlan, Y. (2024). Using the Constrained Disorder Principle to Navigate Uncertainties in Biology and Medicine: Refining Fuzzy Algorithms. Biology, 13(10), 830. https://doi.org/10.3390/biology13100830