Effects of Pirimiphos-Methyl on Non-Target Invertebrates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guzmán, G.J.A.; Ruiz, G.R. Side effects of insecticides on beneficial insects: A practical tool to identify organic agroecosystems. World J. Agric. Soil Sci. 2019, 4, 1–5. [Google Scholar] [CrossRef]
- Raven, P.H.; Wagner, D.L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. USA 2021, 118, e2002548117. [Google Scholar] [CrossRef] [PubMed]
- Kozak, V.M.; Romanenko, E.R.; Brygadyrenko, V.V. Influence of herbicides, insecticides and fungicides on food consumption and body weight of Rossiulus kessleri (Diplopoda, Julidae). Biosyst. Divers. 2020, 28, 272–280. [Google Scholar] [CrossRef]
- Buijs, J.; Ragas, A.; Mantingh, M. Presence of pesticides and biocides at Dutch cattle farms participating in bird protection programs and potential impacts on entomofauna. Sci. Total Environ. 2022, 838, 156378. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.; Karanth, S.; Liu, J. Pharmacology and toxicology of cholinesterase inhibitors: Uses and misuses of a common mechanism of action. Environ. Toxicol. Pharmacol. 2005, 19, 433–446. [Google Scholar] [CrossRef]
- Makoto, I.; Steven, D.B.; Kazuhiko, M.; David, B.S. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors. Curr. Med. Chem. 2017, 24, 2925–2934. [Google Scholar] [CrossRef]
- Mancini, F.; Woodcock, B.A.; Redhead, J.; Spurgeon, D.J.; Jarvis, S.G.; Pywell, R.F.; Shore, R.F.; Johnson, A.C.; Isaac, N.J.B. Detecting landscape scale consequences of insecticide use on invertebrate communities. Adv. Ecol. Res. 2020, 63, 93–126. [Google Scholar] [CrossRef]
- Salgado, V.L. Selective actions of insecticides on desensitizing and non-desensitizing nicotinic acetylcholine receptors in cockroach (Periplaneta americana) neurons. Pest Manag. Sci. 2021, 77, 3663–3672. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef]
- Nauen, R.; Slater, R.; Sparks, T.C.; Elbert, A.; Mccaffery, A. IRAC: Insecticide Resistance and Mode-of-Action Classification of Insecticides. In Modern Crop Protection Compounds; Jeschke, P., Witschel, M., Krämer, W., Schirmer, U., Eds.; Wiley: Hoboken, NJ, USA, 2019; Volume 3, pp. 995–1012. [Google Scholar] [CrossRef]
- Adu-Acheampong, R.; Ackonor, J.B. The effect of imidacloprid and mixed pirimiphos-methyl and bifenthrin on non-target arthropods of cocoa. Trop. Sci. 2005, 45, 153–154. [Google Scholar] [CrossRef]
- Sparks, T.C.; Storer, N.; Porter, A.; Slater, R.; Nauen, R. Insecticide resistance management and industry: The origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme. Pest Manag. Sci. 2021, 77, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- Bogo, G.; de Groot, G.S.; Medici, S.; Winter, J.; Aizen, M.A.; Morales, C.L. Honeys from Patagonia revealed notable pesticide residues in small-scale agricultural landscapes in the past decade. Int. J. Pest Manag. 2023, 2023, 1–9. [Google Scholar] [CrossRef]
- Putchkov, A.V.; Brygadyrenko, V.V.; Markina, T.Y. Ground beetles of the tribe Carabini (Coleoptra, Carabidae) in the main megapolises of Ukraine. Vestn. Zool. 2019, 53, 3–12. [Google Scholar] [CrossRef]
- Fulton, M.H.; Key, P.B. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ. Toxicol. Chem. 2001, 20, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Miller Mukherjee, I.R.; Malik, J.K.; Doss, R.B.; Dettbarn, W.-D.; Milatovic, D. Chapter 26—Insecticides. In Biomarkers in Toxicology, 2nd ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, UK, 2019; pp. 455–475. [Google Scholar] [CrossRef]
- Pérez, S.; Rial, D.; Beiras, R. Acute toxicity of selected organic pollutants to saltwater (mysid Siriella armata) and freshwater (cladoceran Daphnia magna) ecotoxicological models. Ecotoxicology 2015, 24, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Paunescu, A.; Ponepal, C.M.; Tofan, L.; Brinzea, G.; Tantu, M.M.; Mihaescu, C.F.; Draghiceanu, O.A.; Popoviciu, D.R.; Fagaras, M.M.; Vasile, D.; et al. Ecotoxicological risk assessment of Actellic 50 EC insecticide on non-target organisms in parallel with the application of standardized tests. Toxics 2022, 10, 745. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, R.; Chen, H.; Guo, X.; Huang, Y.; Gao, H.; Wu, X. Preparation, characterization and biological activity evaluation of pirimiphos-methyl microcapsules. J. Polym. Res. 2021, 28, 12. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J. Wild bee toxicity data for pesticide risk assessments. Data 2019, 4, 98. [Google Scholar] [CrossRef]
- Brygadyrenko, V.V. Influence of soil moisture on litter invertebrate community structure of pine forests of the steppe zone of Ukraine. Folia Oecol. 2014, 41, 8–16. [Google Scholar]
- Lamarre, G.P.A.; Juin, Y.; Lapied, E.; Le Gall, P.; Nakamura, A. Using field-based entomological research to promote awareness about forest ecosystem conservation. Nat. Conserv. 2018, 29, 39–56. [Google Scholar] [CrossRef]
- Faly, L.I.; Brygadyrenko, V.V.; Orzekauskaite, A.; Paulauskas, A. Sensitivity of non-target groups of invertebrates to cypermethrin. Biosyst. Divers. 2023, 31, 393–400. [Google Scholar] [CrossRef]
- Khan, T.; Haider, M.S.; Khan, H.A.A. Resistance to grain protectants and synergism in Pakistani strains of Sitophilus oryzae (Coleoptera: Curculionidae). Sci. Rep. 2022, 12, 12401. [Google Scholar] [CrossRef]
- Khan, T.; Khan, H.A.A.; Haider, M.S.; Anwar, W.; Akhter, A. Selection for resistance to pirimiphos-methyl, permethrin and spinosad in a field strain of Sitophilus oryzae: Resistance risk assessment, cross-resistance potential and synergism of insecticides. Environ. Sci. Pollut. Res. 2023, 30, 29921–29928. [Google Scholar] [CrossRef] [PubMed]
- Drummond, J.B.; Bruce Chapman, R. A comparison of two methods to determine the susceptibility of sawtoothed grain beetle (Oryzaephilus surinamensis) populations to pirimiphos-methyl from Canterbury, New Zealand. N. Z. Plant Prot. 2019, 72, 245–252. [Google Scholar] [CrossRef]
- Julio, A.H.F.; Gigliolli, A.A.S.; Cardoso, K.A.K.; Drosdoski, S.D.; Kulza, R.A.; Seixas, F.A.V.; Ruvolo-Takasusuki, M.C.C.; de Souza, C.G.M.; Lapenta, A.S. Multiple resistance to pirimiphos-methyl and bifenthrin in Tribolium castaneum involves the activity of lipases, esterases, and laccase2. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2017, 195, 27–43. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Dover, B.A.; Kambhampati, S. Resistance to chlorpyrifos-methyl, pirimiphos-methyl, and malathion in Brazilian and U.S. populations of Rhyzopertha dominica (Coleoptera: Bostrichidae). J. Econ. Entomol. 1996, 89, 27–32. [Google Scholar] [CrossRef]
- Weinzierl, R.A.; Porter, R.P. Resistance of hairy fungus beetle (Coleoptera: Mycetophagidae) to pirimiphos methyl and malathion. J. Econ. Entomol. 1990, 83, 325–328. [Google Scholar] [CrossRef]
- Kočišová, A.; Novák, P.; Toporčák, J.; Petrovský, M. Development of resistance in field housefly (Musca domestica): Comparison of effects of classic spray regimes versus integrated control methods. Acta Vet. Brno 2002, 71, 401–405. [Google Scholar] [CrossRef]
- Alzabib, A.A.; Al-Sarar, A.S.; Abobakr, Y.; Saleh, A.A. Single and combined mutations of acetylcholinesterase gene giving resistance to pirimiphos-methyl in Musca domestica slaughterhouse populations. Insects 2023, 14, 218. [Google Scholar] [CrossRef]
- Farahani, S.; Zand, A.J.; Mahmoudi, E. Lethal effects of insecticides deltamethrin, spinosad, pyridalyl and pirimiphos-methyl on third instar larvae of blowfly (Lucilia sericata; Dip: Calliphoridae). J. Vet. Res. 2022, 77, 89–97. [Google Scholar] [CrossRef]
- Ilias, A.; Roditakis, E.; Grispou, M.; Nauen, R.; Vontas, J.; Tsagkarakou, A. Efficacy of ketoenols on insecticide resistant field populations of two-spotted spider mite Tetranychus urticae and sweet potato whitefly Bemisia tabaci from Greece. Crop Prot. 2012, 42, 305–311. [Google Scholar] [CrossRef]
- Silalahi, C.N.; Tu, W.C.; Chang, N.T.; Singham, G.V.; Ahmad, I.; Neoh, K.B. Insecticide resistance profiles and synergism of field Aedes aegypti from Indonesia. PLoS Negl. Trop. Dis. 2022, 16, e0010501. [Google Scholar] [CrossRef]
- Coleman, S.; Yihdego, Y.; Sherrard-Smith, E.; Thomas, C.S.; Dengela, D.; Oxborough, R.M.; Dadzie, S.K.; Boakye, D.; Gyamfi, F.; Obiri-Danso, K.; et al. Partial indoor residual spraying with pirimiphos-methyl as an effective and cost-saving measure for the control of Anopheles gambiae s.l. in Northern Ghana. Sci. Rep. 2021, 11, 18055. [Google Scholar] [CrossRef] [PubMed]
- Keïta, M.; Sogoba, N.; Traoré, B.; Kané, F.; Coulibaly, B.; Traoré, S.F.; Doumbia, S. Performance of pirimiphos-methyl based indoor residual spraying on entomological parameters of malaria transmission in the pyrethroid resistance Region of Koulikoro, Mali. Acta Trop. 2021, 216, 105820. [Google Scholar] [CrossRef]
- Dinesh, D.S.; Hassan, F.; Kumar, V.; Kesari, S.; Topno, R.K.; Yadav, R.S. Insecticide susceptibility of Phlebotomus argentipes sandflies, vectors of visceral leishmaniasis in India. Trop. Med. Int. Health 2021, 26, 823–828. [Google Scholar] [CrossRef]
- Fletcher, M.G.; Axtell, R.C. Susceptibility of the bedbug, Cimex lectularius, to selected insecticides and various treated surfaces. Med. Vet. Entomol. 1993, 7, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.A. Long-term impact of rearing substrates on susceptibility to insecticides and metabolic enzyme activities in the house fly Musca domestica. Parasitol. Res. 2024, 123, 157. [Google Scholar] [CrossRef]
- Subekti, N.; Salsabila, S.; Fadhila, A. Efficiacy test of insectiside with pirimiphos-methyl and alpha-cypermethrin on Musca domestica using surface spraying method. IOP Conf. Ser. Earth Environ. Sci. 2024, 1362, 012050. [Google Scholar] [CrossRef]
- Tawfiq, M.; Antary, A.; Ateyyat, M.A.; Abussamin, B.M. Toxicity of certain insecticides to the parasitoid Diaeretiella rapae (Mcintosh) (Hymenoptera: Aphidiidae) and its host, the cabbage aphid Brevicoryne brassicae L. (Homoptera: Aphididae). Aust. J. Basic Appl. Sci. 2010, 4, 994–1000. [Google Scholar]
- Atta, A.A.M.; Gad, H.A.; Al-Ayat, A.A.; Abdelgaleil, S.A.M. Evaluation of three organophosphorus insecticides alone and in combination with inert dusts for the control of Trogoderma granarium Everts (Coleoptera: Dermestidae). J. Stored Prod. Res. 2023, 102, 102104. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Pappa, A.P.A.; Canale, A.; Benelli, G. Being exposed to low concentrations of pirimiphos-methyl and chlorfenapyr has detrimental effects on the mobility of Trogoderma granarium. Pest Manag. Sci. 2023, 79, 5230–5236. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Papanikolaou, N.E.; Kazani, A.N.; Boukouvala, M.C.; Malesios, C. Using multilevel models to explore the impact of abiotic and biotic conditions on the efficacy of pirimiphos-methyl against Tenebrio molitor L. Environ. Sci. Pollut. Res. 2021, 28, 17200–17207. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G.; Žikić, V.; Stanković, S.S.; Ilić Milošević, M.; Skourti, A.; Lazarević, M. Sub-lethal effects of pirimiphos-methyl are expressed to different levels in wings of three stored-product coleopterans: A geometric morphometrics investigation. Insects 2023, 14, 430. [Google Scholar] [CrossRef] [PubMed]
- Bett, P.K.; Kiplagat, A.J.; Deng, A.L. Insecticidal potency of mixtures of plant powders and Actellic SuperTM (pirimiphos-methyl + permethrin) on Callosobruchus chinensis F. and Sitophilus zeamais Motch. East Afr. J. Sci. Technol. Innov. 2021, 3, 363. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, Y.; Zhang, M. Different control methods and their effects on phosphine resistance in Cryptolestes ferrugineus (Stephens). J. Henan Univ. Technol. Nat. Sci. Ed. 2022, 43, 111–116. [Google Scholar] [CrossRef]
- Papanikolaou, N.E.; Kavallieratos, N.G.; Boukouvala, M.C.; Malesios, C. (Quasi)-binomial vs. gaussian models to evaluate thiamethoxam, pirimiphos-methyl, alpha-cypermethrin and deltamethrin on different types of storage bag materials against Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) and Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae). Insects 2021, 12, 182. [Google Scholar] [CrossRef]
- Hast, M.A.; Stevenson, J.C.; Muleba, M.; Chaponda, M.; Kabuya, J.B.; Mulenga, M.; Shields, T.; Moss, W.J.; Norris, D.E. The impact of three years of targeted indoor residual spraying with pirimiphos-methyl on household vector abundance in a high malaria transmission area of Northern Zambia. Am. J. Trop. Med. Hyg. 2021, 104, 683–694. [Google Scholar] [CrossRef]
Order | Family | Species | Result of the Experiment | 800 mg/m2 | 200 mg/m2 | 100 mg/m2 | 50 mg/m2 | 25 mg/m2 | 12.5 mg/m2 | 6.25 mg/m2 | 4.167 mg/m2 | 3.125 mg/m2 | 1.563 mg/m2 | 0.781 mg/m2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isopoda | Porcellionidae | Porcellio laevis Latreille, 1804 | Living | 0 | 0 | 0 | 0 | 3 | 7 | 6 | 8 | 7 | 8 | 8 |
Dead | 8 | 8 | 8 | 8 | 5 | 1 | 2 | 0 | 1 | 0 | 0 | |||
Lithobiomorpha | Lithobiidae | Lithobius forficatus (Linnaeus, 1758) | Living | 0 | 0 | 1 | 3 | 5 | 6 | 7 | 8 | 7 | 8 | 8 |
Dead | 8 | 8 | 7 | 5 | 3 | 2 | 1 | 0 | 1 | 0 | 0 | |||
Julida | Julidae | Cylindroiulus truncorum (Silvestri, 1896) | Living | 0 | 0 | 2 | 4 | 7 | 8 | 8 | 8 | 8 | 8 | 8 |
Dead | 8 | 8 | 6 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Megaphyllum sp. | Living | 0 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 7 | 7 | 6 | 4 | 1 | 0 | 0 | 0 | |||
Dermaptera | Spongiphoridae | Labia minor (Linnaeus, 1758) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 5 | 5 | 6 | 6 |
Dead | 6 | 6 | 6 | 6 | 6 | 6 | 3 | 1 | 1 | 0 | 0 | |||
Hemiptera | Pyrrhocoridae | Pyrrhocoris apterus (Linnaeus, 1758) | Living | 0 | 2 | 3 | 4 | 5 | 8 | 8 | 8 | 8 | 8 | 8 |
Dead | 8 | 6 | 5 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Coleoptera | Carabidae | Carabus convexus Fabricius, 1775 | Living | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 6 | 7 | 8 | 8 |
Dead | 8 | 8 | 8 | 8 | 7 | 7 | 5 | 2 | 1 | 0 | 0 | |||
C. granulatus Linnaeus, 1758 | Living | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 5 | 7 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 6 | 6 | 3 | 1 | 0 | 0 | |||
C. hortensis Linnaeus, 1758 | Living | 0 | 0 | 0 | 1 | 2 | 4 | 5 | 5 | 5 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | |||
Leistus ferrugineus (Linnaeus, 1758) | Living | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 4 | 5 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 5 | 5 | 3 | 3 | 1 | 0 | 0 | 0 | |||
Pterostichus niger (Schaller, 1783) | Living | 0 | 0 | 0 | 1 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | |||
P. melanarius (Illiger, 1798) | Living | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 6 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 6 | 5 | 2 | 0 | 0 | 0 | |||
P. oblongopunctatus (Fabricius, 1787) | Living | 0 | 0 | 0 | 0 | 2 | 5 | 7 | 8 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 6 | 3 | 1 | 0 | 0 | 0 | 0 | |||
Limodromus assimilis (Paykull, 1790) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 7 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 8 | 4 | 1 | 0 | 0 | 0 | |||
Ophonus rufibarbis (Fabricius, 1792) | Living | 0 | 0 | 0 | 0 | 2 | 4 | 5 | 5 | 5 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 5 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | |||
Badister sodalis (Duftschmid, 1812) | Living | 0 | 0 | 0 | 0 | 1 | 4 | 6 | 6 | 6 | 6 | 6 | ||
Dead | 6 | 6 | 6 | 6 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | |||
Harpalus latus (Linnaeus, 1758) | Living | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 5 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 6 | 4 | 3 | 0 | 0 | 0 | |||
H. rufipes (DeGeer, 1774) | Living | 0 | 0 | 0 | 1 | 2 | 5 | 5 | 5 | 5 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | |||
H. xanthopus winkleri Schauberger, 1923 | Living | 0 | 0 | 0 | 1 | 0 | 1 | 4 | 6 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 7 | 8 | 7 | 4 | 2 | 0 | 0 | 0 | |||
Amara nitida Sturm, 1825 | Living | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 5 | 5 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 5 | 5 | 4 | 2 | 0 | 0 | 0 | 0 | |||
Oxypselaphus obscurus (Herbst, 1784) | Living | 0 | 0 | 0 | 0 | 1 | 1 | 4 | 5 | 5 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 5 | 4 | 4 | 1 | 0 | 0 | 0 | 0 | |||
Coleoptera | Staphylinidae | Tachinus signatus Gravenhorst, 1802 | Living | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 3 | 4 | 5 | 5 |
Dead | 5 | 5 | 5 | 5 | 5 | 3 | 2 | 2 | 1 | 0 | 0 | |||
Drusilla canaliculata (Fabricius, 1787) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 4 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 8 | 6 | 4 | 4 | 0 | 0 | |||
Oxytelus sculptus Gravenhorst, 1806 | Living | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 7 | 2 | 0 | |||
Rugilus rufipes Germar, 1836 | Living | 0 | 0 | 0 | 0 | 2 | 6 | 8 | 7 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 6 | 2 | 0 | 1 | 0 | 0 | 0 | |||
Xantholinus tricolor (Fabricius, 1787) | Living | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 4 | 4 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 5 | 4 | 2 | 2 | 1 | 1 | 0 | 0 | |||
Bisnius fimetarius (Gravenhorst, 1802) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 7 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 6 | 5 | 1 | 0 | |||
Philonthus coprophilus Jarrige, 1949 | Living | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 5 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 1 | 0 | 0 | 0 | |||
Ph. decorus (Gravenhorst, 1802) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 7 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 8 | 4 | 1 | 0 | 0 | 0 | |||
Ph. laevicollis (Lacordaire, 1835) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 6 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 8 | 5 | 2 | 0 | 0 | 0 | |||
Ph. nitidus (Fabricius, 1787) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 7 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 8 | 3 | 1 | 0 | 0 | 0 | |||
Platydracus fulvipes Scopoli, 1763 | Living | 0 | 0 | 0 | 1 | 0 | 1 | 4 | 5 | 5 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 4 | 5 | 4 | 1 | 0 | 0 | 0 | 0 | |||
Platydracus latebricola (Gravenhorst, 1806) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 4 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 1 | 1 | 0 | 0 | |||
Coleoptera | Silphidae | Silpha carinata Herbst, 1783 | Living | 0 | 0 | 0 | 0 | 2 | 8 | 7 | 8 | 8 | 8 | 8 |
Dead | 8 | 8 | 8 | 8 | 6 | 0 | 1 | 0 | 0 | 0 | 0 | |||
Phosphuga atrata (Linnaeus, 1758) | Living | 0 | 0 | 0 | 0 | 1 | 4 | 4 | 5 | 5 | 5 | 5 | ||
Dead | 5 | 5 | 5 | 5 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | |||
Coleoptera | Histeridae | Hister fenestus Erichson, 1834 | Living | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 3 | 4 | 8 | 8 |
Dead | 8 | 8 | 8 | 8 | 7 | 6 | 7 | 5 | 4 | 0 | 0 | |||
Coleoptera | Aphodiidae | Aphodius foetens (Fabricius, 1787) | Living | 0 | 0 | 0 | 0 | 0 | 4 | 7 | 8 | 8 | 8 | 8 |
Dead | 8 | 8 | 8 | 8 | 8 | 4 | 1 | 0 | 0 | 0 | 0 | |||
Teuchestes fossor (Linnaeus, 1758) | Living | 0 | 0 | 0 | 0 | 2 | 5 | 6 | 6 | 6 | 6 | 6 | ||
Dead | 6 | 6 | 6 | 6 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | |||
Hymenoptera | Formicidae | Ponera coarctata (Latreille, 1802) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 6 | 8 | 8 | 8 |
Dead | 8 | 8 | 8 | 8 | 8 | 8 | 3 | 2 | 0 | 0 | 0 | |||
Myrmica ruginodis Nylander, 1846 | Living | 0 | 0 | 0 | 0 | 1 | 2 | 6 | 8 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 7 | 6 | 2 | 0 | 0 | 0 | 0 | |||
Lasius flavus (Fabricius, 1782) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 7 | 4 | 0 | |||
L. fuliginosus (Latreille, 1798) | Living | 0 | 0 | 0 | 0 | 1 | 3 | 6 | 8 | 8 | 8 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 7 | 5 | 2 | 0 | 0 | 0 | 0 | |||
L. niger (Linnaeus, 1758) | Living | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 8 | ||
Dead | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 7 | 3 | 0 |
Order | Family | Species | LC50 (Mean ± Standard Error), Milligram of Pirimiphos-Methyl Per m2 | Trophic Group | Average Body Mass (Dry Weight), mg | Body Length, mm |
---|---|---|---|---|---|---|
Isopoda | Porcellionidae | Porcellio laevis Latreille, 1804 | 18.24 ± 3.08 | s | 29 | 10–20 |
Lithobiomorpha | Lithobiidae | Lithobius forficatus (Linnaeus, 1758) | 27.70 ± 2.68 | z | 21 | 18–30 |
Julida | Julidae | Cylindroiulus truncorum (Silvestri, 1896) | 49.22 ± 10.35 | s | 42 | 15–20 |
Megaphyllum sp. | 12.95 ± 1.94 | s | 47 | 17–22 | ||
Dermaptera | Spongiphoridae | Labia minor (Linnaeus, 1758) | 7.91 ± 1.94 | p | 3 | 4–7 |
Hemiptera | Pyrrhocoridae | Pyrrhocoris apterus (Linnaeus, 1758) | 62.63 ± 10.34 | p | 32 | 9–11 |
Coleoptera | Carabidae | Carabus convexus Fabricius, 1775 | 8.74 ± 1.43 | z | 120 | 15–18 |
C. granulatus Linnaeus, 1758 | 7.58 ± 1.46 | z | 106 | 17–23 | ||
C. hortensis Linnaeus, 1758 | 25.25 ± 3.76 | z | 237 | 23–30 | ||
Leistus ferrugineus (Linnaeus, 1758) | 10.65 ± 2.12 | z | 7 | 6.5–8.0 | ||
Pterostichus niger (Schaller, 1783) | 30.29 ± 6.15 | z | 74 | 15–21 | ||
P. melanarius (Illiger, 1798) | 9.62 ± 1.97 | z | 71 | 12–18 | ||
P. oblongopunctatus (Fabricius, 1787) | 18.20 ± 2.80 | z | 13 | 9–12 | ||
Limodromus assimilis (Paykull, 1790) | 9.23 ± 2.58 | z | 15 | 10–13 | ||
Ophonus rufibarbis (Fabricius, 1792) | 22.37 ± 4.15 | f | 11 | 7.5–10.0 | ||
Badister sodalis (Duftschmid, 1812) | 19.24 ± 3.69 | z | 1 | 3.9–4.8 | ||
Harpalus latus (Linnaeus, 1758) | 9.56 ± 1.90 | f | 12 | 8.0–10.5 | ||
H. rufipes (De Geer, 1774) | 28.14 ± 5.68 | p | 47 | 11–16 | ||
H. xanthopus winkleri Schauberger, 1923 | 10.27 ± 2.16 | f | 7 | 6.0–7.5 | ||
Amara nitida Sturm, 1825 | 12.03 ± 2.81 | f | 6 | 6.5–7.5 | ||
Oxypselaphus obscurus (Herbst, 1784) | 14.67 ± 2.81 | z | 4 | 5.0–6.0 | ||
Coleoptera | Staphylinidae | Tachinus signatus Gravenhorst, 1802 | 9.00 ± 1.44 | z | 0.8 | 5–6 |
Drusilla canaliculata (Fabricius, 1787) | 4.63 ± 1.19 | z | 0.6 | 4–4.8 | ||
Oxytelus sculptus Gravenhorst, 1806 | 0.756 ± 0.328 | z | 0.6 | 3.5–4.0 | ||
Rugilus rufipes Germar, 1836 | 19.01 ± 3.30 | z | 5 | 5.5–7.5 | ||
Xantholinus tricolor (Fabricius, 1787) | 13.23 ± 1.48 | z | 8 | 9–12 | ||
Bisnius fimetarius (Gravenhorst, 1802) | 2.12 ± 0.70 | z | 6 | 6.0–7.5 | ||
Philonthus coprophilus Jarrige, 1949 | 8.58 ± 2.44 | z | 7 | 6.6–8.5 | ||
Ph. decorus (Gravenhorst, 1802) | 9.23 ± 2.58 | z | 12 | 11–13 | ||
Ph. laevicollis (Lacordaire, 1835) | 8.14 ± 2.30 | z | 10 | 8.5–14.0 | ||
Ph. nitidus (Fabricius, 1787) | 9.68 ± 2.66 | z | 15 | 10.5–16.0 | ||
Platydracus fulvipes Scopoli, 1763 | 14.64 ± 3.32 | z | 22 | 13–19 | ||
P. latebricola (Gravenhorst, 1806) | 8.02 ± 1.92 | z | 16 | 10.5-15.5 | ||
Coleoptera | Silphidae | Silpha carinata Herbst, 1783 | 21.91 ± 5.00 | p | 74 | 12–23 |
Phosphuga atrata (Linnaeus, 1758) | 18.55 ± 3.22 | z | 42 | 10–16 | ||
Coleoptera | Histeridae | Hister fenestus Erichson, 1834 | 5.32 ± 1.14 | z | 6 | 4–6 |
Coleoptera | Aphodiidae | Aphodius foetens (Fabricius, 1787) | 15.14 ± 3.18 | s | 9 | 6.0–8.5 |
Teuchestes fossor (Linnaeus, 1758) | 22.12 ± 4.21 | s | 41 | 8–13 | ||
Hymenoptera | Formicidae | Ponera coarctata (Latreille, 1802) | 8.98 ± 2.42 | p | 0.3 | 2.0–4.0 |
Myrmica ruginodis Nylander, 1846 | 14.32 ± 2.58 | p | 0.7 | 3.0–4.5 | ||
Lasius flavus (Fabricius, 1782) | 0.481 ± 0.171 | p | 0.3 | 2.5–4.0 | ||
L. fuliginosus (Latreille, 1798) | 14.96 ± 2.53 | p | 0.5 | 3.5–5.5 | ||
L. niger (Linnaeus, 1758) | 0.603 ± 0.234 | p | 0.4 | 3.0–4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faly, L.; Brygadyrenko, V. Effects of Pirimiphos-Methyl on Non-Target Invertebrates. Biology 2024, 13, 823. https://doi.org/10.3390/biology13100823
Faly L, Brygadyrenko V. Effects of Pirimiphos-Methyl on Non-Target Invertebrates. Biology. 2024; 13(10):823. https://doi.org/10.3390/biology13100823
Chicago/Turabian StyleFaly, Liudmyla, and Viktor Brygadyrenko. 2024. "Effects of Pirimiphos-Methyl on Non-Target Invertebrates" Biology 13, no. 10: 823. https://doi.org/10.3390/biology13100823
APA StyleFaly, L., & Brygadyrenko, V. (2024). Effects of Pirimiphos-Methyl on Non-Target Invertebrates. Biology, 13(10), 823. https://doi.org/10.3390/biology13100823