Aquaculture of Animal Species: Their Eukaryotic Parasites and the Control of Parasitic Infections
Abstract
:Simple Summary
Abstract
1. Introduction
Cultured Species | Inland (Freshwater) | Coastal-Marine | Inland | Coastal-Marine |
---|---|---|---|---|
Pisces | + | + | 49,120,461 | 8,340,633 |
Mollusca | 192,671 | 17,547,855 | ||
Gastropoda | + | + | ||
Bivalvia | + | + | ||
Cephalopoda | + | |||
Crustacea | + | + | 4,477,201 | 6,759,815 |
Other | 593,707 | 468,584 | ||
Corals | + | |||
Annelids | + | + | ||
Anurans | + | |||
Turtles | + | |||
Crocodiles | + | |||
Other | + | + | ||
Algae | + | + | 593,707 | 35,013,089 |
2. The Major Parasitic Group
2.1. Protista
2.2. Myxozoa
2.3. Fungi
2.4. Platyhelminthes
2.4.1. Monogenea
2.4.2. Digenea
2.4.3. Cestoda
2.5. Nematoda
2.6. Acanthocephala
2.7. Gastropods
2.8. Bivalve
2.9. Arthropoda
2.9.1. Copepoda
2.9.2. Isopoda
2.9.3. Branchiurans
2.9.4. Pentastomida
2.10. Fishes
3. Main Animal Species Raised in Aquaculture
3.1. Corals
3.2. Annelids
3.3. Mollusks
3.3.1. Gastropods
3.3.2. Bivalves
3.3.3. Cephalopods
3.4. Crustaceans
3.5. Anuran
3.6. Pisces
3.7. Other
4. Zoonotic Parasites
5. Environmental Impact of Aquaculture
6. Aquaculture and the Spread of Parasites or Cultured Species
7. Control of Parasites
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calado, R.; Olivotto, I.; Oliver, M.P.; Holt, G.J. Marine Ornamental Species Aquaculture; Wiley Online Library: Hoboken, NJ, USA, 2017; Volume 712. [Google Scholar]
- Pyke, G.H. Plague Minnow or Mosquito Fish? A Review of the Biology and Impacts of Introduced Gambusia Species. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 171–191. [Google Scholar] [CrossRef]
- Cassiano, E.J.; Hill, J.; Tuckett, Q.; Watson, C. Eastern Mosquitofish, Gambusia Holbrooki, for Control of Mosquito Larvae; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2021. [Google Scholar]
- Hoover, C.M.; Sokolow, S.H.; Kemp, J.; Sanchirico, J.N.; Lund, A.J.; Jones, I.J.; Higginson, T.; Riveau, G.; Savaya, A.; Coyle, S.; et al. Modelled effects of prawn aquaculture on poverty alleviation and schistosomiasis control. Nat. Sustain. 2020, 2, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Savaya Alkalay, A.; Rosen, O.; Sokolow, S.H.; Faye, Y.P.; Faye, D.S.; Aflalo, E.D.; Jouanard, N.; Zilberg, D.; Huttinger, E.; Sagi, A. The prawn Macrobrachium vollenhovenii in the Senegal River basin: Towards sustainable restocking of all-male populations for biological control of schistosomiasis. PLoS Negl. Trop. Dis. 2014, 8, e3060. [Google Scholar] [CrossRef] [PubMed]
- Sokolow, S.H.; Lafferty, K.D.; Kuris, A.M. Regulation of laboratory populations of snails (Biomphalaria and Bulinus spp.) by river prawns, Macrobrachium spp. (Decapoda, Palaemonidae): Implications for control of schistosomiasis. Acta Trop. 2014, 132, 64–74. [Google Scholar] [CrossRef]
- Ozretich, R.W.; Wood, C.L.; Allan, F.; Koumi, A.R.; Norman, R.; Brierley, A.S.; De Leo, G.A.; Little, D.C. The Potential for Aquaculture to Reduce Poverty and Control Schistosomiasis in Côte d’Ivoire (Ivory Coast) during an Era of Climate Change: A Systematic Review. Rev. Fish. Sci. Aquac. 2022, 30, 467–497. [Google Scholar] [CrossRef]
- Fetter, J.R.; Swistok, B.; Galford, A.; Clark, J.A. Using Grass Carp to Control Aquatic Plants; Penn State Extension: Bellefonte, PA, USA, 2022. [Google Scholar]
- Hung, N.M.; Duc, N.V.; Stauffer, J.R.; Madsen, H. Use of black carp (Mylopharyngodon piceus) in biological control of intermediate host snails of fish-borne zoonotic trematodes in nursery ponds in the Red River Delta, Vietnam. Parasites Vectors 2013, 6, 142. [Google Scholar] [CrossRef]
- Stauffer, J.R.; Arnegard, M.E.; Cetron, M.; Sullivan, J.J.; Chitsulo, L.A.; Turner, G.F.; Chiotha, S.; McKaye, K.R. Controlling vectors and hosts of parasitic diseases using fishes—A case history of schistosomiasis in Lake Malawi. Bioscience 1997, 47, 41–49. [Google Scholar] [CrossRef]
- Madsen, H.; Bloch, P.; Makaula, P.; Phiri, H.; Furu, P.; Stauffer, J.R. Schistosomiasis in Lake Malawi Villages. Ecohealth 2011, 8, 163–176. [Google Scholar] [CrossRef]
- Stauffer, J.R.; Madsen, H. A one health approach to reducing schistosomiasis transmission in Lake Malawi. Prev. Med. Commun. Health 2018, 1, 1–4. [Google Scholar]
- Shafiq, A.; Abbas, F.; Hafeez-Ur-Rehman, M.; Khan, B.N.; Aihetasham, A.; Amin, I.; Hmidullah; Mothana, R.A.; Alharbi, M.S.; Khan, I.; et al. Parasite Diversity in a Freshwater Ecosystem. Microorganisms 2023, 11, 1940. [Google Scholar] [CrossRef]
- Brian, J.I. Parasites in biodiversity conservation: Friend or foe? Trends Parasitol. 2023, 39, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, F.; Marín, S.L.; Carvajal, J. Metazoan parasites in wild fish and farmed salmon from aquaculture sites in southern Chile. Aquaculture 2004, 235, 89–100. [Google Scholar] [CrossRef]
- Murray, A.G.; Peeler, E.J. A framework for understanding the potential for emerging diseases in aquaculture. Prev. Vet. Med. 2005, 67, 223–235. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; 236p. [Google Scholar]
- Stride, M.C.; Polkinghome, A.; Nowak, B.F. Chlamydial infections of fish: Diverse pathogens and emerging causes of disease in aquaculture species. Vet. Microbiol. 2014, 171, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Stephen, J.; Mukherjee, S.; Lekshmi, M.; Kumar, S.H. Diseases and Antimicrobial Use in Aquaculture. In Handbook on Antimicrobial Resistance: Current Status, Trends in Detection and Mitigation Measures; Springer: Singapore, 2023; pp. 1–23. [Google Scholar]
- Blaylock, R.B.; Bullard, S.A. Counter-insurgents of the blue revolution? Parasites and diseases affecting aquaculture and science. J. Parasitol. 2014, 100, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Novriadi, R. Vibriosis in aquaculture. Omni-Akuatika 2016, 12, 1–12. [Google Scholar] [CrossRef]
- Chiotha, S.S.; McKaye, K.R.; Stauffer, J.R. Use of Indigenous Fishes to Control Schistosome Snail Vectors in Malawi, Africa. Biol. Control 1991, 1, 316–319. [Google Scholar] [CrossRef]
- Noga, E.J. Fish Disease. Diagnosis and Treatment; Wiley-Blackwell: Hoboken, NJ, USA, 2010; p. 519. [Google Scholar]
- Shinn, A.P.; Pratoomyot, J.; Bron, J.E.; Paladini, G.; Brooker, E.E.; Brooker, A.J. Economic costs of protistan and metazoan parasites to global mariculture. Parasitology 2015, 142, 196–270. [Google Scholar] [CrossRef]
- Pampoulie, C.; Rosecchi, E.; Bouchereau, J.-L.; Crivelli, A.J. Do environmental changes influence the occurrence and effect of parasites? J. Negat. Results 2004, 1, 8–15. [Google Scholar]
- Madsen, H.; Nguyen, H.M.; Lanza, G.R.; Stauffer, J.R. A One Health Approach Relative to Trematode-Caused Diseases of People and Animals Associated with Aquaculture. Rev. Fish. Sci. Aquac. 2022, 30, 542–566. [Google Scholar] [CrossRef]
- Buck, B.H.; Thieltges, D.W.; Walter, U.; Nehls, G.; Rosenthal, H. Inshore-offshore comparison of parasite infestation in Mytilus edulis: Implications for open ocean aquaculture. J. Appl. Ichthyol. 2005, 21, 107–113. [Google Scholar] [CrossRef]
- Verma, A.K.; Prakash, S. Status of Animal Phyla in Different Kingdom Systems of Biological Classification. Int. J. Biol. Innov. 2020, 2, 149–154. [Google Scholar] [CrossRef]
- Verma, A.K. Protozoans: Animals or Protists? Int. J. Life Sci. 2021, 9, 41–44. [Google Scholar]
- Adl, S.M.; Simpson, A.G.; Farmer, M.A.; Andersen, R.A.; Anderson, O.R.; Barta, J.R.; Bowser, S.S.; Brugerolle, G.; Fensome, R.A.; Fredericq, S.; et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 2005, 52, 399–451. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, M.A.; Gordon, D.P.; Orrell, T.M.; Bailly, N.; Bourgoin, T.; Brusca, R.C.; Cavalier-Smith, T.; Guiry, M.D.; Kirk, P.M. A higher level classification of all living organisms. PLoS ONE 2015, 10, e0119248. [Google Scholar] [CrossRef]
- Paladini, G.; Longshaw, M.; Gustinelli, A.; Shinn, A.P. Parasitic Diseases in Aquaculture: Their Biology, Diagnosis and Control. In Diagnosis and Control of Diseases of Fish and Shellfish; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 37–107. [Google Scholar]
- Votýpka, J.; Modrý, D.; Oborník, M.; Šlapeta, J.; Lukeš, J. Apicomplexa. In Handbook of the Protists; Archibald, J.M., Simpson, A.G.B., Slamovits, C.H., Margulis, L., Melkonian, M., Chapman, D.J., Corliss, J.O., Eds.; Springer International Publishing: Cham, Switerland, 2017; pp. 1–58. [Google Scholar]
- Lynn, D.H. Ciliophora. In Handbook of the Protists; Archibald, J.M., Simpson, A.G.B., Slamovits, C.H., Margulis, L., Melkonian, M., Chapman, D.J., Corliss, J.O., Eds.; Springer International Publishing: Cham, Switerland, 2016; pp. 1–52. [Google Scholar]
- Lester, R.J.G.; Hine, P.M. Paramyxida. In Handbook of the Protists; Archibald, J.M., Simpson, A.G.B., Slamovits, C.H., Margulis, L., Melkonian, M., Chapman, D.J., Corliss, J.O., Eds.; Springer International Publishing: Cham, Switerland, 2017; pp. 1–18. [Google Scholar]
- Azevedo, C.; Hine, P.M. Haplosporidia. In Handbook of the Protists; Archibald, J.M., Simpson, A.G.B., Slamovits, C.H., Margulis, L., Melkonian, M., Chapman, D.J., Corliss, J.O., Eds.; Springer International Publishing: Cham, Switerland, 2017; pp. 1–29. [Google Scholar]
- Lee, S.C.; Corradi, N.; Byrnes, E.J.; Torres-Martinez, S.; Dietrich, F.S.; Keeling, P.J.; Heitman, J. Microsporidia evolved from ancestral sexual fungi. Curr. Biol. 2008, 18, 1675–1679. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, J.R.; Madsen, H.; McKaye, K.; Konings, A.; Bloch, P.; Ferreri, C.P.; Likongwe, J.; Makaula, P. Schistosomiasis in Lake Malawi: Relationship of fish and intermediate host density to prevalence of human infection. EcoHealth 2006, 3, 22–27. [Google Scholar] [CrossRef]
- Madsen, H.; Stauffer, J.R., Jr. Schistosomiasis Control Under Changing Ecological Settings in Lake Malawi. Ecohealth 2022, 19, 320–323. [Google Scholar] [CrossRef]
- Hung, N.M.; Madsen, H.; Fried, B. Global status of fish-borne zoonotic trematodiasis in humans. Acta Parasitol. 2013, 58, 231–258. [Google Scholar] [CrossRef]
- Keiser, J.; Utzinger, J. Food-borne trematodiases. Clin. Microbiol. Rev. 2009, 22, 466–483. [Google Scholar] [CrossRef]
- Mathison, B.A.; Mehta, N.; Couturier, M.R. Human acanthocephaliasis: A thorn in the side of parasite diagnostics. J. Clin. Microbiol. 2021, 59, 1–8. [Google Scholar] [CrossRef]
- Kennedy, C.R. Ecology of the Acanthocephala; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Cheng, T. Parasites of commercially important marine molluscs. In Advances in Marine Biology; Academic Press: New York, NY, USA, 1967; pp. 199–261. [Google Scholar]
- Warren, T. The Pyramidellidae-Molluscan parasites. Tane 1966, 12, 71–73. [Google Scholar]
- Maguire, A.K.; Rogers-Bennett, L. An ectoparasitic snail (Evalea tenuisculpta) infects red abalone (Haliotis rufescens) in northern California. Calif. Fish. Game 2013, 99, 80–89. [Google Scholar]
- Hoeksema, B.; Gittenberger, A. Records of some marine parasitic molluscs from Nha Trang, Vietnam. Basteria 2008, 72, 129–133. [Google Scholar]
- Gittenberger, A.; Hoeksema, B. Habitat preferences of 20 Indo-West Pacific wentletrap species (Gastropoda: Epitoniidae) associated with scleractinian corals. Contrib. Zool. 2006, 82, 217–243. [Google Scholar]
- Rock, S.L.; Watz, J.; Nilsson, P.A.; Osterling, M. Effects of parasitic freshwater mussels on their host fishes: A review. Parasitology 2022, 149, 1958–1975. [Google Scholar] [CrossRef]
- Howard, A.D.; Anson, B.J. Phases in the parasitism of the Unionidae. J. Parasitol. 1922, 9, 68–82. [Google Scholar] [CrossRef]
- Zieritz, A.; Gum, B.; Kuehn, R.; Geist, J. Identifying freshwater mussels (Unionoida) and parasitic glochidia larvae from host fish gills: A molecular key to the North and Central European species. Ecol. Evol. 2012, 2, 740–750. [Google Scholar] [CrossRef]
- Douda, K.; Velíšek, J.; Kolářová, J.; Rylková, K.; Slavík, O.; Horký, P.; Langrová, I. Direct impact of invasive bivalve (Sinanodonta woodiana) parasitism on freshwater fish physiology: Evidence and implications. Biol. Invasions 2017, 19, 989–999. [Google Scholar] [CrossRef]
- WHA. WHA Fact Sheet: Diseases of Concern in Wild Australian Crocodiles; WildLife Health Australia: Mosman, NSW, Australia, 2019. [Google Scholar]
- Evans, T.M.; Janvier, P.; Docker, M.F. The evolution of lamprey (Petromyzontida) life history and the origin of metamorphosis. Rev. Fish. Biol. Fish. 2018, 28, 825–838. [Google Scholar] [CrossRef]
- Silva, S.; Araújo, M.J.; Bao, M.; Mucientes, G.; Cobo, F. The haematophagous feeding stage of anadromous populations of sea lamprey Petromyzon marinus: Low host selectivity and wide range of habitats. Hydrobiologia 2014, 734, 187–199. [Google Scholar] [CrossRef]
- Hume, J.B.; Bravener, G.A.; Flinn, S.; Johnson, N.S. What can commercial fishery data in the Great Lakes reveal about juvenile sea lamprey (Petromyzon marinus) ecology and management? J. Great Lakes Res. 2021, 47, S590–S603. [Google Scholar] [CrossRef]
- Cline, T.J.; Kitchell, J.F.; Bennington, V.; McKinley, G.A.; Moody, E.K.; Weidel, B.C. Climate impacts on landlocked sea lamprey: Implications for host-parasite interactions and invasive species management. Ecosphere 2014, 5, 1–13. [Google Scholar] [CrossRef]
- Lampman, R.T.; Maine, A.N.; Moser, M.L.; Arakawa, H.; Neave, F.B. Lamprey aquaculture successes and failures: A path to production for control and conservation. J. Great Lakes Res. 2021, 47, S201–S215. [Google Scholar] [CrossRef]
- Shavalier, M.A.; Faisal, M.; Moser, M.L.; Loch, T.P. Parasites and microbial infections of lamprey (order Petromyzontiformes Berg 1940): A review of existing knowledge and recent studies. J. Great Lakes Res. 2021, 47, S90–S111. [Google Scholar] [CrossRef]
- Breault, J. Candirú: Amazonian parasitic catfish. J. Wilderness Med. 1991, 2, 304–312. [Google Scholar] [CrossRef]
- Bauer, I.L. Candiru—A little fish with bad habits: Need travel health professionals worry? A review. J. Travel Med. 2013, 20, 119–124. [Google Scholar] [CrossRef]
- Delbeek, J.C. Coral farming: Past, present and future trends. Aquar. Sci. Conserv. 2001, 3, 171–181. [Google Scholar] [CrossRef]
- Horoszowski-Fridman, Y.; Izhaki, I.; Rinkevich, B. Engineering of coral reef larval supply through transplantation of nursery-farmed gravid colonies. J. Exp. Mar. Biol. Ecol. 2011, 399, 162–166. [Google Scholar] [CrossRef]
- Barton, J.A.; Bourne, D.G.; Humphrey, C.; Hutson, K.S. Parasites and coral-associated invertebrates that impact coral health. Rev. Aquac. 2020, 12, 2284–2303. [Google Scholar] [CrossRef]
- Stabili, L.; Sicuro, B.; Daprà, F.; Gai, F.; Abete, C.; Dibenedetto, A.; Pastore, C.; Schirosi, R.; Giangrande, A. The Biochemistry of Sabella spallanzanii (Annelida: Polychaeta): A Potential Resource for the Fish Feed Industry. J. World Aquac. Soc. 2013, 44, 384–395. [Google Scholar] [CrossRef]
- Olive, P.J. Polychaete aquaculture and polychaete science: A mutual synergism. In Reproductive Strategies and Developmental Patterns in Annelids; Springer: Dordrecht, The Netherlands, 1999; pp. 175–183. [Google Scholar]
- Pombo, A.; Baptista, T.; Granada, L.; Ferreira, S.M.F.; Gonçalves, S.C.; Anjos, C.; Sá, E.; Chainho, P.; Cancela da Fonseca, L.; Fidalgo e Costa, P.; et al. Insight into aquaculture’s potential of marine annelid worms and ecological concerns: A review. Rev. Aquac. 2018, 12, 107–121. [Google Scholar] [CrossRef]
- Mandario, M.A.E. Survival, growth and biomass of mud polychaete Marphysa iloiloensis (Annelida: Eunicidae) under different culture techniques. Aquac. Res. 2020, 51, 3037–3049. [Google Scholar] [CrossRef]
- Scaps, P. A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (OF Müller) (Annelida: Polychaeta). Hydrobiologia 2002, 470, 203–218. [Google Scholar] [CrossRef]
- Salvo, F.; Dufour, S.C.; Hamoutene, D.; Parrish, C.C. Lipid Classes and Fatty Acids in Ophryotrocha cyclops, a Dorvilleid from Newfoundland Aquaculture Sites. PLoS ONE 2015, 10, e0136772. [Google Scholar] [CrossRef]
- Reish, D.J.; Pernet, B. Annelid Life Cycle Cultures. In Annelids in Modern Biology; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 47–62. [Google Scholar]
- Salvo, F.; Dufour, S.C.; Hamoutene, D. Temperature thresholds of opportunistic annelids used as benthic indicators of aquaculture impact in Newfoundland (Canada). Ecol. Indic. 2017, 79, 103–105. [Google Scholar] [CrossRef]
- Hecht, T.; Endemann, F. The impact of parasites, infections and diseases on the development of aquaculture in sub-Saharan Africa. J. Appl. Ichthyol. 1998, 14, 213–221. [Google Scholar] [CrossRef]
- McElwain, A. Are parasites and diseases contributing to the decline of freshwater mussels (Bivalvia, Unionida)? Freshw. Mollusk Biol. Conserv. 2019, 22, 85–89. [Google Scholar] [CrossRef]
- Ibrahim, M.M. Population dynamics of Chaetogaster limnaei (Oligochaeta: Naididae) in the field populations of freshwater snails and its implications as a potential regulator of trematode larvae community. Parasitol. Res. 2007, 101, 25–33. [Google Scholar] [CrossRef]
- Conn, D.B.; Ricciardi, A.; Babapulle, M.N.; Klein, K.A.; Rosen, D.A. Chaetogaster limnaei (Annelida: Oligochaeta) as a parasite of the zebra mussel Dreissena polymorpha, and the quagga mussel Dreissena bugensis (Mollusca: Bivalvia). Parasitol. Res. 1996, 82, 1–7. [Google Scholar] [CrossRef]
- Castell, L. Gastropod molluscs. In Aquaculture: Farming Aquatic Animals and Plants; Blackwell Publishing: Oxford, UK, 2013; pp. 567–582. [Google Scholar]
- Garr, A.L.; Lopez, H.; Pierce, R.; Davis, M. The effect of stocking density and diet on the growth and survival of cultured Florida apple snails, Pomacea paludosa. Aquaculture 2011, 311, 139–145. [Google Scholar] [CrossRef]
- Yang, H.; Sturmer, L.N.; Baker, S. Molluscan Shellfish Aquaculture and Production; IFAS Extension: Gainesville, FL, USA, 2016. [Google Scholar]
- Madsen, H. Biological methods for the control of freshwater snails. Parasitol. Today 1990, 6, 237–241. [Google Scholar] [CrossRef]
- Esch, G.W.; Fernandez, J.C. Snail-trematode interactions and parasite community dynamics in aquatic systems: A review. Am. Midl. Nat. 1994, 131, 209–237. [Google Scholar] [CrossRef]
- Brown, K.M.; Leathers, B.K.; Minchella, D.J. Trematode prevalence and the population dynamics of freshwater pond snails. Am. Midl. Nat. 1988, 120, 289–301. [Google Scholar] [CrossRef]
- Alderman, D.J.; Jones, E.G. Shell disease of Ostrea edulis L. Nature 1967, 216, 797–798. [Google Scholar] [CrossRef]
- Elston, R.A. Mollusc Diseases: Guide for the Shellfish Farmer; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1990. [Google Scholar]
- Kim, V.V.; Nguyen, H.M.; Greiman, S.E.; Nguyen, H.V.; Nguyen, C.N.; Vu, M.D.; Hoai, T.D.; Madsen, H. Molecular and morphological characterization of Dollfustrema bagarii (Digenea: Bucephalidae) metacercariae from aquaculture channel catfish (Ictalurus punctatus) in northern Vietnam. J. Fish. Dis. 2022, 45, 1165–1171. [Google Scholar] [CrossRef]
- Lynch, S.A.; Rowley, A.F.; Longshaw, M.; Malham, S.K.; Culloty, S.C. Diseases of molluscs. In Invertebrate Pathology; Rowley, A.F., Coates, C.J., Whitten, M.M., Eds.; Oxford University Press: Oxford, UK, 2022; pp. 171–215. [Google Scholar]
- Bolotov, I.N.; Klass, A.L.; Konopleva, E.S.; Bespalaya, Y.V.; Gofarov, M.Y.; Kondakov, A.V.; Vikhrev, I.V. First freshwater mussel-associated piscicolid leech from East Asia. Sci. Rep. 2020, 10, 19854. [Google Scholar] [CrossRef] [PubMed]
- Elsner, N.O.; Jacobsen, S.; Thieltges, D.W.; Reise, K. Alien parasitic copepods in mussels and oysters of the Wadden Sea. Helgol. Mar. Res. 2011, 65, 299–307. [Google Scholar] [CrossRef]
- Iglesias, J.; Fuentes, L.; Villanueva, R. Cephalopod Culture; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Vidal, E.A.; Villanueva, R.; Andrade, J.P.; Gleadall, I.G.; Iglesias, J.; Koueta, N.; Rosas, C.; Segawa, S.; Grasse, B.; Franco-Santos, R.M.; et al. Cephalopod culture: Current status of main biological models and research priorities. Adv. Mar. Biol. 2014, 67, 1–98. [Google Scholar] [CrossRef]
- Gestal, C.; Pascual, S.; Guerra, Á.; Fiorito, G.; Vieites, J.M. Handbook of Pathogens and Diseases in Cephalopods; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Bass, D.; Rueckert, S.; Stern, R.; Cleary, A.C.; Taylor, J.D.; Ward, G.M.; Huys, R. Parasites, pathogens, and other symbionts of copepods. Trends Parasitol. 2021, 37, 875–889. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; Subasinghe, R.P.; Josupeit, H.; Cai, J.; Zhou, X. The role of crustacean fisheries and aquaculture in global food security: Past, present and future. J. Invertebr. Pathol. 2012, 110, 158–165. [Google Scholar] [CrossRef]
- Zeng, C.; Cheng, Y.; Lucas, J.S.; Southgate, P.C. Other decapod crustaceans. In Aquaculture: Farming Aquatic Animals and Plants, 2nd ed.; Blackwell Publishing: Oxford, UK, 2013; pp. 514–540. [Google Scholar]
- Stentiford, G.; Neil, D.; Peeler, E.; Shields, J.D.; Small, H.J.; Flegel, T.; Vlak, J.; Jones, B.; Morado, F.; Moss, S. Disease will limit future food supply from the global crustacean fishery and aquaculture sectors. J. Invertebr. Pathol. 2012, 110, 141–157. [Google Scholar] [CrossRef]
- Neveu, A. Suitability of European green frogs for intensive culture: Comparison between different phenotypes of the esculenta hybridogenetic complex. Aquaculture 2009, 295, 30–37. [Google Scholar] [CrossRef]
- Ribeiro, L.P.; Toledo, L.F. An overview of the Brazilian frog farming. Aquaculture 2022, 548, 737623. [Google Scholar] [CrossRef]
- Moreira, C.R.; Henriques, M.B.; Ferreira, C.M. Frog farms as proposed in agribusiness aquaculture: Economic viability based in feed conversion. Bol. Inst. Pesca 2013, 39, 390–399. [Google Scholar]
- de Castro, C.S.; Ribeiro, R.R.; Agostinho, L.M.; Santos, A.A.D.; Carmelin, C.A.; Chan, R.V.; Neto, J.F.; Agostinho, C.A. Polyculture of frogs and tilapia in cages with high feeding frequency. Aquac. Eng. 2014, 61, 43–48. [Google Scholar] [CrossRef]
- Badri, M.; Olfatifar, M.; KarimiPourSaryazdi, A.; Zaki, L.; Madeira de Carvalho, L.M.; Fasihi Harandi, M.; Barikbin, F.; Madani, P.; Vafae Eslahi, A. The global prevalence of Spirometra parasites in snakes, frogs, dogs, and cats: A systematic review and meta-analysis. Vet. Med. Sci. 2022, 8, 2785–2805. [Google Scholar] [CrossRef] [PubMed]
- Ooi, H.; Chang, S.; Huang, C.; Kawakami, Y.; Uchida, A. Survey of Spirometra erinaceieuropaei in frogs in Taiwan and its experimental infection in cats. J. Helminthol. 2000, 74, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.F.; Chen, W.Q.; Liu, W.; Liu, S.S.; Wang, Y.X.; Chen, J.; Cui, J.; Zhang, X. Genetic structure of Spirometra mansoni (Cestoda: Diphyllobothriidae) populations in China revealed by a Target SSR-seq method. Parasites Vectors 2022, 15, 485. [Google Scholar] [CrossRef]
- Buchmann, K. Control of parasitic diseases in aquaculture. Parasitology 2022, 149, 1985–1997. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q. Soft-shelled turtles. In Aquaculture, 2nd ed.; Lucas, J.S., Southgate, P.C., Eds.; Blackwell Publishing Ltd.: West Sussex, UK, 2012; pp. 460–475. [Google Scholar]
- Kechik, I.B.A. Aquaculture in Malaysia. In Towards Sustainable Aquaculture in Southeast Asia and Japan, Proceedings of the Seminar-Workshop on Aquaculture Development in Southeast Asia, Iloilo City, Philippines, 26–28 July 1994; Aquaculture Department, Southeast Asian Fisheries Development Center: Tigbauan, Philippines, 1995; pp. 125–135. [Google Scholar]
- Fordham, D.A.; Georges, A.; Corey, B. Optimal conditions for egg storage, incubation and post-hatching growth for the freshwater turtle, Chelodina rugosa: Science in support of an indigenous enterprise. Aquaculture 2007, 270, 105–114. [Google Scholar] [CrossRef]
- Bursey, C.R.; Brooks, D.R. Nematode Parasites of 41 Anuran Species from the Area de Conservación Guanacaste, Costa Rica. Comp. Parasitol. 2010, 77, 221–231. [Google Scholar] [CrossRef]
- Brooks, D.R.; O’GRADY, R.T. Crocodilians and their helminth parasites: Macroevolutionary considerations. Am. Zool. 1989, 29, 873–883. [Google Scholar] [CrossRef]
- Rajesh, N.; Kalpana Devi, R.; Jayathangaraj, M.; Raman, M.; Sridhar, R. Intestinal parasites in captive mugger crocodiles (Crocodylus palustris) in south India. J. Trop. Med. Parasit. 2014, 37, 69–73. [Google Scholar]
- Moravec, F.; Spratt, D.M. Crocodylocapillaria longiovata n. gen., b. sp.(Nematoda: Capillariidae) from the stomach of crocodiles in Australia and New Guinea. J. Parasitol. 1998, 84, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Tellez, M. A Checklist of Host-Parasite Interactions of the Order Crocodylia; Univeraity of California Press: Berkeley, CA, USA, 2014; Volume 136. [Google Scholar]
- Dong, J.; Wang, B.; Duan, Y.; Wang, A.; Li, Y.; Sun, M.; Chai, Y.; Liu, X.; Yu, X.; Guo, D.; et al. The Natural Ecology and Stock Enhancement of the Edible Jellyfish (Rhopilema esculentum Kishinouye, 1891) in the Liaodong Bay, Bohai Sea, China. In Marine Ecology—Biotic and Abiotic Interactions; Intechopen: London, UK, 2018; pp. 197–210. [Google Scholar]
- You, K.; Ma, C.; Gao, H.; Li, F.; Zhang, M.; Qiu, Y.; Wang, B. Research on the jellyfish (Rhopilema esculentum Kishinouye) and associated aquaculture techniques in China: Current status. Aquac. Int. 2007, 15, 479–488. [Google Scholar] [CrossRef]
- Duarte, I.M.; Marques, S.C.; Leandro, S.M.; Calado, R. An overview of jellyfish aquaculture: For food, feed, pharma and fun. Rev. Aquac. 2021, 14, 265–287. [Google Scholar] [CrossRef]
- Unuma, T.; Tsuda, N.; Sakai, Y.; Kamaishi, T.; Sawaguchi, S.; Itoh, N.; Yamano, K. Coccidian Parasite in Sea Cucumber (Apostichopus japonicus) Ovaries. Biol. Bull. 2020, 238, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Eeckhaut, I.; Parmentier, E.; Becker, P.; Gomez da Silva, S.; Jangoux, M. Parasites and biotic diseases in field and cultivated sea cucumbers. In Advances in Sea Cucumber Aquaculture and Management; University of Liège: Liège, Belgium, 2004; ISBN 0429-9345. [Google Scholar]
- Rivory, P.; Lee, R.; Slapeta, J. Rat lungworm (Angiostrongylus cantonensis) active larval emergence from deceased bubble pond snails (Bullastra lessoni) into water. Parasitology 2023, 150, 700–704. [Google Scholar] [CrossRef]
- Morley, N.J. Aquatic molluscs as auxiliary hosts for terrestrial nematode parasites: Implications for pathogen transmission in a changing climate. Parasitology 2010, 137, 1041–1056. [Google Scholar] [CrossRef] [PubMed]
- Avishek, B. Fish-borne parasites proficient in zoonotic diseases: A mini review. Insights Vet. Sci. 2022, 6, 5–12. [Google Scholar] [CrossRef]
- Madsen, H.; Stauffer, J.R. Zoonotic trematode infections; their biology, intermediate hosts and control. In Parasitic Helminths and Zoonoses-From Basic to Applied Research; IntechOpen: London, UK, 2022. [Google Scholar]
- Tessema, W. Review on Parasites of Fish and their Public Health Importance. ARC J. Anim. Vet. Sci. 2020, 6, 23–27. [Google Scholar]
- Naegel, L.C.A. A Review of Public-Health Problems Associated with The Integration of Animal Husbandry and Aquaculture, with Emphasis on Southeast-Asia. Biol. Wastes 1990, 31, 69–83. [Google Scholar] [CrossRef]
- Stentiford, G.; Becnel, J.; Weiss, L.; Keeling, P.; Didier, E.; Bjornson, S.; Freeman, M.; Brown, M.; Roesel, K.; Sokolova, Y. Microsporidia–emergent pathogens in the global food chain. Trends Parasitol. 2016, 32, 336–348. [Google Scholar] [CrossRef]
- Moratal, S.; Magnet, A.; Izquierdo, F.; Del Águila, C.; López-Ramon, J.; Dea-Ayuela, M.A. Microsporidia in Commercially Harvested Marine Fish: A Potential Health Risk for Consumers. Animals 2023, 13, 2673. [Google Scholar] [CrossRef] [PubMed]
- Cubillo, A.M.; Ferreira, J.G.; Robinson, S.M.C.; Pearce, C.M.; Corner, R.A.; Johansen, J. Role of deposit feeders in integrated multi-trophic aquaculture—A model analysis. Aquaculture 2016, 453, 54–66. [Google Scholar] [CrossRef]
- Licciano, M.; Stabili, L.; Giangrande, A. Clearance rates of Sabella spallanzanii and Branchiomma luctuosum (Annelida: Polychaeta) on a pure culture of Vibrio alginolyticus. Water Res. 2005, 39, 4375–4384. [Google Scholar] [CrossRef]
- Malzahn, A.M.; Villena-Rodríguez, A.; Monroig, Ó.; Johansen, Å.; Castro, L.F.C.; Navarro, J.C.; Hagemann, A. Diet rather than temperature determines the biochemical composition of the ragworm Hediste diversicolor (OF Müller, 1776) (Annelida: Nereidae). Aquaculture 2023, 569, 739368. [Google Scholar] [CrossRef]
- Lanza, G.R.; Wilda, K.M.; Bunluesin, S.; Panich-Pat, T. Green aquaculture: Designing and developing aquaculture systems integrated with phytoremediation treatment options. Phytoremediat. Manag. Environ. Contam. 2017, 5, 307–323. [Google Scholar]
- Costello, K.E.; Lynch, S.A.; O’Riordan, R.M.; McAllen, R.; Culloty, S.C. The Importance of Marine Bivalves in Invasive Host–Parasite Introductions. Front. Mar. Sci. 2021, 8, 609248. [Google Scholar] [CrossRef]
- Madsen, H.; Hung, N. An overview of freshwater snails in Asia with main focus on Vietnam. Acta Trop. 2014, 140, 105–117. [Google Scholar] [CrossRef]
- Martín, P.R.; Burela, S.; Seuffert, M.E.; Tamburi, N.E.; Saveanu, L. Invasive Pomacea snails: Actual and potential environmental impacts and their underlying mechanisms. CABI Rev. 2019, 14, 1–11. [Google Scholar] [CrossRef]
- Horgan, F.G.; Yanes Figueroa, J.; Almazan, M.L.P. Seedling broadcasting as a potential method to reduce apple snail damage to rice. Crop Prot. 2014, 64, 168–176. [Google Scholar] [CrossRef]
- Horgan, F.G.; Nogues Palenzuela, A.; Stuart, A.M.; Naredo, A.I.; Ramal, A.F.; Bernal, C.C.; Almazan, M.-L.P. Effects of silicon soil amendments and nitrogen fertilizer on apple snail (Ampullariidae) damage to rice seedlings. Crop Prot. 2017, 91, 123–131. [Google Scholar] [CrossRef]
- Cowie, R.H. Invertebrate Invasions on Pacific Islands and the Replacement of Unique Native Faunas: A Synthesis of the Land and Freshwater Snails* Contribution no. 2001-001 of Bishop Museum’s Pacific Biological Survey. Biol. Invasions 2001, 3, 119–136. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Liu, H.X.; Hu, L.; Yang, K.; Steinmann, P.; Chen, Z.; Wang, L.Y.; Utzinger, J.; Zhou, X.N. Invasive snails and an emerging infectious disease: Results from the first national survey on Angiostrongylus cantonensis in China. PLoS Negl. Trop. Dis. 2009, 3, e368. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Guo, Y.H.; Nguyen, H.M.; Sinuon, M.; Sayasone, S.; Lo, N.C.; Zhou, X.N.; Andrews, J.R. Invasive Pomacea snails as important intermediate hosts of Angiostrongylus cantonensis in Laos, Cambodia and Vietnam: Implications for outbreaks of eosinophilic meningitis. Acta Trop. 2018, 183, 32–35. [Google Scholar] [CrossRef]
- Cowie, R.H.; Malik, R.; Morgan, E.R. Comparative biology of parasitic nematodes in the genus Angiostrongylus and related genera. Adv. Parasitol. 2023, 121, 65–197. [Google Scholar] [CrossRef]
- Cowie, R.H. Angiostrongylus cantonensis: Agent of a sometimes fatal globally emerging infectious disease (rat lungworm disease). ACS Chem. Neurosci. 2017, 8, 2102–2104. [Google Scholar] [CrossRef]
- Buddie, A.G.; Rwomushana, I.; Offord, L.C.; Kibet, S.; Makale, F.; Djeddour, D.; Cafa, G.; Vincent, K.K.; Muvea, A.M.; Chacha, D.; et al. First report of the invasive snail Pomacea canaliculata in Kenya. CABI Agric. Biosci. 2021, 2, 11. [Google Scholar] [CrossRef]
- Djeddour, D.; Pratt, C.; Makale, F.; Rwomushana, I.; Day, R. The apple snail, Pomacea canaliculata: An evidence note on invasiveness and potential economic impacts for East Africa. CABI Work. Pap. 2021, 21, 77. [Google Scholar]
- Passarelli, B.; Pernet, B. The marine live bait trade as a pathway for the introduction of non-indigenous species into California: Patterns of importation and thermal tolerances of imported specimens. Manag. Biol. Invasions 2019, 10, 80–95. [Google Scholar] [CrossRef]
- Ng, T.H.; Tan, S.K.; Wong, W.H.; Meier, R.; Chan, S.Y.; Tan, H.H.; Yeo, D.C. Molluscs for Sale: Assessment of Freshwater Gastropods and Bivalves in the Ornamental Pet Trade. PLoS ONE 2016, 11, e0161130. [Google Scholar] [CrossRef]
- Miranda, N.A.; Taylor, S.J.; Cwewe, Y.; Appleton, C.C. First record of the Asian freshwater snail Sinotaia cf. quadrata (Benson, 1842) from Africa. BioInvasions Rec. 2022, 11, 676–685. [Google Scholar] [CrossRef]
- Appleton, C.; Miranda, N. Two Asian freshwater snails newly introduced into South Africa and an analysis of alien species reported to date. Afr. Invertebr. 2015, 56, 1–17. [Google Scholar] [CrossRef]
- Nguma, J.; McCullough, F.; Masha, E. Elimination of Biomphalaria pfeifferi, Bulinus tropicus and Lymnaea natalensis by the ampullarid snail, Marisa cornuarietis, in a man-made dam in northern Tanzania. Acta Trop. 1982, 39, 85–90. [Google Scholar]
- Haridi, A.; El Safi, S.; Jobin, W. Survival, growth and reproduction of the imported ampullarid snail Marisa cornuarietis in Central Sudan. J. Trop. Med. Hyg. 1985, 88, 135–144. [Google Scholar]
- Forneck, S.C.; Dutra, F.M.; de Camargo, M.P.; Vitule, J.R.S.; Cunico, A.M. Aquaculture facilities drive the introduction and establishment of non-native Oreochromis niloticus populations in Neotropical streams. Hydrobiologia 2020, 848, 1955–1966. [Google Scholar] [CrossRef]
- Lange, C.; Kristensen, T.; Madsen, H. Gastropod diversity, distribution and abundance in habitats with and without anthropogenic disturbances in Lake Victoria, Kenya. Afr. J. Aquat. Sci. 2013, 38, 295–304. [Google Scholar] [CrossRef]
- McCrary, J.K.; Madsen, H.; González, L.; Luna, I.; López, L.J. Comparison of gastropod mollusc (Apogastropoda: Hydrobiidae) habitats in two crater lakes in Nicaragua. Rev. Biol. Trop. 2008, 56, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, J., Jr.; Boltz, S.; Boltz, J. Thermal tolerance of the blue tilapia, Oreochromis aureus, in the Susquehanna River. N. Am. J. Fish. Manag. 1988, 8, 329–332. [Google Scholar] [CrossRef]
- Clausen, J.H.; Madsen, H.; Van, P.T.; Dalsgaard, A.; Murrell, K.D. Integrated parasite management: Path to sustainable control of fishborne trematodes in aquaculture. Trends Parasitol. 2015, 31, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Snyder, S.; Wise, D.J.; Mischke, C.C. Evaluating pond shoreline treatments of slurried hydrated lime for reducing marsh rams-horn snail populations. N. Am. J. Aquac. 2007, 69, 313–316. [Google Scholar] [CrossRef]
- Agrahari, P.; Singh, D. Behavioural responses of the snail Lymnaea acuminata to carbohydrates and amino acids in bait pellets. Ann. Trop. Med. Parasitol. 2010, 104, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Skilton, D.C.; Saunders, R.J.; Hutson, K.S. Parasite attractants: Identifying trap baits for parasite management in aquaculture. Aquaculture 2020, 516, 734557. [Google Scholar] [CrossRef]
Taxa Raised in Aquaculture | |||||||||
---|---|---|---|---|---|---|---|---|---|
Parasites | Corals | Annelida | Gastropoda | Bivalvia | Cephalopoda | Crustacea | Pisces | Anurans | Turtles |
Protista | |||||||||
Apicomplexa | +++ | ++ | |||||||
Ascetosporea | +++ | ||||||||
Cercozoa | ++ | +++ | ++ | ++ | ++ | ||||
Protozoa | + | ++ | ++ | ++ | ++ | ||||
Amoebozoa | + | ++ | |||||||
Ciliophora | + | + | +++ | ++ | ++ | ++ | ++ | ||
Perkinsozoa | +++ | ||||||||
Flagellates | + | + | ++ | ||||||
Dinoflagellata | ++ | ++ | ++ | ||||||
Fungi, etc. | |||||||||
Oomycetes | +++ | +++ | ++ | ||||||
Microsporidia | + | ++ | ++ | ++ | ++ | ||||
Other | + | + | ++ | + | ++ | ||||
Plantae | |||||||||
Green algae | + | + | + | + | ++ | ||||
Other | + | ||||||||
Animalia | |||||||||
Porifera | ++ | ||||||||
Cnidaria | ++ | ||||||||
Myxozoa | ++ | +++ | ++ | ||||||
Acoela | ++ | ||||||||
Acanthocephala | ++ | ++ | |||||||
Rhombozoa | + | ||||||||
Annelida | ++ | + | |||||||
Branchiura | ++ | ||||||||
Citellata | ++ | ||||||||
Polychaetes | ++ | ++ | |||||||
Oligochaetes | + | ++ | ++ | ||||||
Hirudinea | + | ++ | ++ | ||||||
Nematoda | + | ++ | +++ | ++ | ++ | + | |||
Platyhelminthes | |||||||||
Polycladidia | + | ||||||||
Turbellaria | + | ++ | + | ||||||
Monogenea | + | + | +++ | ++ | + | ||||
Digenea | + | + | +++ | +++ | + | +++ | ++ | ||
Cestoda | + | + | + | + | + | ++ | |||
Temnocephalidae | + | ||||||||
Nemertinea | + | ||||||||
Mollusca | |||||||||
Gastropoda | + | + | + | + | |||||
Bivalvia | + | ||||||||
Arthropoda | + | + | + | ||||||
Decapoda | + | ||||||||
Copepoda, Ostracoda, Isopoda | + | + | + | + | ++ | ++ | +++ | + | |
Branchiura | ++ | +++ | |||||||
Cirripedia | + | + | |||||||
Acarina Mites | + | + | ++ | ||||||
Pisces | + |
Cultured Species | Africa | Americas | Asia | Europe | Oceania | World |
---|---|---|---|---|---|---|
Inland | ||||||
Finfish | 1857 | 1180 | 45,527 | 552 | 5 | 49,120 |
Crustaceans | <1 | 73 | 4401 | 3 | <1 | 4477 |
Mollusks | 193 | 193 | ||||
Other animals | <1 | 593 | <1 | 594 | ||
Coastal-Marine | ||||||
Finfish | 379 | 1241 | 4503 | 2122 | 96 | 8341 |
Crustaceans | 8 | 1194 | 5550 | <1 | 8 | 6760 |
Mollusks | 6 | 688 | 16,159 | 579 | 116 | 17,548 |
Other animals | <1 | 459 | 6 | 3 | 469 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madsen, H.; Stauffer, J.R., Jr. Aquaculture of Animal Species: Their Eukaryotic Parasites and the Control of Parasitic Infections. Biology 2024, 13, 41. https://doi.org/10.3390/biology13010041
Madsen H, Stauffer JR Jr. Aquaculture of Animal Species: Their Eukaryotic Parasites and the Control of Parasitic Infections. Biology. 2024; 13(1):41. https://doi.org/10.3390/biology13010041
Chicago/Turabian StyleMadsen, Henry, and Jay Richard Stauffer, Jr. 2024. "Aquaculture of Animal Species: Their Eukaryotic Parasites and the Control of Parasitic Infections" Biology 13, no. 1: 41. https://doi.org/10.3390/biology13010041
APA StyleMadsen, H., & Stauffer, J. R., Jr. (2024). Aquaculture of Animal Species: Their Eukaryotic Parasites and the Control of Parasitic Infections. Biology, 13(1), 41. https://doi.org/10.3390/biology13010041