Catching the Big Fish in Big Data: A Meta-Analysis of Zebrafish Kidney scRNA-Seq Datasets Highlights Conserved Molecular Profiles of Macrophages and Neutrophils in Vertebrates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- 1.
- For our meta-analysis, we searched and downloaded the suitable scRNAseq datasets described in our previous study [4] and experiments that were added to GEO NCBI during the last year;
- 2.
- The downloaded datasets were converted to zebrafish gene identifiers (GRCz11). For each experimental dataset, we made a separate dataframe used to create the corresponding Seurat object. Seurat objects were annotated according to the general information for the experiments (GEO identifiers, fish age, and genotype);
- 3.
- Individual Seurat objects went through a soft initial filtering procedure and were merged into a single Seurat. Afterward, to correct batch effects, we used normalization and harmonization procedures. In the resulting space, the main types of immune and non-immune cells of the zebrafish kidney were identified;
- 4.
- Further filtering involved the removal of non-immune cells, immune cells with insufficient coverage, and the removal of genes not specific to immune cells. One experiment was also excluded from the final dataset because of the strong individual batch effect, which cannot be completely eliminated by Harmony and may lead to incorrect data integration;
- 5.
- The final dataset was normalized and harmonized. In the resulting clusters, we identified immune cell types based on literature data, their marker genes, and TFs;
- 6.
- The identified marker genes of different cell types were ranked and classified into one of four groups based on their expression level and the strength of upregulation in the target cell type;
- 7.
- Next, for the most highly specific and highly expressed genes of macrophages and neutrophils, co-expression (Step 7 in Figure 1) and protein–protein interactions (Step 8 in Figure 1) were extracted, which allowed us to reconstruct gene networks relevant to the immune cells of these two types (Step 9 in Figure 1).
2.1. Data Collection
2.2. Data Meta-Analysis
2.2.1. Software and Packages Used
2.2.2. Dataset Integration and Cell Type Identification
- group.by.vars = "orig.ident", project.dim = TRUE, plot_convergence = TRUE, verbose = TRUE, assay.use = "SCT".
2.2.3. Analysis of the Immune Cell Subset and Identification of Marker Genes
2.2.4. Classification of Cell-Type-Specific Markers
2.3. Identification of Human Orthologs of Fish Immune Genes
2.4. Reconstruction of Highly Expressed Macrophage and Neutrophil Gene Networks
2.5. Functional Annotation
3. Results and Discussion
3.1. Zebrafish Kidney Marrow scRNA-Seq Dataset Integration and IIS Cell Classification
3.1.1. Hematopoietic Stem Cells
3.1.2. Macrophages and Macrophage-like Cells
3.1.3. Mature Neutrophils, Immature Neutrophils, and Neutrophil-like Cells
3.1.4. B Cells, T Cells, and Monocytes
3.2. Detailed Analysis of the Molecular Genetic Systems of Immune Cells
3.2.1. The Novel Marker Genes of Zebrafish Macrophages
3.2.2. The Novel Marker Genes of Zebrafish Neutrophils and Immature Neutrophils
3.2.3. The Novel Markers of Other Cell Types
3.2.4. The Novel Transcription Factors Involved in Zebrafish Myelopoesis
3.3. Gene Networks and Functional Annotations of Key Macrophage and Neutrophil Marker Genes Identified through Integration of Zebrafish Kidney scRNA-Seq Datasets
- 1.
- Initial low coverage: The limited coverage of our data analysis was due to the inherent limitations of scRNA-seq technology (see Section 3.1). This limitation was partially addressed through a filtering procedure that allowed us to exclude cells with a minimal number of reads.
- 2.
- Lack of precise information: There was insufficient detailed information on the immune properties and functions of individual genes in the identified immune cell type markers (see Section 3.2). This gap is often addressed by utilizing data from specific studies that examine the function of particular orthologous genes in humans or mouse models.
3.3.1. Macrophage-Specific Gene Network
- 1.
- Twelve genes are related to immune functions. Six cathepsins: ctsa, ctsba, ctsc, ctsh, ctsk, and ctsz; four genes encoding major histocompatibility complex class II proteins (si:busm1-266f07.2 (mhc2a), mhc2dab, cd74a, and cd74b); peptidoglycan recognition protein 5 (pglyrp5) and macrophage migration inhibitory factor (mif);
- 2.
- Eight genes encode integral membrane proteins. Three genes of transporters of proteins into the endoplasmic reticulum (sec61a1, sec61b, and sec61g); three genes of signal sequence receptors (ssr2, ssr3, and ssr4); transmembrane protein 258 (tmem258); a subunit of the oligosaccharyl transferase complex dad1;
- 3.
- Six genes of proton-transporting V-type ATPase complex: atp6ap2, atp6v0e1, atp6v0ca, atp6v1g1, atp6v1e1b, and rnaseka.
3.3.2. Neutrophil-Specific Gene Network
- 1.
- Two genes encoding actin (actb1, actb2) and five genes of actin-related protein 2/3 complex subunit: actr2a, arpc1b, arpc3, arpc4l, and arpc5b;
- 2.
- Six genes related to actin cytoskeleton organization: plastin-2 lcp1, cofilin 1-like cfl1l, profilin pfn1, thymosin beta tmsb4x, myosin heavy chain 9a myh9a, and tropomyosin 1 alpha tpm1;
- 3.
- Four genes involved in glycolytic process: enolase 1a eno1a, enolase 3 eno3, glyceraldehyde-3-phosphate dehydrogenase 2 gapdhs, and glucose-6-phosphate isomerase gpia;
- 4.
- Glutathione reductase gsr, myosin light chain 12 myl12.1, transketolase b tktb, and zgc:153867.
3.3.3. Functional Annotation of Highly Expressed Genes in Zebrafish Macrophages and Neutrophils
3.3.4. Identified Molecular Profiles of Pro- and Anti-Inflammatory Immune Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IIS | Innate immune system |
HSPCs | Hematopoietic stem and progenitor cells |
scRNAseq | Single-cell RNA sequencing |
UMAP | Uniform manifold approximation and projection |
ACPC | Average gene counts per cell |
TF | Transcription factor |
References
- Riera Romo, M.; Pérez-Martínez, D.; Castillo Ferrer, C. Innate immunity in vertebrates: An overview. Immunology 2016, 148, 125–139. [Google Scholar] [CrossRef] [PubMed]
- De Kleer, I.; Willems, F.; Lambrecht, B.; Goriely, S. Ontogeny of myeloid cells. Front. Immunol. 2014, 5, 423. [Google Scholar] [CrossRef]
- Campos-Sánchez, J.C.; Esteban, M.Á. Review of inflammation in fish and value of the zebrafish model. J. Fish Dis. 2021, 44, 123–139. [Google Scholar] [CrossRef]
- Bobrovskikh, A.V.; Zubairova, U.S.; Doroshkov, A.V. Fishing innate immune system properties through the transcriptomic single-cell data of Teleostei. Biology 2023, 12, 1516. [Google Scholar] [CrossRef]
- Bjørgen, H.; Koppang, E.O. Anatomy of teleost fish immune structures and organs. In Principles of Fish Immunology: From Cells and Molecules to Host Protection; Springer: Cham, Switzerland, 2022; pp. 1–30. [Google Scholar] [CrossRef]
- Speirs, Z.C.; Loynes, C.A.; Mathiessen, H.; Elks, P.M.; Renshaw, S.A.; von Gersdorff Jørgensen, L. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. Fish Shellfish Immunol. 2024, 148, 109490. [Google Scholar] [CrossRef]
- Mastrogiovanni, M.; Martínez-Navarro, F.J.; Bowman, T.V.; Cayuela, M.L. Inflammation in development and aging: Insights from the zebrafish model. Int. J. Mol. Sci. 2024, 25, 2145. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, N.; Hong, Y.; Tie, R.; Fan, D.; Lin, A.; Chen, Y.; Xiang, L.x.; Shao, J.z. Single-cell RNA sequencing unveils the hidden powers of zebrafish kidney for generating both hematopoiesis and adaptive antiviral immunity. Elife 2024, 13, RP92424. [Google Scholar] [CrossRef]
- Kirchberger, S.; Shoeb, M.R.; Lazic, D.; Wenninger-Weinzierl, A.; Fischer, K.; Shaw, L.E.; Nogueira, F.; Rifatbegovic, F.; Bozsaky, E.; Ladenstein, R.; et al. Comparative transcriptomics coupled to developmental grading via transgenic zebrafish reporter strains identifies conserved features in neutrophil maturation. Nat. Commun. 2024, 15, 1792. [Google Scholar] [CrossRef]
- Kiss, M.; Van Gassen, S.; Movahedi, K.; Saeys, Y.; Laoui, D. Myeloid cell heterogeneity in cancer: Not a single cell alike. Cellular Immunol. 2018, 330, 188–201. [Google Scholar] [CrossRef]
- Ma, R.Y.; Black, A.; Qian, B.Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 2022, 43, 546–563. [Google Scholar] [CrossRef]
- McLaren, A.S.; Fetit, R.; Wood, C.S.; Falconer, J.; Steele, C.W. Single cell sequencing of neutrophils demonstrates phenotypic heterogeneity and functional plasticity in health, disease, and cancer. Chin. Clin. Oncol. 2023, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Hernández, P.P.; Strzelecka, P.M.; Athanasiadis, E.I.; Hall, D.; Robalo, A.F.; Collins, C.M.; Boudinot, P.; Levraud, J.P.; Cvejic, A. Single-cell transcriptional analysis reveals ILC-like cells in zebrafish. Sci. Immunol. 2018, 3, eaau5265. [Google Scholar] [CrossRef] [PubMed]
- Rougeot, J.; Torraca, V.; Zakrzewska, A.; Kanwal, Z.; Jansen, H.J.; Sommer, F.; Spaink, H.P.; Meijer, A.H. RNAseq profiling of leukocyte populations in zebrafish larvae reveals a cxcl11 chemokine gene as a marker of macrophage polarization during mycobacterial infection. Front. Immunol. 2019, 10, 832. [Google Scholar] [CrossRef]
- Hu, C.B.; Wang, J.; Hong, Y.; Li, H.; Fan, D.D.; Lin, A.F.; Xiang, L.X.; Shao, J.Z. Single-cell transcriptome profiling reveals diverse immune cell populations and their responses to viral infection in the spleen of zebrafish. FASEB J. 2023, 37, e22951. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhao, C.; Yang, Z.; Qu, R.; Li, Y.; Fan, Y.; Tang, J.; Xie, T.; Wen, Z. Cross-organ single-cell transcriptome profiling reveals macrophage and dendritic cell heterogeneity in zebrafish. Cell Rep. 2023, 42, 112793. [Google Scholar] [CrossRef]
- Zernecke, A.; Winkels, H.; Cochain, C.; Williams, J.W.; Wolf, D.; Soehnlein, O.; Robbins, C.S.; Monaco, C.; Park, I.; McNamara, C.A.; et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 2020, 127, 402–426. [Google Scholar] [CrossRef]
- Muus, C.; Luecken, M.D.; Eraslan, G.; Sikkema, L.; Waghray, A.; Heimberg, G.; Kobayashi, Y.; Vaishnav, E.D.; Subramanian, A.; Smillie, C.; et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 2021, 27, 546–559. [Google Scholar] [CrossRef]
- Liu, F.; Yuwono, C.; Tay, A.C.Y.; Wehrhahn, M.C.; Riordan, S.M.; Zhang, L. Analysis of global Aeromonas veronii genomes provides novel information on source of infection and virulence in human gastrointestinal diseases. BMC Genom. 2022, 23, 166. [Google Scholar] [CrossRef]
- Botos, M.A.; Arora, P.; Chouvardas, P.; Mercader, N. Transcriptomic data meta-analysis reveals common and injury model specific gene expression changes in the regenerating zebrafish heart. Sci. Rep. 2023, 13, 5418. [Google Scholar] [CrossRef]
- Bobrovskikh, A.V.; Zubairova, U.S.; Bondar, E.I.; Lavrekha, V.V.; Doroshkov, A.V. Transcriptomic data meta-analysis sheds light on high light response in Arabidopsis thaliana L. Int. J. Mol. Sci. 2022, 23, 4455. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G. Empowering biologists to decode omics data: The Genekitr R package and web server. BMC Bioinform. 2023, 24, 214. [Google Scholar] [CrossRef] [PubMed]
- Satija, R.; Farrell, J.A.; Gennert, D.; Schier, A.F.; Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 2015, 33, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Korsunsky, I.; Millard, N.; Fan, J.; Slowikowski, K.; Zhang, F.; Wei, K.; Baglaenko, Y.; Brenner, M.; Loh, P.r.; Raychaudhuri, S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 2019, 16, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.K.; Chen, S.Y.; Gan, Z.Q.; Zhang, Y.Z.; Yue, T.; Chen, M.M.; Xue, Y.; Hu, H.; Guo, A.Y. AnimalTFDB 4.0: A comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Res. 2023, 51, D39–D45. [Google Scholar] [CrossRef] [PubMed]
- Morabito, S.; Reese, F.; Rahimzadeh, N.; Miyoshi, E.; Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 2023, 3, 100498. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res. 2012, 41, D991–D995. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Iyer, S.; Lobbardi, R.; Moore, J.C.; Chen, H.; Lareau, C.; Hebert, C.; Shaw, M.L.; Neftel, C.; Suva, M.L.; et al. Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing. J. Exp. Med. 2017, 214, 2875–2887. [Google Scholar] [CrossRef]
- Baron, C.S.; Barve, A.; Muraro, M.J.; van der Linden, R.; Dharmadhikari, G.; Lyubimova, A.; de Koning, E.J.; van Oudenaarden, A. Cell type purification by single-cell transcriptome-trained sorting. Cell 2019, 179, 527–542. [Google Scholar] [CrossRef]
- Jiang, M.; Xiao, Y.; Ma, L.; Wang, J.; Chen, H.; Gao, C.; Liao, Y.; Guo, Q.; Peng, J.; Han, X.; et al. Characterization of the zebrafish cell landscape at single-cell resolution. Front. Cell Dev. Biol. 2021, 9, 743421. [Google Scholar] [CrossRef] [PubMed]
- Avagyan, S.; Henninger, J.; Mannherz, W.; Mistry, M.; Yoon, J.; Yang, S.; Weber, M.; Moore, J.; Zon, L. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 2021, 374, 768–772. [Google Scholar] [CrossRef]
- Avagyan, S.; Weber, M.C.; Ma, S.; Prasad, M.; Mannherz, W.P.; Yang, S.; Buenrostro, J.D.; Zon, L.I. Single-cell ATAC-seq reveals GATA2-dependent priming defect in myeloid and a maturation bottleneck in lymphoid lineages. Blood Adv. 2021, 5, 2673–2686. [Google Scholar] [CrossRef] [PubMed]
- Amanda, S.; Tan, T.K.; Ong, J.Z.L.; Theardy, M.S.; Wong, R.W.J.; Huang, X.Z.; Ali, M.Z.; Li, Y.; Gong, Z.; Inagaki, H.; et al. IRF4 drives clonal evolution and lineage choice in a zebrafish model of T-cell lymphoma. Nat. Commun. 2022, 13, 2420. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Yang, Q.; Zhang, S.; Millar, D.G.; Alpert, E.J.; Do, D.; Veloso, A.; Brunson, D.C.; Drapkin, B.J.; Stanzione, M.; et al. Single-cell imaging of T cell immunotherapy responses in vivo. J. Exp. Med. 2021, 218, e20210314. [Google Scholar] [CrossRef] [PubMed]
- Rubin, S.A.; Baron, C.S.; Pessoa Rodrigues, C.; Duran, M.; Corbin, A.F.; Yang, S.P.; Trapnell, C.; Zon, L.I. Single-cell analyses reveal early thymic progenitors and pre-B cells in zebrafish. J. Exp. Med. 2022, 219, e20220038. [Google Scholar] [CrossRef] [PubMed]
- Binder, V.; Li, W.; Faisal, M.; Oyman, K.; Calkins, D.L.; Shaffer, J.; Teets, E.M.; Sher, S.; Magnotte, A.; Belardo, A.; et al. Microenvironmental control of hematopoietic stem cell fate via CXCL8 and protein kinase C. Cell Rep. 2023, 42, 112528. [Google Scholar] [CrossRef]
- Li, G.; Sun, Y.; Kwok, I.; Yang, L.; Wen, W.; Huang, P.; Wu, M.; Li, J.; Huang, Z.; Liu, Z.; et al. Cebp1 and Cebpβ transcriptional axis controls eosinophilopoiesis in zebrafish. Nat. Commun. 2024, 15, 811. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Harrison, P.W.; Amode, M.R.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2024. Nucleic Acids Res. 2024, 52, D891–D899. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Pozzoli, O.; Vella, P.; Iaffaldano, G.; Parente, V.; Devanna, P.; Lacovich, M.; Lamia, C.L.; Fascio, U.; Longoni, D.; Cotelli, F.; et al. Endothelial fate and angiogenic properties of human CD34+ progenitor cells in zebrafish. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Szulc-Dąbrowska, L.; Bossowska-Nowicka, M.; Struzik, J.; Toka, F.N. Cathepsins in bacteria-macrophage interaction: Defenders or victims of circumstance? Front. Cell. Infect. Microbiol. 2020, 10, 601072. [Google Scholar] [CrossRef] [PubMed]
- McArthur, S.; Juban, G.; Gobbetti, T.; Desgeorges, T.; Theret, M.; Gondin, J.; Toller-Kawahisa, J.E.; Reutelingsperger, C.P.; Chazaud, B.; Perretti, M.; et al. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J. Clin. Investig. 2020, 130, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Pan, Q.Z.; Zhong, A.L.; Hu, H.; Zhao, J.J.; Tang, Y.; Hu, W.M.; Li, M.; Weng, D.S.; Chen, M.Y.; et al. Annexin A3 upregulates the infiltrated neutrophil-lymphocyte ratio to remodel the immune microenvironment in hepatocellular carcinoma. Int. Immunopharmacol. 2020, 89, 107139. [Google Scholar] [CrossRef]
- Xu, F.; Guo, M.; Huang, W.; Feng, L.; Zhu, J.; Luo, K.; Gao, J.; Zheng, B.; Kong, L.; Pang, T.; et al. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol. 2020, 36, 101634. [Google Scholar] [CrossRef] [PubMed]
- Ke, K.; Wu, Z.; Lin, J.; Lin, L.; Huang, N.; Yang, W. Increased expression of CD74 in atherosclerosis associated with inflammatory responses of endothelial cells and macrophages. Biochem. Genet. 2024, 62, 294–310. [Google Scholar] [CrossRef]
- Guo, Q.; Lu, T.; Xu, H.; Luo, Q.; Liu, Z.; Jiang, S.; Pan, J.; Lin, S.; Lin, M.; Guo, F. Identification of immune-related genes contributing to head and neck squamous cell carcinoma development using weighted gene co-expression network analysis. Cancer Rep. 2023, 6, e1808. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Q.; Nie, Y.; Yu, Y.; Misra, B.B.; Zabalawi, M.; Chou, J.W.; Key, C.C.C.; Molina, A.J.; Quinn, M.A.; et al. Solute carrier family 37 member 2 (SLC37A2) negatively regulates murine macrophage inflammation by controlling glycolysis. Iscience 2020, 23, 101125. [Google Scholar] [CrossRef]
- Wentzel, A.S.; Petit, J.; van Veen, W.G.; Fink, I.R.; Scheer, M.H.; Piazzon, M.C.; Forlenza, M.; Spaink, H.P.; Wiegertjes, G.F. Transcriptome sequencing supports a conservation of macrophage polarization in fish. Sci. Rep. 2020, 10, 13470. [Google Scholar] [CrossRef]
- Li, Q.; Cui, K.; Xu, D.; Wu, M.; Mai, K.; Ai, Q. Molecular identification of peptidoglycan recognition protein 5 and its functional characterization in innate immunity of large yellow croaker, Larimichthys crocea. Dev. Comp. Immunol. 2021, 124, 104130. [Google Scholar] [CrossRef]
- Beisaw, A.; Kuenne, C.; Guenther, S.; Dallmann, J.; Wu, C.C.; Bentsen, M.; Looso, M.; Stainier, D.Y. AP-1 contributes to chromatin accessibility to promote sarcomere disassembly and cardiomyocyte protrusion during zebrafish heart regeneration. Circ. Res. 2020, 126, 1760–1778. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, Y.; Gao, P.; Lv, Y.; Jia, D.; Sun, K.; Han, Y.; Hu, H.; Tang, Z.; Ren, X.; et al. Knockout of mafba causes inner-ear developmental defects in zebrafish via the impairment of proliferation and differentiation of ionocyte progenitor cells. Biomedicines 2021, 9, 1699. [Google Scholar] [CrossRef]
- Shaw, D.K.; Saraswathy, V.M.; McAdow, A.R.; Zhou, L.; Park, D.; Mote, R.; Johnson, A.N.; Mokalled, M.H. Elevated phagocytic capacity directs innate spinal cord repair. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, H.; Ma, T.; He, Y.; Shen, M.; Song, W.; Wang, J.J.; Shi, J.P.; Wu, M.Y.; Liu, C.; et al. Identification of immune-related genes as prognostic factors in bladder cancer. Sci. Rep. 2020, 10, 19695. [Google Scholar] [CrossRef] [PubMed]
- Mangogna, A.; Varghese, P.M.; Agostinis, C.; Alrokayan, S.H.; Khan, H.A.; Stover, C.M.; Belmonte, B.; Martorana, A.; Ricci, G.; Bulla, R.; et al. Prognostic value of complement properdin in cancer. Front. Immunol. 2021, 11, 614980. [Google Scholar] [CrossRef]
- Ji, P.; Gong, Y.; Jin, M.l.; Wu, H.l.; Guo, L.W.; Pei, Y.C.; Chai, W.J.; Jiang, Y.Z.; Liu, Y.; Ma, X.Y.; et al. In vivo multidimensional CRISPR screens identify Lgals2 as an immunotherapy target in triple-negative breast cancer. Sci. Adv. 2022, 8, eabl8247. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.f.; Wang, Y.c.; Liu, A.; Xiao, Q.w.; Hu, M.C.; Sun, M.z.; Hao, H.y.; Gao, Q.; Zhao, X.; et al. Deficiency of P2RY11 causes narcolepsy and attenuates the recruitment of neutrophils and macrophages in the inflammatory response in zebrafish. Cell Biol. Toxicol. 2024, 40, 36. [Google Scholar] [CrossRef] [PubMed]
- Rovira, M.; Ferrero, G.; Miserocchi, M.; Montanari, A.; Wittamer, V. A single-cell transcriptomic atlas reveals resident dendritic-like cells in the zebrafish brain parenchyma. bioRxiv 2023. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Y.; Hu, L.; Chen, H.; Wu, H.; Chen, J.; Xie, J.; Xu, B.; Wei, Z. A reduction of Syndecan-4 in macrophages promotes atherosclerosis by aggravating the proinflammatory capacity of macrophages. J. Transl. Med. 2022, 20, 319. [Google Scholar] [CrossRef]
- Zack, S.R.; Venkatesan, M.; Nikolaienko, R.; Cook, B.; Melki, R.; Zima, A.V.; Campbell, E.M. Altered vacuole membrane protein 1 (VMP1) expression is associated with increased NLRP3 inflammasome activation and mitochondrial dysfunction. Inflamm. Res. 2024, 73, 563–580. [Google Scholar] [CrossRef]
- Taylor, R.S.; Ruiz Daniels, R.; Dobie, R.; Naseer, S.; Clark, T.C.; Henderson, N.C.; Boudinot, P.; Martin, S.A.; Macqueen, D.J. Single cell transcriptomics of Atlantic salmon (Salmo salar L.) liver reveals cellular heterogeneity and immunological responses to challenge by Aeromonas salmonicida. Front. Immunol. 2022, 13, 984799. [Google Scholar] [CrossRef] [PubMed]
- Guyot, N.; Labas, V.; Harichaux, G.; Chessé, M.; Poirier, J.C.; Nys, Y.; Réhault-Godbert, S. Proteomic analysis of egg white heparin-binding proteins: Towards the identification of natural antibacterial molecules. Sci. Rep. 2016, 6, 27974. [Google Scholar] [CrossRef]
- Foulkes, M.J.; Henry, K.M.; Rougeot, J.; Hooper-Greenhill, E.; Loynes, C.A.; Jeffrey, P.; Fleming, A.; Savage, C.O.; Meijer, A.H.; Jones, S.; et al. Expression and regulation of drug transporters in vertebrate neutrophils. Sci. Rep. 2017, 7, 4967. [Google Scholar] [CrossRef] [PubMed]
- McKelvey, M.C.; Abladey, A.A.; Small, D.M.; Doherty, D.F.; Williams, R.; Scott, A.; Spek, C.A.; Borensztajn, K.S.; Holsinger, L.; Booth, R.; et al. Cathepsin S contributes to lung inflammation in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2022, 205, 769–782. [Google Scholar] [CrossRef]
- Smith, J.N.; Dawson, D.M.; Christo, K.F.; Jogasuria, A.P.; Cameron, M.J.; Antczak, M.I.; Ready, J.M.; Gerson, S.L.; Markowitz, S.D.; Desai, A.B. 15-PGDH inhibition activates the splenic niche to promote hematopoietic regeneration. JCI Insight 2021, 6, e143658. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Han, Y.; Jie, D.; Li, Y.; Yang, H.; Sun, H.; You, C.; Xiao, A.; Liu, Y. Decoding the biology and clinical implication of neutrophils in intracranial aneurysm. Ann. Clin. Transl. Neurol. 2024, 11, 958–972. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wang, J.; Fu, Y.; Li, Y.; Jiang, Q. HSD3B7 as a Prognostic-Related Biomarker Predicts Poor Prognostic in ccRCC; Research Square: Durham, NC, USA, 2022. [Google Scholar] [CrossRef]
- García-López, J.P.; Grimaldi, A.; Chen, Z.; Meneses, C.; Bravo-Tello, K.; Bresciani, E.; Banderas, A.; Burgess, S.M.; Hernández, P.P.; Feijoo, C.G. Ontogenetically distinct neutrophils differ in function and transcriptional profile in zebrafish. Nat. Commun. 2023, 14, 4942. [Google Scholar] [CrossRef]
- Li, W.; Faisal, M.; Shaffer, J.L.; Teets, E.M.; Blaser, B.W. Epigenetic regulation of protein kinase C expression in the hematopoietic niche. Blood 2022, 140, 8624. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, H.; Liang, D.; Chen, Z.; Li, X.; Zhang, K. The role of SRGN in the survival and immune infiltrates of skin cutaneous melanoma (SKCM) and SKCM-metastasis patients. BMC Cancer 2020, 20, 378. [Google Scholar] [CrossRef]
- Morino, K.; Kunimura, K.; Sugiura, Y.; Izumi, Y.; Matsubara, K.; Akiyoshi, S.; Maeda, R.; Hirotani, K.; Sakata, D.; Mizuno, S.; et al. Cholesterol sulfate limits neutrophil recruitment and gut inflammation during mucosal injury. Front. Immunol. 2023, 14, 1131146. [Google Scholar] [CrossRef] [PubMed]
- Pérez, L.A.; Leyton, L.; Valdivia, A. Thy-1 (CD90), integrins and syndecan 4 are key regulators of skin wound healing. Front. Cell Dev. Biol. 2022, 10, 810474. [Google Scholar] [CrossRef]
- Su, T.; He, Y.; Huang, Y.; Ye, M.; Guo, Q.; Xiao, Y.; Cai, G.; Chen, L.; Li, C.; Zhou, H.; et al. Myeloid-derived grancalcin instigates obesity-induced insulin resistance and metabolic inflammation in male mice. Nat. Commun. 2024, 15, 97. [Google Scholar] [CrossRef]
- Catz, S.D.; McLeish, K.R. Therapeutic targeting of neutrophil exocytosis. J. Leukoc. Biol. 2020, 107, 393–408. [Google Scholar] [CrossRef]
- Conrad, C.; Yildiz, D.; Cleary, S.J.; Margraf, A.; Cook, L.; Schlomann, U.; Panaretou, B.; Bowser, J.L.; Karmouty-Quintana, H.; Li, J.; et al. ADAM8 signaling drives neutrophil migration and ARDS severity. JCI Insight 2022, 7, e149870. [Google Scholar] [CrossRef]
- Du, Y.; Ma, Z.; Zheng, J.; Huang, S.; Yang, X.; Song, Y.; Dong, D.; Shi, L.; Xu, D. ATF3 positively regulates antibacterial immunity by modulating macrophage killing and migration functions. Front. Immunol. 2022, 13, 839502. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, T.; Liang, Y.; Cui, W.; Li, D.; Zhang, G.; Deng, Z.; Chen, M.; Sha, K.; Xiao, W.; et al. N2-polarized neutrophils reduce inflammation in rosacea by regulating vascular factors and proliferation of CD4+ T cells. J. Investig. Dermatol. 2022, 142, 1835–1844. [Google Scholar] [CrossRef]
- Wei, K.H.; Lin, I.T.; Chowdhury, K.; Lim, K.L.; Liu, K.T.; Ko, T.M.; Chang, Y.M.; Yang, K.C.; Lai, S.L.B. Comparative single-cell profiling reveals distinct cardiac resident macrophages essential for zebrafish heart regeneration. Elife 2023, 12, e84679. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Alexander, J.S.; Lewis, D.F. Preeclampsia status controls interleukin-6 and soluble IL-6 receptor release from neutrophils and endothelial cells: Relevance to increased inflammatory responses. Pathophysiology 2021, 28, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Yurdagul, A., Jr.; Kong, N.; Gerlach, B.D.; Wang, X.; Ampomah, P.; Kuriakose, G.; Tao, W.; Shi, J.; Tabas, I. ODC (ornithine decarboxylase)-dependent putrescine synthesis maintains MerTK (MER tyrosine-protein kinase) expression to drive resolution. Arterioscler. Thromb. Vasc. Biol. 2021, 41, e144–e159. [Google Scholar] [CrossRef]
- Huo, Y.; Hu, X.; Lü, J.; Luo, F.; Liang, J.; Lei, H.; Lv, A. Single-cell transcriptome, phagocytic activity and immunohistochemical analysis of crucian carp (Carassius auratus) in response to Rahnella aquatilis infection. Fish Shellfish Immunol. 2023, 140, 108970. [Google Scholar] [CrossRef]
- Tokuhisa, M.; Kadowaki, T.; Ogawa, K.; Yamaguchi, Y.; Kido, M.A.; Gao, W.; Umeda, M.; Tsukuba, T. Expression and localisation of Rab44 in immune-related cells change during cell differentiation and stimulation. Sci. Rep. 2020, 10, 10728. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Aravamudhan, S.; Armant, O.; Krüger, M.; Grabher, C. Proteome dynamics in neutrophils of adult zebrafish upon chemically-induced inflammation. Fish Shellfish Immunol. 2014, 40, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Fetit, R.; White, M.; Mills, M.L.; Cortes-Lavaud, X.; McLaren, A.; Falconer, J.; Gilroy, K.; Nixon, C.; Kirschner, K.; Jackstadt, R.; et al. Characterising neutrophil subtypes in cancer using human and murine single-cell RNA sequencing datasets. bioRxiv 2023. [Google Scholar] [CrossRef]
- Chang, C.; Li, H.; Zhang, R. Zebrafish facilitate non-alcoholic fatty liver disease research: Tools, models and applications. Liver Int. 2023, 43, 1385–1398. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Singh, S. Inducible nitric oxide synthase: An asset to neutrophils. J. Leukoc. Biol. 2019, 105, 49–61. [Google Scholar] [CrossRef]
- Olesch, C.; Ringel, C.; Brüne, B.; Weigert, A. Beyond immune cell migration: The emerging role of the sphingosine-1-phosphate receptor S1PR4 as a modulator of innate immune cell activation. Mediat. Inflamm. 2017, 2017, 6059203. [Google Scholar] [CrossRef]
- Loynes, C.A.; Lee, J.A.; Robertson, A.L.; Steel, M.J.; Ellett, F.; Feng, Y.; Levy, B.D.; Whyte, M.K.; Renshaw, S.A. PGE2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Sci. Adv. 2018, 4, eaar8320. [Google Scholar] [CrossRef] [PubMed]
- Trojanek, J.B.; Michałkiewicz, J.; Grzywa-Czuba, R.; Jańczyk, W.; Gackowska, L.; Kubiszewska, I.; Helmin-Basa, A.; Wierzbicka-Rucińska, A.; Szalecki, M.; Socha, P. Expression of matrix metalloproteinases and their tissue inhibitors in peripheral blood leukocytes and plasma of children with nonalcoholic fatty liver disease. Mediat. Inflamm. 2020, 2020, 8327945. [Google Scholar] [CrossRef]
- Roca, F.J.; Mulero, I.; Lopez-Munoz, A.; Sepulcre, M.P.; Renshaw, S.A.; Meseguer, J.; Mulero, V. Evolution of the inflammatory response in vertebrates: Fish TNF-α is a powerful activator of endothelial cells but hardly activates phagocytes. J. Immunol. 2008, 181, 5071–5081. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Wang, Z.; Zhang, X.; Dai, Z.; Wu, W.; Zhang, N.; Liu, Z.; Zhang, J.; Luo, P.; et al. Identify the prognostic and immune profile of VSIR in the tumor microenvironment: A pan-cancer analysis. Front. Cell Dev. Biol. 2022, 10, 821649. [Google Scholar] [CrossRef] [PubMed]
- Huang, C. Tissue Damage Signaling Is Essential for Protective Neutrophil Responses to Microbial Infection in Zebrafish (Danio rerio). Ph.D. Thesis, Weill Medical College of Cornell University, New York, NY, USA, 2018. [Google Scholar]
- Dirks, R.P.; Ordas, A.; Jong-Raadsen, S.; Brittijn, S.A.; Haks, M.C.; Henkel, C.V.; Oravcova, K.; Racz, P.I.; Tuinhof-Koelma, N.; Korzeniowska nee Wiweger, M.I.; et al. The human pathogen Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum trigger the same core set of late innate immune response genes in zebrafish larvae. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zhao, H.; Jin, Z.; Li, J.; Fang, J.; Wu, W. Disulfidptosis-Mediated Immune Microenvironment Regulation Characteristics in Atherosclerosis: Novel Insights from Bioinformatics Analyses; Research Square: Durham, NC, USA, 2024. [Google Scholar] [CrossRef]
- Rehman, S.; Gora, A.H.; Abdelhafiz, Y.; Dias, J.; Pierre, R.; Meynen, K.; Fernandes, J.M.; Sørensen, M.; Brugman, S.; Kiron, V. Potential of algae-derived alginate oligosaccharides and β-glucan to counter inflammation in adult zebrafish intestine. Front. Immunol. 2023, 14, 1183701. [Google Scholar] [CrossRef]
- He, N.; Yang, Y.; Wang, H.; Liu, N.; Yang, Z.; Li, S. Unsaturated alginate oligosaccharides (UAOS) protects against dextran sulfate sodium-induced colitis associated with regulation of gut microbiota. J. Funct. Foods 2021, 83, 104536. [Google Scholar] [CrossRef]
- Schmidt, C.; Berger, T.; Groettrup, M.; Basler, M. Immunoproteasome inhibition impairs T and B cell activation by restraining ERK signaling and proteostasis. Front. Immunol. 2018, 9, 2386. [Google Scholar] [CrossRef] [PubMed]
- Weißenberg, S.Y.; Szelinski, F.; Schrezenmeier, E.; Stefanski, A.L.; Wiedemann, A.; Rincon-Arevalo, H.; Welle, A.; Jungmann, A.; Nordström, K.; Walter, J.; et al. Identification and characterization of post-activated B cells in systemic autoimmune diseases. Front. Immunol. 2019, 10, 2136. [Google Scholar] [CrossRef]
- Valeff, N.; Muzzio, D.O.; Matzner, F.; Dibo, M.; Golchert, J.; Homuth, G.; Abba, M.C.; Zygmunt, M.; Jensen, F. B cells acquire a unique and differential transcriptomic profile during pregnancy. Genomics 2021, 113, 2614–2622. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.X.; Yan, J.H.; Liu, W.; Deng, J. Identifies KCTD5 as a novel cancer biomarker associated with programmed cell death and chemotherapy drug sensitivity. BMC Cancer 2023, 23, 408. [Google Scholar] [CrossRef]
- Lambert, C.; Preijers, F.W.; Yanikkaya Demirel, G.; Sack, U. Monocytes and macrophages in flow: An ESCCA initiative on advanced analyses of monocyte lineage using flow cytometry. Cytom. Part B Clin. Cytom. 2017, 92, 180–188. [Google Scholar] [CrossRef]
- Dietrich, M.A.; Adamek, M.; Teitge, F.; Teich, L.; Jung-Schroers, V.; Malinowska, A.; Świderska, B.; Rakus, K.; Kodzik, N.; Chadzińska, M.; et al. Proteomic analysis of carp seminal plasma provides insights into the immune response to bacterial infection of the male reproductive system. Fish Shellfish Immunol. 2022, 127, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Grainger, S.; Richter, J.; Palazón, R.E.; Pouget, C.; Lonquich, B.; Wirth, S.; Grassme, K.S.; Herzog, W.; Swift, M.R.; Weinstein, B.M.; et al. Wnt9a is required for the aortic amplification of nascent hematopoietic stem cells. Cell Rep. 2016, 17, 1595–1606. [Google Scholar] [CrossRef]
- Malengier-Devlies, B.; Metzemaekers, M.; Wouters, C.; Proost, P.; Matthys, P. Neutrophil homeostasis and emergency granulopoiesis: The example of systemic juvenile idiopathic arthritis. Front. Immunol. 2021, 12, 766620. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, H.; Liu, X.; Yuan, H.; Xu, J.; de Thé, H.; Zhou, J.; Zhu, J. Zbtb14 regulates monocyte and macrophage development through inhibiting pu. 1 expression in zebrafish. Elife 2022, 11, e80760. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zheng, L.; Li, Y.; Huang, T.; Chao, Y.C.; Pan, L.; Zhu, H.; Zhao, Y.; Yu, W.; Li, P. Potential immunotherapeutic targets on myeloid cells for neurovascular repair after ischemic stroke. Front. Neurosci. 2019, 13, 758. [Google Scholar] [CrossRef] [PubMed]
- Thind, M.K.; Uhlig, H.H.; Glogauer, M.; Palaniyar, N.; Bourdon, C.; Gwela, A.; Lancioni, C.L.; Berkley, J.A.; Bandsma, R.H.; Farooqui, A. A metabolic perspective of the neutrophil life cycle: New avenues in immunometabolism. Front. Immunol. 2024, 14, 1334205. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, B.; Yang, H.; Li, F.; Qu, Y.; Lu, L.; Zhang, Q. Exploration of YBX1 role in the prognostic value and immune characteristics by single-cell and bulk sequencing analysis for liver hepatocellular carcinoma. J. Gene Med. 2024, 26, e3680. [Google Scholar] [CrossRef]
- Zhang, Y.; Cen, J.; Jia, Z.; Hsiao, C.D.; Xia, Q.; Wang, X.; Chen, X.; Wang, R.; Jiang, Z.; Zhang, L.; et al. Hepatotoxicity induced by isoniazid-lipopolysaccharide through endoplasmic reticulum stress, autophagy, and apoptosis pathways in zebrafish. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Wang, H. Bisphenol AP Exposure-Induced Inflammatory Response in Zebrafish Embryos Revealed by Transcriptomic Analysis. Environ. Health 2024, 2, 373–380. [Google Scholar] [CrossRef]
- Lv, J.; Zhou, Y.; Zhou, N.; Wang, Z.; Chen, J.; Chen, H.; Wang, D.; Zhou, L.; Wei, K.; Zhang, H.; et al. Epigenetic modification of CSDE1 locus dictates immune recognition of nascent tumorigenic cells. Sci. Transl. Med. 2023, 15, eabq6024. [Google Scholar] [CrossRef]
- Droho, S.; Voigt, A.P.; Sterling, J.K.; Rajesh, A.; Chan, K.S.; Cuda, C.M.; Perlman, H.; Lavine, J.A. NR4A1 deletion promotes pro-angiogenic polarization of macrophages derived from classical monocytes in a mouse model of neovascular age-related macular degeneration. J. Neuroinflammation 2023, 20, 238. [Google Scholar] [CrossRef]
- Du, H.; Sun, J.; Wang, X.; Zhao, L.; Liu, X.; Zhang, C.; Wang, F.; Wu, J. FOSL2-mediated transcription of ISG20 induces M2 polarization of macrophages and enhances tumorigenic ability of glioblastoma cells. J. Neuro-Oncol. 2024, 169, 659–670. [Google Scholar] [CrossRef]
- Liu, B.; Chen, P.; Xi, D.; Zhu, H.; Gao, Y. ATF4 regulates CCL2 expression to promote endometrial cancer growth by controlling macrophage infiltration. Exp. Cell Res. 2017, 360, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, E.H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Hayashi, M.; Sekine, H.; Tanaka, N.; Moriguchi, T.; Motohashi, H.; Nakayama, K.; et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 2016, 7, 11624. [Google Scholar] [CrossRef]
- Shang, S.; Yang, C.; Chen, F.; Xiang, R.S.; Zhang, H.; Dai, S.Y.; Liu, J.; Lv, X.X.; Zhang, C.; Liu, X.T.; et al. ID1 expressing macrophages support cancer cell stemness and limit CD8+ T cell infiltration in colorectal cancer. Nat. Commun. 2023, 14, 7661. [Google Scholar] [CrossRef] [PubMed]
- Denans, N.; Tran, N.T.; Swall, M.E.; Diaz, D.C.; Blanck, J.; Piotrowski, T. An anti-inflammatory activation sequence governs macrophage transcriptional dynamics during tissue injury in zebrafish. Nat. Commun. 2022, 13, 5356. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Li, Y.; Deng, P.; Yang, C.; Li, Y.; Liao, L.; Zhu, Z.; Wang, Y.; Huang, R. miR-2188-5p promotes GCRV replication by the targeted degradation of klf2a in Ctenopharyngodon idellus. Dev. Comp. Immunol. 2023, 138, 104516. [Google Scholar] [CrossRef] [PubMed]
- Cao, H. Lipopolysaccharide regulation of antiinflammatory tristetraprolin family and proinflammatory gene expression in mouse macrophages. BMC Res. Notes 2024, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Vegliante, M.C.; Mazzara, S.; Zaccaria, G.M.; De Summa, S.; Esposito, F.; Melle, F.; Motta, G.; Sapienza, M.R.; Opinto, G.; Volpe, G.; et al. NR1H3 (LXRα) is associated with pro-inflammatory macrophages, predicts survival and suggests potential therapeutic rationales in diffuse large b-cell lymphoma. Hematol. Oncol. 2022, 40, 864–875. [Google Scholar] [CrossRef]
- Dinglong, Y.; Shuai, C.; Yujing, C.; Beiyang, W.; Guohao, Z.; Zhiqiang, Z. Identification of Key Genes and Competitive Endogenous RNA Network Construction in Osteonecrosis of the Femoral Head by Integrated Bioinformatics Analysis; Research Square: Durham, NC, USA, 2021. [Google Scholar] [CrossRef]
- Ren, J.; Yan, D.; Wang, Y.; Zhang, J.; Li, M.; Xiong, W.; Jing, X.; Li, P.; Zhao, W.; Xiong, X.; et al. Inhibitor of differentiation-2 protein ameliorates DSS-induced ulcerative colitis by inhibiting NF-κB activation in neutrophils. Front. Immunol. 2021, 12, 760999. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ruiz, L.; Lozano-Gil, J.M.; Naranjo-Sánchez, E.; Martínez-Balsalobre, E.; Martínez-López, A.; Lachaud, C.; Blanquer, M.; Phung, T.K.; García-Moreno, D.; Cayuela, M.L.; et al. ZAKα/P38 kinase signaling pathway regulates hematopoiesis by activating the NLRP1 inflammasome. EMBO Mol. Med. 2023, 15, e18142. [Google Scholar] [CrossRef]
- Hou, Y.; Khatri, P.; Rindy, J.; Schultz, Z.; Gao, A.; Chen, Z.; Gibson, A.L.; Huttenlocher, A.; Dinh, H.Q. Single-cell transcriptional landscape of temporal neutrophil response to burn wound in larval zebrafish. bioRxiv 2024. [Google Scholar] [CrossRef]
- Brown, G. Retinoic acid receptor regulation of decision-making for cell differentiation. Front. Cell Dev. Biol. 2023, 11, 1182204. [Google Scholar] [CrossRef]
- Rauschmeier, R.; Reinhardt, A.; Gustafsson, C.; Glaros, V.; Artemov, A.V.; Dunst, J.; Taneja, R.; Adameyko, I.; Månsson, R.; Busslinger, M.; et al. Bhlhe40 function in activated B and TFH cells restrains the GC reaction and prevents lymphomagenesis. J. Exp. Med. 2021, 219, e20211406. [Google Scholar] [CrossRef] [PubMed]
- Wiehagen, K.R.; Corbo-Rodgers, E.; Li, S.; Staub, E.S.; Hunter, C.A.; Morrisey, E.E.; Maltzman, J.S. Foxp4 is dispensable for T cell development, but required for robust recall responses. PLoS ONE 2012, 7, e42273. [Google Scholar] [CrossRef] [PubMed]
- Meijer, A.H.; van der Sar, A.M.; Cunha, C.; Lamers, G.E.; Laplante, M.A.; Kikuta, H.; Bitter, W.; Becker, T.S.; Spaink, H.P. Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Dev. Comp. Immunol. 2008, 32, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Sukhorukov, V.N.; Khotina, V.A.; Bagheri Ekta, M.; Ivanova, E.A.; Sobenin, I.A.; Orekhov, A.N. Endoplasmic reticulum stress in macrophages: The vicious circle of lipid accumulation and pro-inflammatory response. Biomedicines 2020, 8, 210. [Google Scholar] [CrossRef]
- Lai, H.C.; James, A.; Luff, J.; De Souza, P.; Quek, H.; Ho, U.; Lavin, M.F.; Roberts, T.L. Regulation of RNA degradation pathways during the lipopolysaccharide response in macrophages. J. Leucoc. Biol. 2021, 109, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Zhang, S.; Wang, G.; Zhao, P.; Sun, J.; Zhou, J.; Gan, H.; Jeon, R.; Li, Q.; Herrmann, J.; et al. Mitochondrial pyruvate carrier-mediated metabolism is dispensable for the classical activation of macrophages. Nat. Metab. 2023, 5, 804–820. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Hu, P.; Ni, L.; Shen, L.; Zhang, Y.; Ji, Z.; Cui, Y.; Guo, M.; Wang, H.; Ran, L.; et al. Serine metabolism orchestrates macrophage polarization by regulating the IGF1–p38 axis. Cell. Mol. Immunol. 2022, 19, 1263–1278. [Google Scholar] [CrossRef]
- Yang, D.; Yang, M.; Yin, Y.; Kou, T.; Peng, L.; Chen, Z.; Zheng, J.; Peng, B. Serine metabolism tunes immune responses to promote Oreochromis niloticus survival upon Edwardsiella tarda infection. mSystems 2021, 6, e0042621. [Google Scholar] [CrossRef]
- Wculek, S.K.; Heras-Murillo, I.; Mastrangelo, A.; Mañanes, D.; Galán, M.; Miguel, V.; Curtabbi, A.; Barbas, C.; Chandel, N.S.; Enríquez, J.A.; et al. Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis. Immunity 2023, 56, 516–530. [Google Scholar] [CrossRef]
- Lv, P.; Liu, F. Heme-deficient primitive red blood cells induce HSPC ferroptosis by altering iron homeostasis during zebrafish embryogenesis. Development 2023, 150, dev201690. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Y.; Guo, L.; Gao, W.; Tang, T.L.; Yan, M. Interaction between macrophages and ferroptosis. Cell Death Dis. 2022, 13, 355. [Google Scholar] [CrossRef]
- Antoine, T.E.; Jones, K.S.; Dale, R.M.; Shukla, D.; Tiwari, V. Zebrafish: Modeling for herpes simplex virus infections. Zebrafish 2014, 11, 17–25. [Google Scholar] [CrossRef]
- Lee, D.H.; Ghiasi, H. Roles of M1 and M2 macrophages in herpes simplex virus 1 infectivity. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.; Bohn, P.; Bhat, H.; Jastrow, H.; Walkenfort, B.; Cansiz, F.; Fink, J.; Bauer, M.; Olszewski, D.; Ramos-Nascimento, A.; et al. Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease. Nat. Commun. 2020, 11, 1338. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.B.; Karthikeyan, M.; Ramasamy, S. Zebrafish acid ceramidase: Expression in Pichia pastoris GS115 and biochemical characterization. Int. J. Biol. Macromol. 2019, 122, 587–593. [Google Scholar] [CrossRef]
- Almeida-da Silva, C.L.C.; Savio, L.E.B.; Coutinho-Silva, R.; Ojcius, D.M. The role of NOD-like receptors in innate immunity. Front. Immunol. 2023, 14, 1122586. [Google Scholar] [CrossRef]
- Watts, C. Lysosomes and lysosome-related organelles in immune responses. FEBS Open Bio 2022, 12, 678–693. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Woo, Y.; Hahn, T.W.; Jung, Y.M.; Jung, Y.J. Formation and maturation of the phagosome: A key mechanism in innate immunity against intracellular bacterial infection. Microorganisms 2020, 8, 1298. [Google Scholar] [CrossRef]
- Kemp, M.G. Crosstalk between apoptosis and autophagy: Environmental genotoxins, infection, and innate immunity. J. Cell Death 2017, 10, 1179670716685085. [Google Scholar] [CrossRef] [PubMed]
- Sadiku, P.; Willson, J.A.; Ryan, E.M.; Sammut, D.; Coelho, P.; Watts, E.R.; Grecian, R.; Young, J.M.; Bewley, M.; Arienti, S.; et al. Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis. Cell Metab. 2021, 33, 411–423. [Google Scholar] [CrossRef]
- Fang, X.; Ma, L.; Wang, Y.; Ren, F.; Yu, Y.; Yuan, Z.; Wei, H.; Zhang, H.; Sun, Y. Neutrophil extracellular traps accelerate vascular smooth muscle cell proliferation via Akt/CDKN1b/TK1 accompanying with the occurrence of hypertension. J. Hypertens. 2022, 40, 2045–2057. [Google Scholar] [CrossRef] [PubMed]
- Wirrig, C.; McKean, J.S.; Wilson, H.M.; Nixon, G.F. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells. Biochem. Pharmacol. 2016, 115, 43–50. [Google Scholar] [CrossRef]
- Bonetti, J.; Corti, A.; Lerouge, L.; Pompella, A.; Gaucher, C. Phenotypic Modulation of Macrophages and Vascular Smooth Muscle Cells in Atherosclerosis—Nitro-Redox Interconnections. Antioxidants 2021, 10, 516. [Google Scholar] [CrossRef]
- Bruton, F.A.; Kaveh, A.; Ross-Stewart, K.M.; Matrone, G.; Oremek, M.E.; Solomonidis, E.G.; Tucker, C.S.; Mullins, J.J.; Lucas, C.D.; Brittan, M.; et al. Macrophages trigger cardiomyocyte proliferation by increasing epicardial vegfaa expression during larval zebrafish heart regeneration. Dev. Cell 2022, 57, 1512–1528. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kang, S.U.; Lee, M.H.; Kim, H.J.; Han, C.H.; Won, H.R.; Park, Y.U.; Kim, C.H. GnRH impairs diabetic wound healing through enhanced NETosis. Cell. Mol. Immunol. 2020, 17, 856–864. [Google Scholar] [CrossRef]
- Morrison, T.; Watts, E.R.; Sadiku, P.; Walmsley, S.R. The emerging role for metabolism in fueling neutrophilic inflammation. Immunol. Rev. 2023, 314, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Juarez, C.F.; Schilf, P.; Li, J.; Zappia, M.P.; Bao, L.; Patel, P.M.; Gieseler-Tillmann, J.; Murthy, S.; Cole, C.; Sverdlov, M.; et al. C-type lectin receptor expression is a hallmark of neutrophils infiltrating the skin in epidermolysis bullosa acquisita. Front. Immunol. 2023, 14, 1266359. [Google Scholar] [CrossRef]
- Parkos, C.A. Neutrophil-epithelial interactions: A double-edged sword. Am. J. Pathol. 2016, 186, 1404–1416. [Google Scholar] [CrossRef]
- Strizova, Z.; Benesova, I.; Bartolini, R.; Novysedlak, R.; Cecrdlova, E.; Foley, L.K.; Striz, I. M1/M2 macrophages and their overlaps–myth or reality? Clin. Sci. 2023, 137, 1067–1093. [Google Scholar] [CrossRef]
- Jones, H.R.; Robb, C.T.; Perretti, M.; Rossi, A.G. The role of neutrophils in inflammation resolution. In Proceedings of the Seminars in Immunology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 28, pp. 137–145. [Google Scholar] [CrossRef]
- Nguyen-Chi, M.; Laplace-Builhe, B.; Travnickova, J.; Luz-Crawford, P.; Tejedor, G.; Phan, Q.T.; Duroux-Richard, I.; Levraud, J.P.; Kissa, K.; Lutfalla, G.; et al. Identification of polarized macrophage subsets in zebrafish. Elife 2015, 4, e07288. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, X.; Huang, W.; Fang, Q.; Hu, J.; Yu, L.; Ma, N.; Zhang, W. Protective effect of phillyrin on lethal LPS-induced neutrophil inflammation in zebrafish. Cell. Physiol. Biochem. 2018, 43, 2074–2087. [Google Scholar] [CrossRef]
- Xie, Y.; Meijer, A.H.; Schaaf, M.J. Modeling inflammation in zebrafish for the development of anti-inflammatory drugs. Front. Cell Dev. Biol. 2021, 8, 620984. [Google Scholar] [CrossRef] [PubMed]
- Kolonics, F.; Kajdácsi, E.; Farkas, V.J.; Veres, D.S.; Khamari, D.; Kittel, Á.; Merchant, M.L.; McLeish, K.R.; Lõrincz, Á.M.; Ligeti, E. Neutrophils produce proinflammatory or anti-inflammatory extracellular vesicles depending on the environmental conditions. J. Leucoc. Biol. 2021, 109, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Bobrovskikh, A.; Doroshkov, A.; Mazzoleni, S.; Cartenì, F.; Giannino, F.; Zubairova, U. A sight on single-cell transcriptomics in plants through the prism of cell-based computational modeling approaches: Benefits and challenges for data analysis. Front. Genet. 2021, 12, 652974. [Google Scholar] [CrossRef] [PubMed]
GEO NCBI ID 1 | Age | Genotype/Strain | Number of Used Samples | Initial Number of Cells | Ref. |
---|---|---|---|---|---|
GSE100910 | 3–9 months | WT; prkdc | 6 | 11,327 | [29] |
GSE112438 | not available | AB; CD41:GFP | 37 | 13,824 | [30] |
GSE130487 | 4–12 months | WT | 1 | 20,000 | [31] |
GSE150373 | 8 months | WT; runx1 | 8 | 39,424 | [32] |
GSE151231 | 4 months | WT; gata2b | 9 | 14,463 | [33] |
GSE166646 | adult | WT | 1 | 6422 | [34] |
GSE176036 | 8 months | runx1 | 8 | 35,178 | [32] |
GSE179401 | 2 months | WT; rag; rag il2rga | 9 | 47,832 | [35] |
GSE190794 | 4 months | GESTALT | 10 | 51,540 | [36] |
GSE191029 | adult | WT; prkcda; cxcl8 | 8 | 20,695 | [37] |
GSE242133 | 1–1.5 months | AB | 3 | 36,600 | [8] |
GSE246039 | 3 months | WT; cebpb | 10 | 105,194 | [38] |
GSE252788 | 6 months | cebpb | 2 | 28,534 | [9] |
Cell Type | Total Cell Number | Seurat Cluster No | Cell Number in Cluster |
---|---|---|---|
HSCs | 11,013 | 0 | 7852 |
16 | 1736 | ||
25 | 1202 | ||
41 | 223 | ||
Macrophages | 15,365 | 2 | 5831 |
4 | 5232 | ||
10 | 3149 | ||
32 | 877 | ||
40 | 276 | ||
Macrophage-like cells | 10,595 | 15 | 1769 |
20 | 1600 | ||
21 | 1552 | ||
23 | 1545 | ||
27 | 992 | ||
30 | 910 | ||
31 | 879 | ||
34 | 819 | ||
37 | 408 | ||
43 | 121 | ||
Neutrophils | 26,556 | 1 | 6372 |
5 | 4812 | ||
6 | 4466 | ||
9 | 3506 | ||
11 | 3095 | ||
19 | 1684 | ||
22 | 1550 | ||
36 | 486 | ||
38 | 403 | ||
42 | 182 | ||
Immature neutrophils | 7477 | 3 | 5383 |
14 | 2094 | ||
Neutrophil-like cells | 3876 | 12 | 3035 |
33 | 841 | ||
B cells | 5416 | 8 | 4137 |
28 | 982 | ||
39 | 297 | ||
T cells | 5678 | 7 | 4209 |
24 | 1469 | ||
Monocytes | 8422 | 13 | 2334 |
17 | 1710 | ||
18 | 1705 | ||
26 | 1019 | ||
29 | 960 | ||
35 | 697 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobrovskikh, A.V.; Zubairova, U.S.; Naumenko, L.G.; Doroshkov, A.V. Catching the Big Fish in Big Data: A Meta-Analysis of Zebrafish Kidney scRNA-Seq Datasets Highlights Conserved Molecular Profiles of Macrophages and Neutrophils in Vertebrates. Biology 2024, 13, 773. https://doi.org/10.3390/biology13100773
Bobrovskikh AV, Zubairova US, Naumenko LG, Doroshkov AV. Catching the Big Fish in Big Data: A Meta-Analysis of Zebrafish Kidney scRNA-Seq Datasets Highlights Conserved Molecular Profiles of Macrophages and Neutrophils in Vertebrates. Biology. 2024; 13(10):773. https://doi.org/10.3390/biology13100773
Chicago/Turabian StyleBobrovskikh, Aleksandr V., Ulyana S. Zubairova, Ludmila G. Naumenko, and Alexey V. Doroshkov. 2024. "Catching the Big Fish in Big Data: A Meta-Analysis of Zebrafish Kidney scRNA-Seq Datasets Highlights Conserved Molecular Profiles of Macrophages and Neutrophils in Vertebrates" Biology 13, no. 10: 773. https://doi.org/10.3390/biology13100773
APA StyleBobrovskikh, A. V., Zubairova, U. S., Naumenko, L. G., & Doroshkov, A. V. (2024). Catching the Big Fish in Big Data: A Meta-Analysis of Zebrafish Kidney scRNA-Seq Datasets Highlights Conserved Molecular Profiles of Macrophages and Neutrophils in Vertebrates. Biology, 13(10), 773. https://doi.org/10.3390/biology13100773