The Application of the Generalized Additive Model to Represent Macrobenthos near Xiaoqing Estuary, Laizhou Bay
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Data Analysis Method
3. Results
3.1. Ecological Factors
3.2. Composition of the Macrobenthos Fauna
3.3. The Community Structure of Macrobenthos
3.4. Responses of Community Diversity to Ecological Factors
3.5. Validation of the Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butkas, K.J.; Vadeboncoeur, Y.; Vander Zanden, M.J. Estimating benthic invertebrate production in lakes: A comparison of methods and scaling from individual taxa to the whole-lake level. Aquat. Sci. 2011, 73, 153–169. [Google Scholar] [CrossRef]
- Hajializadeh, P.; Safaie, M.; Naderloo, R.; Shojael, M.G.; Gammal, J.; Villnas, A.; Norkko, A. Species composition and functional traits of macrofauna in different mangrove habitats in the Persian Gulf. Front. Mar. Sci. 2020, 7, 575480. [Google Scholar] [CrossRef]
- Han, C.; Xu, Z.; Liu, X. Characteristics of macrofaunal assemblages and their relationships with environmental factors in a semi-enclosed bay. Mar. Pollut. Bull. 2021, 167, 112348. [Google Scholar] [CrossRef]
- Meng, Z.; Han, Q.; Wang, X. Distribution pattern of macrobenthic composition, diversity and secondary production in Hangzhou Bay, northern East China Sea. Reg. Stud. Mar. Sci. 2021, 47, 101956. [Google Scholar] [CrossRef]
- Aubry, A.; Elliott, M. The use of environmental integrative indicators to assess seabed disturbance in estuaries and coasts: Application to the Humber Estuary, UK. Mar. Pollut. Bull. 2006, 53, 175–185. [Google Scholar] [CrossRef]
- Lotze, H.K.; Lenihan, H.S.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.G.; Kay, M.C.; Kidwell, S.M.; Kirby, M.X.; Peterson, C.H.; Jackson, J.B. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 2006, 312, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Geist, J. Integrative freshwater ecology and biodiversity conservation. Ecol. Indic. 2011, 11, 1507–1516. [Google Scholar] [CrossRef]
- Dias, H.Q.; Sukumaran, S.; Neetu, S.; Ridha, H. Benthic community resilience in two differently impacted tropical estuaries: Taxonomic vs functional approaches. J. Environ. Manag. 2022, 324, 116264. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, F.; Liu, R. Community structure changes of macrobenthos in the South Yellow Sea. Chin. J. Oceanol. Limn. 2012, 30, 248–255. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, J.; Cai, K.; Xu, Z.; Wu, D.; Wang, B. Temporal and spatial distribution of macrobenthos communities and their responses to environmental factors in Lake Taihu. Acta Ecol. Sin. 2016, 36, 16–22. [Google Scholar] [CrossRef]
- Shadrin, N.; Kolesnikova, E.; Revkova, T.; Latushkin, A.; Chepyzhenko, A.; Dyakov, N.; Anufriieva, E. Macrostructure of benthos along a salinity gradient: The case of Sivash Bay (the Sea of Azov), the largest hypersaline lagoon worldwide. J. Sea. Res. 2019, 154, 101811. [Google Scholar] [CrossRef]
- Huang, X.; Xu, J.; Liu, B. Assessment of aquatic ecosystem health with Indices of Biotic Integrity (IBIs) in the Ganjiang River system, China. Water 2022, 14, 278. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Z. Rationale of the multivariate statistical software PRIMER and its application in benthic community ecology. J. Ocean. Univ. China. 2003, 33, 58–64. [Google Scholar]
- Ellingsen, K.E.; Hewitt, J.E.; Thrush, S.F. Rare species, habitat diversity and functional redundancy in marine benthos. J. Sea. Res. 2007, 58, 291–301. [Google Scholar] [CrossRef]
- Ahmadi-Nedushan, B.; St-Hilaire, A.; Bérubé, M.; Robichaud, É.; Thiémonge, N.; Bobée, B. A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River. Res. Appl. 2006, 22, 503–523. [Google Scholar] [CrossRef]
- Wood, S.N. Fast stable direct fitting and smoothness selection for generalized additive models. J. R. Stat. Soc. B 2008, 70, 495–518. [Google Scholar] [CrossRef]
- Yan, L.; Li, J.; Zhang, P.; Yang, B.; Wang, T. Effects of spatiotemporal and environmental factors on the fishing ground of Sthenoteuthis oualaniensis in the South China Sea based on the Generalized Additive Model. Mar. Pollut. Bull. 2011, 40, 217–223. [Google Scholar]
- Glińska-Lewczuk, K.; Burandt, P.; Kujawa, R.; Kobus, S.; Obolewski, K.; Dunalska, J.; Grabowska, M.; Lew, S.; Chormański, J. Environmental factors structuring fish communities in Floodplain Lakes of the undisturbed system of the Biebrza River. Water 2016, 8, 146. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Wang, H.; Wang, Y.; Wang, J.; Zhang, B. Characters of a macrobenthic community off the Changjiang River estuary. Acta Zool. Sin. 2007, 53, 76–82. [Google Scholar]
- Gezie, A.; Anteneh, W.; Dejen, E.; Mereta, S.T. Effects of human-induced environmental changes on benthic macroinvertebrate assemblages of wetlands in Lake Tana Watershed, northwest Ethiopia. Environ. Monit. Assess. 2017, 189, 152. [Google Scholar] [CrossRef]
- Rahman, M.K.; Hossain, M.B.; Majumdar, P.R.; Mustafa, M.G.; Noman, M.A.; Albeshr, M.F.; Bhat, E.A.; Arai, T. Macrobenthic assemblages, distribution and functional guilds from a freshwater-dominated tropical estuary. Diversity 2022, 14, 473. [Google Scholar] [CrossRef]
- Yang, Z.; Ye, J.; Yang, Q.; Guo, H. Zooplankton diversity and its relationships with environmental factors in the Liaohe estuary. Mari. Environ. Sci. 2020, 39, 25–30. [Google Scholar]
- Ding, J.; Li, J.; Xue, S.; Zhang, W.; Huo, E.; Ma, Z.; Yu, W.; Mao, Y. Health assessment for benthic habitats of macrobenthos in the sea area adjacent to the Xiaoqing estuary, Laizhou Bay. Acta Ecol. Sin. 2021, 41, 4806–4817. [Google Scholar]
- Wang, Z.; Wang, H.; Fan, S.; Xin, M.; Sun, X. Community structure and diversity of macrobenthos in Jiaozhou Bay. Mar. Pollut. Bull. 2021, 171, 112781. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, L.; Luo, X.; Zhang, X. Study on the water pollution and eutrophication in the Xiaoqing River estuary. Period. Ocean. Univ. China 2013, 43, 60–66. [Google Scholar]
- Yi, Y.; Sun, J.; Yang, Y.; Zhou, Y.; Tang, C.; Wang, X.; Yang, Z. Habitat suitability evaluation of a benthic macroinvertebrate community in a shallow lake. Ecol. Indic. 2018, 90, 451–459. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Li, B.; Liu, W.; Zuo, Y.; Kong, D.; Zhu, J. Relationships between characteristics of macrobenthic assemblages and environmental variables in the Heihe River Basin, China. J. Water. Supply Res. T 2021, 70, 710–730. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y. Aggregated intensity of dominate species of zooplankton in autumn in the East China Sea and Yellow Sea. J. Ecol. 1989, 8, 13–15. [Google Scholar]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- Wang, L.; Fan, Y.; Yan, C.; Gao, C.; Xu, Z.; Liu, X. Assessing benthic ecological impacts of bottom aquaculture using macrofaunal assemblages. Mar. Pollut. Bull. 2017, 114, 258–268. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Austral. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Fang, F.; Li, Z.; Tian, G.; Guo, J.; Zhang, C. Seasonal variation of phosphorus in Xiaojiang backwater area, Three Gorges Reservoir. Envir. Sci. 2009, 30, 3488–3493. [Google Scholar]
- Liang, S.; Li, S.; Ma, H.; Yang, Y.; Lv, H.; Xu, Z.; Duan, X. Spatial-temporal distributions and limiting factors of nutrients in Laizhou Bay based on land-sea synchronous survey. Period. Ocean Univ. China. 2022, 52, 97–110. [Google Scholar]
- Luo, X.; Zhang, S.; Yang, J.; Pan, J.; Tian, L.; Zhang, L. Macrobenthic community in the Xiaoqing River estuary in Laizhou Bay, China. J. Ocean. Univ. China. 2013, 12, 366–372. [Google Scholar] [CrossRef]
- Ysebaert, T.; Herman, P.M.J.; Meire, P.; Craeymeersch, J.; Verbeek, H.; Heip, C.H.R. Large-scale spatial patterns in estuaries: Estuarine macrobenthic communities in the Schelde estuary, NW Europe. Estuar. Coast. Shelf Sci. 2003, 57, 335–355. [Google Scholar] [CrossRef]
- Cai, W.; Meng, W.; Liu, L.; Zhu, Y.; Zhou, J. Macrozoobenthos community structure of the Bohai Bay in spring time. Acta Sci. Cir. 2013, 33, 1458–1466. [Google Scholar]
- Jia, H.; Cao, L.; Chai, X. The changes of macrobenthic community structure and cause analysis in the Yangtze Estuary during summer from 2016 to 2019. Mar. Environ. Sci. 2022, 41, 180–186. [Google Scholar]
- Levin, L.A.; Gage, J.D. Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep-Sea. Res. PT. II 1998, 45, 129–163. [Google Scholar] [CrossRef]
- Lv, W.; Liu, Z.; Yang, Y.; Huang, Y.; Fan, B.; Jiang, Q.; Zhao, Y. Loss and self-restoration of macrobenthic diversity in reclamation habitats of estuarine islands in Yangtze Estuary, China. Mar. Pollut. Bull. 2016, 103, 128–136. [Google Scholar] [CrossRef]
- Shou, L.; Zeng, J.; Liao, Y.; Xu, T.; Gao, A.; Chen, Z.; Chen, Q.; Yang, J. Temporal and spatial variability of benthic macrofauna communities in the Yangtze River estuary and adjacent area. Aquat. Ecosyst. Health 2013, 16, 31–39. [Google Scholar] [CrossRef]
- Miserendino, M.L.; Brand, C.; Di Prinzio, C.Y. Assessing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water Air Soil. Poll. 2008, 194, 91–110. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, L.; Li, J.; Huang, X. Long-term changes of nutrients and biocenoses indicating the anthropogenic influences on ecosystem in Jiaozhou Bay and Daya Bay, China. Mar. Pollut. Bull. 2021, 168, 112406. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Sun, K.; Yang, J.; Song, W.; Cui, W. A comparison of the applicability of the Shannon-Wiener index, AMBI and M-AMBI indices for assessing benthic habitat health in the Huanghe (Yellow River) Estuary and adjacent areas. Acta Oceanol. Sin. 2016, 35, 50–58. [Google Scholar] [CrossRef]
- Hua, C.; Zhu, Q.; Shi, Y.; Liu, Y. Comparative analysis of CPUE standardization of Chinese Pacific saury (Cololabis saira) fishery based on GLM and GAM. Acta Oceanol. Sin. 2019, 38, 100–110. [Google Scholar] [CrossRef]
- Yang, Y.; Yi, Y.; Wang, W.; Zhou, Y.; Yang, Z. Generalized additive models for biomass simulation of submerged macrophytes in a shallow lake. Sci. Total. Environ. 2020, 711, 135108. [Google Scholar] [CrossRef] [PubMed]
Factors | March | May | August | October | |
---|---|---|---|---|---|
Water | H/m | 1.89 ± 0.26 a | 3.07 ± 0.78 b | 3.40 ± 0.76 b | 3.00 ± 0.51 b |
T/°C | 9.33 ± 0.85 a | 16.94 ± 0.73 b | 27.70 ± 0.82 c | 14.60 ± 0.85 d | |
pH | 7.94 ± 0.15 a | 7.96 ± 0.05 a | 7.94 ± 0.05 a | 7.81 ± 0.11 b | |
DO/mg·L−1 | 8.76 ± 0.43 a | 7.62 ± 0.92 a | 5.96 ± 0.40 b | 8.47 ± 0.30 a | |
Sal/psu | 22.70 ± 1.22 a | 23.02 ± 0.97 a | 22.75 ± 1.72 a | 17.01 ± 1.67 b | |
Chl-a/μg·L−1 | 4.66 ± 0.46 a | 4.53 ± 1.57 a | 5.31 ± 1.82 a | 4.85 ± 1.67 a | |
POM/mg·L−1 | 8.42 ± 0.60 a | 8.83 ± 1.93 a | 7.79 ± 1.29 a | 7.39 ± 2.40 a | |
PO4-P/μmol·L−1 | 0.17 ± 0.03 a | 0.22 ± 0.10 a | 2.23 ± 1.10 b | 2.63 ± 0.98 c | |
NH4-N/μmol·L−1 | 7.88 ± 1.13 a | 8.34 ± 5.31 a | 39.43 ± 5.82 b | 95.24 ± 25.22 c | |
NO3-N/μmol·L−1 | 28.39 ± 8.84 a | 32.13 ± 7.26 a | 33.90 ± 10.80 a | 25.70 ± 7.52 a | |
NO2-N/μmol·L−1 | 3.50 ± 1.09 a | 6.05 ± 2.62 a,b | 4.06 ± 1.56 a,b | 1.65 ± 0.84b | |
DIN/μmol·L−1 | 39.77 ± 10.57 a | 46.52 ± 12.28 a | 77.39 ± 12.15 b | 122.59 ± 31.00 c | |
Sediment | SOM/% | 1.86 ± 0.91 a | 1.92 ± 0.53 a | 1.99 ± 0.93 a | 2.85 ± 1.59 b |
D50/μm | 89.58 ± 15.00 a | 78.80 ± 24.70 a | 72.53 ± 34.52 a | 74.17 ± 20.50 a | |
PO4-Psoil/μmol·L−1 | 0.96 ± 0.34 a | 2.13 ± 1.25 a,b | 2.89 ± 1.35 a,b | 3.66 ± 1.22 b | |
NH4-Nsoil/μmol·L−1 | 4.07 ± 0.68 a | 10.41 ± 4.49 a | 36.05 ± 11.11 b | 55.34 ± 24.97 c | |
NO3-Nsoil/μmol·L−1 | 3.94 ± 1.13 a | 13.54 ± 3.08 b | 17.90 ± 12.61 b,c | 23.18 ± 9.32 c | |
NO2-Nsoil/μmol·L−1 | 0.42 ± 0.09 a | 1.37 ± 0.46 b | 3.26 ± 0.90 c | 2.90 ± 1.60 c | |
DINsoil/μmol·L−1 | 8.43 ± 1.29 a | 25.32 ± 6.04 b | 57.20 ± 20.50 c | 81.42 ± 32.73 d |
Group | Species | Dominance | |||
---|---|---|---|---|---|
March | May | August | October | ||
Mollusca | Mactra chinensis | 0.536 | 0.157 | ||
Mactra veneriformis | 0.021 | 0.223 | |||
Ruditapes philippinarum | 0.065 | 0.047 | |||
Musculus senhousei | 0.214 | 0.023 | |||
Decorifera matusimana | 0.026 | ||||
Cultellus attenuates | 0.025 | ||||
Annelida | Nephtys polybranchia | 0.024 | |||
Notomastus latericeus Sars | 0.021 | ||||
Arthropoda | Heterocuma sarst | 0.078 |
Model | Residual Deviation | Cumulative Deviation | AIC | p |
---|---|---|---|---|
Model 1 | 8.4899 | 19.5% | 28.9733 | 0.0035 |
Model 2 | 7.7887 | 27.5% | 27.3027 | 0.0014 |
Model 3 | 6.8724 | 43.4% | 21.9143 | 0.0054 |
Model 4 | 4.5450 | 79% | 3.5953 | 0.9830 |
Model 5 | 4.5103 | 79.6% | 3.1832 | 0.7660 |
Model 6 | 4.4361 | 80.2% | 2.6007 | 0.7332 |
Model 7 | 4.3078 | 80.7% | 3.4475 | 0.0002 |
Model 8 | 2.9922 | 90.8% | -13.9273 | 0.0092 |
Model 9 | 2.6667 | 92.6% | -20.5398 | 0.0081 |
Site | Measured dM | Predicted dM | Site | Measured dM | Predicted dM |
---|---|---|---|---|---|
S1 | 0.3467 | 0.5320 | S6 | 0.5758 | 0.1054 |
S2 | 0.8873 | 0.3592 | S7 | 0.8546 | 0.9453 |
S3 | 0.3775 | 0.4296 | S10 | 1.2792 | 1.2764 |
S4 | 1.2792 | 0.8639 | S11 | 0.4293 | 0.4261 |
S5 | 1.0193 | 1.8208 | S12 | 0.3941 | 0.4438 |
MSE | 0.1363 | R2 | 0.845 | p | 0.0383 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Li, A.; Zhu, L.; Xue, S.; Li, J.; Zhang, C.; Yu, W.; Ma, Z.; Zhuang, H.; Jiang, Z.; et al. The Application of the Generalized Additive Model to Represent Macrobenthos near Xiaoqing Estuary, Laizhou Bay. Biology 2023, 12, 1146. https://doi.org/10.3390/biology12081146
Liu L, Li A, Zhu L, Xue S, Li J, Zhang C, Yu W, Ma Z, Zhuang H, Jiang Z, et al. The Application of the Generalized Additive Model to Represent Macrobenthos near Xiaoqing Estuary, Laizhou Bay. Biology. 2023; 12(8):1146. https://doi.org/10.3390/biology12081146
Chicago/Turabian StyleLiu, Lulei, Ang Li, Ling Zhu, Suyan Xue, Jiaqi Li, Changsheng Zhang, Wenhan Yu, Zhanfei Ma, Haonan Zhuang, Zengjie Jiang, and et al. 2023. "The Application of the Generalized Additive Model to Represent Macrobenthos near Xiaoqing Estuary, Laizhou Bay" Biology 12, no. 8: 1146. https://doi.org/10.3390/biology12081146
APA StyleLiu, L., Li, A., Zhu, L., Xue, S., Li, J., Zhang, C., Yu, W., Ma, Z., Zhuang, H., Jiang, Z., & Mao, Y. (2023). The Application of the Generalized Additive Model to Represent Macrobenthos near Xiaoqing Estuary, Laizhou Bay. Biology, 12(8), 1146. https://doi.org/10.3390/biology12081146