Spotlight on Plant Bromodomain Proteins
Abstract
:Simple Summary
Abstract
1. Introduction
2. Domain Architecture of Bromodomain-Containing Proteins in Arabidopsis
- (I)
- 2 proteins carrying WD40 repeats (At2g47410, At5g49430),
- (II)
- 2 proteins with ubiquitin (UBQ) domain and HAT activity (HAF1/At1g32750 and HAF2/At3g19040),
- (III)
- 4 proteins carrying an N-terminal SANT domain (At3g60110, At2g44430, At3g57980, At2g42150) and 1 protein with a single BRD (BRD4/At1g61215),
- (IV)
- 3 proteins carrying a single BRD (BRD2/At1g76380, BRD1/At1g20670, BRD13/At5g55040),
- (V)
- a HAT (HAG1/At3g54610) and a large multidomain ATPase (BRM/At2g46020),
- (VI)
- a heterogeneous group of 3 proteins; 1 with a single BRD (BRD5/At1g58025), 1 carrying an AAA domain (BRAT1/At1g05910) and 1 carrying a methyl-CpG-binding domain (MBD9/At3g01460),
- (VII)
- a group of 7 BET proteins (At3g52280/GTE6, At2g34900/GTE1, At1g06230/GTE4, At1g73150/GTE3, At1g17790/GTE5, At5g65630/GTE7 and At5g10550/GTE2); this group is mentioned as the first cluster of BET proteins in Section 4.1,
- (VIII)
- the rest of the 5 BET proteins (At5g63320/GTE10, At5g14270/GTE9, At3g01770/GTE11, At3g27260/GTE8, At5g46550/GTE12); this group is mentioned as the second cluster of BET proteins in Section 4.2.
3. Bromodomain Proteins of Chromatin-Remodeling Complexes
3.1. BRD-Proteins of the SWI/SNF Complex
3.2. Bromodomain Proteins of the SWR1 Complex
4. BET Family Transcriptional Regulators
4.1. First Cluster of BET Proteins
4.2. Second Cluster of BET Proteins
5. Bromodomain Proteins with Histone Acetyltransferase Activity
5.1. GNAT Family: HAG1 Histone Acetyltransferase
5.2. TAFII250 Family: HAF1 and HAF2 Histone Acetyltransferases
6. Other Bromodomain Proteins
7. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khoury, G.A.; Baliban, R.C.; Floudas, C.A. Proteome-Wide Post-Translational Modification Statistics: Frequency Analysis and Curation of the Swiss-Prot Database. Sci. Rep. 2011, 1, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, M.; Jensen, O.N. Proteomic Analysis of Post-Translational Modifications. Nat. Biotechnol. 2003, 21, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Favrot, L.; Blanchard, J.S.; Vergnolle, O. Bacterial GCN5-Related N-Acetyltransferases: From Resistance to Regulation. Biochemistry 2016, 55, 989–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinert, B.T.; Iesmantavicius, V.; Wagner, S.A.; Schölz, C.; Gummesson, B.; Beli, P.; Nyström, T.; Choudhary, C. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. Coli. Mol. Cell 2013, 51, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Bienvenut, W.V.; Sumpton, D.; Martinez, A.; Lilla, S.; Espagne, C.; Meinnel, T.; Giglione, C. Comparative Large Scale Characterization of Plant versus Mammal Proteins Reveals Similar and Idiosyncratic N-α-Acetylation Features. Mol. Cell. Proteom. 2012, 11, M111.015131. [Google Scholar] [CrossRef] [Green Version]
- Eberharter, A.; Becker, P.B. Histone Acetylation: A Switch between Repressive and Permissive Chromatin: Second in Review Series on Chromatin Dynamics. EMBO Rep. 2002, 3, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Megee, P.C.; Morgan, B.A.; Mittman, B.A.; Smith, M.M. Genetic Analysis of Histone H4: Essential Role of Lysines Subject to Reversible Acetylation. Science 1990, 247, 841–845. [Google Scholar] [CrossRef]
- Munks, R.J.L.; Moore, J.; O’Neill, L.P.; Turner, B.M. Histone H4 Acetylation in Drosophila Frequency of Acetylation at Different Sites Defined by Immunolabelling with Site-Specific Antibodies. FEBS Lett. 1991, 284, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M.-H.; Brownell, J.E.; Sobel, R.E.; Ranalli, T.A.; Cook, R.G.; Edmondson, D.G.; Roth, S.Y.; Allis, C.D. Transcription-Linked Acetylation by Gcn5p of Histones H3 and H4 at Specific Lysines. Nature 1996, 383, 269–272. [Google Scholar] [CrossRef]
- Taunton, J.; Hassig, C.A.; Schreiber, S.L. A Mammalian Histone Deacetylase Related to the Yeast Transcriptional Regulator Rpd3p. Science 1996, 272, 408–411. [Google Scholar] [CrossRef]
- Dhalluin, C.; Carlson, J.E.; Zeng, L.; He, C.; Aggarwal, A.K.; Zhou, M.-M. Structure and Ligand of a Histone Acetyltransferase Bromodomain. Nature 1999, 399, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Andrews, F.H.; Shanle, E.K.; Strahl, B.D.; Kutateladze, T.G. The Essential Role of Acetyllysine Binding by the YEATS Domain in Transcriptional Regulation. Transcription 2016, 7, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Soshnikova, N.V.; Sheynov, A.A.; Tatarskiy, E.V.; Georgieva, S.G. The DPF Domain As a Unique Structural Unit Participating in Transcriptional Activation, Cell Differentiation, and Malignant Transformation. Acta Nat. 2020, 12, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Filippakopoulos, P. Functions of Bromodomain-Containing Proteins and Their Roles in Homeostasis and Cancer. Nat. Rev. Mol. Cell Biol. 2017, 18, 246–262. [Google Scholar] [CrossRef] [PubMed]
- Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J.-P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Müller, S.; Pawson, T.; et al. Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family. Cell 2012, 149, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Marmorstein, R.; Berger, S.L. Structure and Function of Bromodomains in Chromatin-Regulating Complexes. Gene 2001, 272, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bottomley, M.J. Structures of Protein Domains That Create or Recognize Histone Modifications. EMBO Rep. 2004, 5, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Mujtaba, S.; Zeng, L.; Zhou, M.-M. Structure and Acetyl-Lysine Recognition of the Bromodomain. Oncogene 2007, 26, 5521–5527. [Google Scholar] [CrossRef] [Green Version]
- Ferri, E.; Petosa, C.; McKenna, C.E. Bromodomains: Structure, Function and Pharmacology of Inhibition. Biochem. Pharmacol. 2016, 106, 1–18. [Google Scholar] [CrossRef]
- Florence, B.; Faller, D.V. You Bet-Cha: A novel family of transcriptional regulators. Front. Biosci. 2001, 6, D1008–D1018. [Google Scholar]
- Singhal, N.; Graumann, J.; Wu, G.; Araúzo-Bravo, M.J.; Han, D.W.; Greber, B.; Gentile, L.; Mann, M.; Schöler, H.R. Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming. Cell 2010, 141, 943–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Popowicz, G.M.; Krajewski, M.; Holak, T.A. Structural Ramification for Acetyl-Lysine Recognition by the Bromodomain of Human BRG1 Protein, a Central ATPase of the SWI/SNF Remodeling Complex. ChemBioChem 2007, 8, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Filippakopoulos, P. Beating the Odds: BETs in Disease. Trends Biochem. Sci. 2015, 40, 468–479. [Google Scholar] [CrossRef]
- Sanchez, R.; Zhou, M.-M. The Role of Human Bromodomains in Chromatin Biology and Gene Transcription. Curr. Opin. Drug Discov. Devel 2009, 12, 659–665. [Google Scholar]
- Taniguchi, Y. The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins. IJMS 2016, 17, 1849. [Google Scholar] [CrossRef] [Green Version]
- Cochran, A.G.; Conery, A.R.; Sims, R.J. Bromodomains: A New Target Class for Drug Development. Nat. Rev. Drug Discov. 2019, 18, 609–628. [Google Scholar] [CrossRef]
- Uppal, S.; Gegonne, A.; Chen, Q.; Thompson, P.S.; Cheng, D.; Mu, J.; Meerzaman, D.; Misra, H.S.; Singer, D.S. The Bromodomain Protein 4 Contributes to the Regulation of Alternative Splicing. Cell Rep. 2019, 29, 2450–2460.e5. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.S.P.; Thelen, J.J.; Miernyk, J.A. In Silico Analysis of Protein Lys-Nε-Acetylation in Plants. Front. Plant Sci. 2014, 5, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abiraami, T.V.; Sanyal, R.P.; Misra, H.S.; Saini, A. Genome-Wide Analysis of Bromodomain Gene Family in Arabidopsis and Rice. Front. Plant Sci. 2023, 14, 1120012. [Google Scholar] [CrossRef] [PubMed]
- Tamkun, J.W.; Deuring, R.; Scott, M.P.; Kissinger, M.; Pattatucci, A.M.; Kaufman, T.C.; Kennison, J.A. Brahma: A Regulator of Drosophila Homeotic Genes Structurally Related to the Yeast Transcriptional Activator SNF2SWI2. Cell 1992, 68, 561–572. [Google Scholar] [CrossRef]
- Phelan, M.L.; Sif, S.; Narlikar, G.J.; Kingston, R.E. Reconstitution of a Core Chromatin Remodeling Complex from SWI/SNF Subunits. Mol. Cell 1999, 3, 247–253. [Google Scholar] [CrossRef]
- Narlikar, G.J.; Fan, H.-Y.; Kingston, R.E. Cooperation between Complexes That Regulate Chromatin Structure and Transcription. Cell 2002, 108, 475–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.-F.; Sang, Y.; Bezhani, S.; Yamaguchi, N.; Han, S.-K.; Li, Z.; Su, Y.; Slewinski, T.L.; Wagner, D. SWI2/SNF2 Chromatin Remodeling ATPases Overcome Polycomb Repression and Control Floral Organ Identity with the LEAFY and SEPALLATA3 Transcription Factors. Proc. Natl. Acad. Sci. USA 2012, 109, 3576–3581. [Google Scholar] [CrossRef]
- Farrona, S.; Hurtado, L.; Reyes, J.C. A Nucleosome Interaction Module Is Required for Normal Function of Arabidopsis Thaliana BRAHMA. J. Mol. Biol. 2007, 373, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Thouly, C.; Le Masson, M.; Lai, X.; Carles, C.C.; Vachon, G. Unwinding BRAHMA Functions in Plants. Genes 2020, 11, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezhani, S.; Winter, C.; Hershman, S.; Wagner, J.D.; Kennedy, J.F.; Kwon, C.S.; Pfluger, J.; Su, Y.; Wagner, D. Unique, Shared, and Redundant Roles for the Arabidopsis SWI/SNF Chromatin Remodeling ATPases BRAHMA and SPLAYED. Plant Cell 2007, 19, 403–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, C.S.; Hibara, K.; Pfluger, J.; Bezhani, S.; Metha, H.; Aida, M.; Tasaka, M.; Wagner, D. A Role for Chromatin Remodeling in Regulation of CUC Gene Expression in the Arabidopsis Cotyledon Boundary. Development 2006, 133, 3223–3230. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Guo, C.; Zhou, B.; Li, C.; Wang, H.; Zheng, B.; Ding, H.; Zhu, Z.; Peragine, A.; Cui, Y.; et al. Regulation of Vegetative Phase Change by SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA. Plant Physiol. 2016, 172, 2416–2428. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Li, Y.; Zhang, X.; Zha, P.; Lin, R. The SWI2/SNF2 Chromatin-Remodeling ATPase BRAHMA Regulates Chlorophyll Biosynthesis in Arabidopsis. Mol. Plant 2017, 10, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Vercruyssen, L.; Verkest, A.; Gonzalez, N.; Heyndrickx, K.S.; Eeckhout, D.; Han, S.-K.; Jégu, T.; Archacki, R.; Van Leene, J.; Andriankaja, M.; et al. ANGUSTIFOLIA3 Binds to SWI/SNF Chromatin Remodeling Complexes to Regulate Transcription during Arabidopsis Leaf Development. Plant Cell 2014, 26, 210–229. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, C.; Zhao, L.; Gao, S.; Lu, J.; Zhao, M.; Chen, C.-Y.; Liu, X.; Luo, M.; Cui, Y.; et al. The Arabidopsis SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA Targets Directly to PINs and Is Required for Root Stem Cell Niche Maintenance. Plant Cell 2015, 27, 1670–1680. [Google Scholar] [CrossRef] [Green Version]
- Efroni, I.; Han, S.-K.; Kim, H.J.; Wu, M.-F.; Steiner, E.; Birnbaum, K.D.; Hong, J.C.; Eshed, Y.; Wagner, D. Regulation of Leaf Maturation by Chromatin-Mediated Modulation of Cytokinin Responses. Dev. Cell 2013, 24, 438–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrona, S.; Hurtado, L.; March-Díaz, R.; Schmitz, R.J.; Florencio, F.J.; Turck, F.; Amasino, R.M.; Reyes, J.C. Brahma Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis. PLoS ONE 2011, 6, e17997. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Chen, C.; Gao, L.; Yang, S.; Nguyen, V.; Shi, X.; Siminovitch, K.; Kohalmi, S.E.; Huang, S.; Wu, K.; et al. The Arabidopsis SWI2/SNF2 Chromatin Remodeler BRAHMA Regulates Polycomb Function during Vegetative Development and Directly Activates the Flowering Repressor Gene SVP. PLoS Genet. 2015, 11, e1004944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Jian, M.; Li, W.; Yao, X.; Tan, C.; Qian, Q.; Hu, Y.; Xu, L.; Hou, X. Gibberellin Signaling Modulates Flowering via the DELLA-BRAHMA-NF-YC Module in Arabidopsis. Plant Cell 2023, koad166. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, L.; Farrona, S.; Reyes, J.C. The Putative SWI/SNF Complex Subunit BRAHMA Activates Flower Homeotic Genes in Arabidopsis Thaliana. Plant Mol. Biol. 2006, 62, 291–304. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, S.; Chen, C.-Y.; Li, C.; Shan, W.; Lu, W.; Cui, Y.; Liu, X.; Wu, K. Arabidopsis BREVIPEDICELLUS Interacts with the SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA to Regulate KNAT2 and KNAT6 Expression in Control of Inflorescence Architecture. PLoS Genet. 2015, 11, e1005125. [Google Scholar] [CrossRef] [Green Version]
- Han, S.-K.; Sang, Y.; Rodrigues, A.; BIOL425 F2010; Wu, M.-F.; Rodriguez, P.L.; Wagner, D. The SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA Represses Abscisic Acid Responses in the Absence of the Stress Stimulus in Arabidopsis. Plant Cell 2013, 24, 4892–4906. [Google Scholar] [CrossRef] [Green Version]
- Peirats-Llobet, M.; Han, S.-K.; Gonzalez-Guzman, M.; Jeong, C.W.; Rodriguez, L.; Belda-Palazon, B.; Wagner, D.; Rodriguez, P.L. A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Mol. Plant 2016, 9, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.H.; Jung, C.; Cheong, J.-J. Chromatin Remodeling for the Transcription of Type 2C Protein Phosphatase Genes in Response to Salt Stress. Plant Physiol. Biochem. 2019, 141, 325–331. [Google Scholar] [CrossRef]
- Dong, Y.; Uslu, V.V.; Berr, A.; Singh, G.; Papdi, C.; Steffens, V.A.; Heitz, T.; Ryabova, L.A. TOR Represses Stress Responses through Global Regulation of H3K27 Trimethylation in Plants. J. Exp. Bot. 2023, 74, 1420–1431. [Google Scholar] [CrossRef]
- Yuan, D.; Lai, J.; Xu, P.; Zhang, S.; Zhang, J.; Li, C.; Wang, Y.; Du, J.; Liu, Y.; Yang, C. AtMMS21 Regulates DNA Damage Response and Homologous Recombination Repair in Arabidopsis. DNA Repair 2014, 21, 140–147. [Google Scholar] [CrossRef]
- Zhang, S.; Qi, Y.; Liu, M.; Yang, C. SUMO E3 Ligase AtMMS21 Regulates Drought Tolerance in Arabidopsis Thaliana F. J. Integr. Plant Biol. 2013, 55, 83–95. [Google Scholar] [CrossRef]
- Sakamoto, T.; Tsujimoto-Inui, Y.; Sotta, N.; Hirakawa, T.; Matsunaga, T.M.; Fukao, Y.; Matsunaga, S.; Fujiwara, T. Proteasomal Degradation of BRAHMA Promotes Boron Tolerance in Arabidopsis. Nat. Commun. 2018, 9, 5285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzezinka, K.; Altmann, S.; Czesnick, H.; Nicolas, P.; Gorka, M.; Benke, E.; Kabelitz, T.; Jähne, F.; Graf, A.; Kappel, C.; et al. Arabidopsis FORGETTER1 Mediates Stress-Induced Chromatin Memory through Nucleosome Remodeling. eLife 2016, 5, e17061. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, Z.; Castillo-González, C.; Sun, D.; Li, Y.; Yu, B.; Zhao, B.; Li, P.; Zhang, X. SWI2/SNF2 ATPase CHR2 Remodels Pri-MiRNAs via Serrate to Impede MiRNA Production. Nature 2018, 557, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liang, Z.; Song, X.; Fu, W.; Xu, J.; Lei, Y.; Yuan, L.; Ruan, J.; Chen, C.; Fu, W.; et al. BRAHMA-Interacting Proteins BRIP1 and BRIP2 Are Core Subunits of Arabidopsis SWI/SNF Complexes. Nat. Plants 2020, 6, 996–1007. [Google Scholar] [CrossRef]
- Jarończyk, K.; Sosnowska, K.; Zaborowski, A.; Pupel, P.; Bucholc, M.; Małecka, E.; Siwirykow, N.; Stachula, P.; Iwanicka-Nowicka, R.; Koblowska, M.; et al. Bromodomain-Containing Subunits BRD1, BRD2, and BRD13 Are Required for Proper Functioning of SWI/SNF Complexes in Arabidopsis. Plant Commun. 2021, 2, 100174. [Google Scholar] [CrossRef]
- Yu, Y.; Fu, W.; Xu, J.; Lei, Y.; Song, X.; Liang, Z.; Zhu, T.; Liang, Y.; Hao, Y.; Yuan, L.; et al. Bromodomain-Containing Proteins BRD1, BRD2, and BRD13 Are Core Subunits of SWI/SNF Complexes and Vital for Their Genomic Targeting in Arabidopsis. Mol. Plant 2021, 14, 888–904. [Google Scholar] [CrossRef]
- Stachula, P.; Kapela, K.; Malecka, E.; Jaronczyk, K.; Patryn, J.; Siwirykow, N.; Bucholc, M.; Marczak, M.; Kotlinski, M.; Archacki, R. BRM Complex in Arabidopsis Adopts NcBAF-like Composition and Requires BRD Subunits for Assembly and Stability. IJMS 2023, 24, 3917. [Google Scholar] [CrossRef]
- Huang, Y.; Xi, X.; Chai, M.; Ma, S.; Su, H.; Liu, K.; Wang, F.; Zhu, W.; Liu, Y.; Qin, Y.; et al. Chromatin Remodeling Complex SWR1 Regulates Root Development by Affecting the Accumulation of Reactive Oxygen Species (ROS). Plants 2023, 12, 940. [Google Scholar] [CrossRef]
- Aslam, M.; Fakher, B.; Jakada, B.H.; Cao, S.; Qin, Y. SWR1 Chromatin Remodeling Complex: A Key Transcriptional Regulator in Plants. Cells 2019, 8, 1621. [Google Scholar] [CrossRef] [Green Version]
- Potok, M.E.; Wang, Y.; Xu, L.; Zhong, Z.; Liu, W.; Feng, S.; Naranbaatar, B.; Rayatpisheh, S.; Wang, Z.; Wohlschlegel, J.A.; et al. Arabidopsis SWR1-Associated Protein Methyl-CpG-Binding Domain 9 Is Required for Histone H2A.Z Deposition. Nat. Commun. 2019, 10, 3352. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Hou, X.; Zhang, C.; Tan, L.; Shao, C.; Lin, R.; Su, Y.; Cai, X.; Li, L.; Chen, S.; et al. A Plant-specific SWR1 Chromatin-remodeling Complex Couples Histone H2A.Z Deposition with Nucleosome Sliding. EMBO J. 2020, 39, e102008. [Google Scholar] [CrossRef]
- Yaish, M.W.F.; Peng, M.; Rothstein, S.J. AtMBD9 Modulates Arabidopsis Development through the Dual Epigenetic Pathways of DNA Methylation and Histone Acetylation. Plant J. 2009, 59, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Sijacic, P.; Holder, D.H.; Bajic, M.; Deal, R.B. Methyl-CpG-Binding Domain 9 (MBD9) Is Required for H2A.Z Incorporation into Chromatin at a Subset of H2A.Z-Enriched Regions in the Arabidopsis Genome. PLoS Genet. 2019, 15, e1008326. [Google Scholar] [CrossRef] [Green Version]
- Nie, W.-F.; Lei, M.; Zhang, M.; Tang, K.; Huang, H.; Zhang, C.; Miki, D.; Liu, P.; Yang, Y.; Wang, X.; et al. Histone Acetylation Recruits the SWR1 Complex to Regulate Active DNA Demethylation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2019, 116, 16641–16650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matangkasombut, O.; Buratowski, R.M.; Swilling, N.W.; Buratowski, S. Bromodomain Factor 1 Corresponds to a Missing Piece of Yeast TFIID. Genes. Dev. 2000, 14, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Denis, G.V.; Green, M.R. A Nove, Mitogen-Activated Nuclear Kmase 1s Related to a Drosophda Developmental Regulator. Genes Dev. 1996, 10, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Duque, P.; Chua, N.-H. IMB1, a Bromodomain Protein Induced during Seed Imbibition, Regulates ABA- and PhyA-Mediated Responses of Germination in Arabidopsis. Plant J. 2003, 35, 787–799. [Google Scholar] [CrossRef]
- Misra, A.; McKnight, T.D.; Mandadi, K.K. Bromodomain Proteins GTE9 and GTE11 Are Essential for Specific BT2-Mediated Sugar and ABA Responses in Arabidopsis Thaliana. Plant Mol. Biol. 2018, 96, 393–402. [Google Scholar] [CrossRef]
- Ottinger, M.; Christalla, T.; Nathan, K.; Brinkmann, M.M.; Viejo-Borbolla, A.; Schulz, T.F. Kaposi’s Sarcoma-Associated Herpesvirus LANA-1 Interacts with the Short Variant of BRD4 and Releases Cells from a BRD4- and BRD2/RING3-Induced G 1 Cell CycleArrest. J. Virol. 2006, 80, 10772–10786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, J.; Srinivasan, V.; Denis, G.V.; Harrington, W.J.; Ballestas, M.E.; Kaye, K.M.; Howley, P.M. Kaposi’s Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Interacts with Bromodomain Protein Brd4 on Host Mitotic Chromosomes. J. Virol. 2006, 80, 8909–8919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, M.K.; Mochizuki, K.; Zhou, M.; Jeong, H.-S.; Brady, J.N.; Ozato, K. The Bromodomain Protein Brd4 Is a Positive Regulatory Component of P-TEFb and Stimulates RNA Polymerase II-Dependent Transcription. Mol. Cell 2005, 19, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Chua, Y.L.; Channelière, S.; Mott, E.; Gray, J.C. The Bromodomain Protein GTE6 Controls Leaf Development in Arabidopsis by Histone Acetylation at ASYMMETRIC LEAVES1. Genes. Dev. 2005, 19, 2245–2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Zhou, Q.; Zhang, W.; Fu, Y.; Huang, H. ASYMMETRIC LEAVES1, an Arabidopsis Gene That Is Involved in the Control of Cell Differentiation in Leaves. Planta 2002, 214, 694–702. [Google Scholar] [CrossRef]
- Airoldi, C.A.; Rovere, F.D.; Falasca, G.; Marino, G.; Kooiker, M.; Altamura, M.M.; Citterio, S.; Kater, M.M. The Arabidopsis BET Bromodomain Factor GTE4 Is Involved in Maintenance of the Mitotic Cell Cycle during Plant Development. Plant Physiol. 2010, 152, 1320–1334. [Google Scholar] [CrossRef] [Green Version]
- Della Rovere, F.; Airoldi, C.A.; Falasca, G.; Ghiani, A.; Fattorini, L.; Citterio, S.; Kater, M.; Altamura, M.M. The Arabidopsis BET Bromodomain Factor GTE4 Regulates the Mitotic Cell Cycle. Plant Signal. Behav. 2010, 5, 677–680. [Google Scholar] [CrossRef] [Green Version]
- Coudert, Y.; Bès, M.; Van Anh Le, T.; Pré, M.; Guiderdoni, E.; Gantet, P. Transcript Profiling of Crown Rootless1 Mutant Stem Base Reveals New Elements Associated with Crown Root Development in Rice. BMC Genom. 2011, 12, 387. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Sun, Y.; Zhao, X.; Yu, Y.; Cheng, W.; Lu, L.; Chu, Z.; Chen, X. Bromodomain-Containing Factor GTE4 Regulates Arabidopsis Immune Response. BMC Biol. 2022, 20, 256. [Google Scholar] [CrossRef]
- Catala, R.; Ouyang, J.; Abreu, I.A.; Hu, Y.; Seo, H.; Zhang, X.; Chua, N.-H. The Arabidopsis E3 SUMO Ligase SIZ1 Regulates Plant Growth and Drought Responses. Plant Cell 2007, 19, 2952–2966. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Dominguez, M.; March-Diaz, R.; Reyes, J.C. The PHD Domain of Plant PIAS Proteins Mediates Sumoylation of Bromodomain GTE Proteins. J. Biol. Chem. 2008, 283, 21469–21477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, Y.M.; Gelvin, S.B. RNAi-Mediated Gene Silencing Reveals Involvement of Arabidopsis Chromatin-Related Genes in Agrobacterium -Mediated Root Transformation. Proc. Natl. Acad. Sci. USA 2007, 104, 15156–15161. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Karcher, D.; Bock, R. Identification of Enzymes for Adenosine-to-Inosine Editing and Discovery of Cytidine-to-Uridine Editing in Nucleus-Encoded Transfer RNAs of Arabidopsis. Plant Physiol. 2014, 166, 1985–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, S.; Suescún, A.V.; Song, J.; Castillo-González, C.; Aklilu, B.B.; Branham, E.; Lynch, R.; Shippen, D.E. TRNA ADENOSINE DEAMINASE 3 Is Required for Telomere Maintenance in Arabidopsis Thaliana. Plant Cell Rep. 2020, 39, 1669–1685. [Google Scholar] [CrossRef] [PubMed]
- Dortay, H.; Gruhn, N.; Pfeifer, A.; Schwerdtner, M.; Schmülling, T.; Heyl, A. Toward an Interaction Map of the Two-Component Signaling Pathway of Arabidopsis Thaliana. J. Proteome Res. 2008, 7, 3649–3660. [Google Scholar] [CrossRef]
- Kondo, Y.; Hirakawa, Y.; Kieber, J.J.; Fukuda, H. CLE Peptides Can Negatively Regulate Protoxylem Vessel Formation via Cytokinin Signaling. Plant Cell Physiol. 2011, 52, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Martínez De Alba, A.E.; Sägesser, R.; Tabler, M.; Tsagris, M. A Bromodomain-Containing Protein from Tomato Specifically Binds Potato Spindle Tuber Viroid RNA In Vitro and In Vivo. J. Virol. 2003, 77, 9685–9694. [Google Scholar] [CrossRef] [Green Version]
- Tsagris, E.M.; Martínez De Alba, Á.E.; Gozmanova, M.; Kalantidis, K. Viroids. Cell. Microbiol. 2008, 10, 2168–2179. [Google Scholar] [CrossRef]
- Rao, A.L.N.; Kalantidis, K. Virus-Associated Small Satellite RNAs and Viroids Display Similarities in Their Replication Strategies. Virology 2015, 479–480, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Katsarou, K.; Rao, A.L.N.; Tsagris, M.; Kalantidis, K. Infectious Long Non-Coding RNAs. Biochimie 2015, 117, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Kalantidis, K.; Denti, M.A.; Tzortzakaki, S.; Marinou, E.; Tabler, M.; Tsagris, M. Virp1 Is a Host Protein with a Major Role in Potato Spindle Tuber. Viroid Infection in Nicotiana Plants. J. Virol. 2007, 81, 12872–12880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, S.; Rao, A.L.N. A Shift in Plant Proteome Profile for a Bromodomain Containing RNA Binding Protein (BRP1) in Plants Infected with Cucumber Mosaic Virus and Its Satellite RNA. J. Proteom. 2016, 131, 1–7. [Google Scholar] [CrossRef]
- Seo, H.; Kim, K.; Park, W.J. Effect of VIRP1 Protein on Nuclear Import of Citrus Exocortis Viroid (CEVd). Biomolecules 2021, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Dissanayaka Mudiyanselage, S.D.; Park, W.J.; Wang, M.; Takeda, R.; Liu, B.; Wang, Y. A Nuclear Import Pathway Exploited by Pathogenic Noncoding RNAs. Plant Cell 2022, 34, 3543–3556. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Shin, R.; Schachtman, D.P. A Nuclear Factor Regulates Abscisic Acid Responses in Arabidopsis. Plant Physiol. 2009, 151, 1433–1445. [Google Scholar] [CrossRef]
- Chen, X.; Lu, L.; Mayer, K.S.; Scalf, M.; Qian, S.; Lomax, A.; Smith, L.M.; Zhong, X. POWERDRESS Interacts with HISTONE DEACETYLASE 9 to Promote Aging in Arabidopsis. eLife 2016, 5, e17214. [Google Scholar] [CrossRef]
- Mayer, K.S.; Chen, X.; Sanders, D.; Chen, J.; Jiang, J.; Nguyen, P.; Scalf, M.; Smith, L.M.; Zhong, X. HDA9-PWR-HOS15 Is a Core Histone Deacetylase Complex Regulating Transcription and Development. Plant Physiol. 2019, 180, 342–355. [Google Scholar] [CrossRef] [Green Version]
- Zareen, S.; Ali, A.; Lim, C.J.; Khan, H.A.; Park, J.; Xu, Z.-Y.; Yun, D.-J. The Transcriptional Corepressor HOS15 Mediates Dark-Induced Leaf Senescence in Arabidopsis. Front. Plant Sci. 2022, 13, 828264. [Google Scholar] [CrossRef]
- Mandadi, K.K.; Misra, A.; Ren, S.; McKnight, T.D. BT2, a BTB Protein, Mediates Multiple Responses to Nutrients, Stresses, and Hormones in Arabidopsis. Plant Physiol. 2009, 150, 1930–1939. [Google Scholar] [CrossRef] [Green Version]
- Irigoyen, S.; Ramasamy, M.; Misra, A.; McKnight, T.D.; Mandadi, K.K. A BTB-TAZ Protein Is Required for Gene Activation by Cauliflower Mosaic Virus 35S Multimerized Enhancers. Plant Physiol. 2022, 188, 397–410. [Google Scholar] [CrossRef]
- Brownell, J.E.; Allis, D.C. An Activity Gel Assay Detects a Single, Catalytically Active Histone Acetyltransferase Subunit in Tetrahymena Macronuclei. Available online: https://www.pnas.org/doi/10.1073/pnas.92.14.6364 (accessed on 19 June 2023).
- Boycheva, I.; Vassileva, V.; Iantcheva, A. Histone Acetyltransferases in Plant Development and Plasticity. Curr. Genom. 2014, 15, 28–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, R.; Pikaard, C.S.; Richards, E.J.; Bender, J.; Mount, D.W.; Jorgensen, R.A. Analysis of Histone Acetyltransferase and Histone Deacetylase Families of Arabidopsis Thaliana Suggests Functional Diversification of Chromatin Modification among Multicellular Eukaryotes. Nucleic Acids Res. 2002, 30, 5036–5055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrella, G.; Consiglio, M.F.; Aiese-Cigliano, R.; Cremona, G.; Sanchez-Moran, E.; Barra, L.; Errico, A.; Bressan, R.A.; Franklin, F.C.H.; Conicella, C. Histone Hyperacetylation Affects Meiotic Recombination and Chromosome Segregation in Arabidopsis. Plant J. 2010, 62, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Brownell, J.E.; Allis, C.D. HAT Discovery: Heading toward an Elusive Goal with a Key Biological Assist. Biochim. Et Biophys. Acta (BBA)—Gene Regul. Mech. 2021, 1864, 194605. [Google Scholar] [CrossRef]
- Lee, T.I.; Causton, H.C.; Holstege, F.C.P.; Shen, W.-C.; Hannett, N.; Jennings, E.G.; Winston, F.; Green, M.R.; Young, R.A. Redundant Roles for the TFIID and SAGA Complexes in Global Transcription. Nature 2000, 405, 701–704. [Google Scholar] [CrossRef]
- Roberts, S.M.; Winston, F. Essential Functional Interactions of Saga, a Saccharomyces Cerevisiae Complex of Spt, Ada, and Gcn5 Proteins, with the Snf/Swi and Srb/Mediator Complexes. Genetics 1997, 147, 451–465. [Google Scholar] [CrossRef]
- Cieniewicz, A.M.; Moreland, L.; Ringel, A.E.; Mackintosh, S.G.; Raman, A.; Gilbert, T.M.; Wolberger, C.; Tackett, A.J.; Taverna, S.D. The Bromodomain of Gcn5 Regulates Site Specificity of Lysine Acetylation on Histone H3. Mol. Cell Proteom. 2014, 13, 2896–2910. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Shogren-Knaak, M.A. The Gcn5 Bromodomain of the SAGA Complex Facilitates Cooperative and Cross-Tail Acetylation of Nucleosomes. J. Biol. Chem. 2009, 284, 9411–9417. [Google Scholar] [CrossRef] [Green Version]
- Servet, C.; Conde, E.; Silva, N.; Zhou, D.-X. Histone Acetyltransferase AtGCN5/HAG1 Is a Versatile Regulator of Developmental and Inducible Gene Expression in Arabidopsis. Mol. Plant 2010, 3, 670–677. [Google Scholar] [CrossRef]
- Kornet, N.; Scheres, B. Members of the GCN5 Histone Acetyltransferase Complex Regulate PLETHORA-Mediated Root Stem Cell Niche Maintenance and Transit Amplifying Cell Proliferation in Arabidopsis. Plant Cell 2009, 21, 1070–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Jiang, W.; Long, F.; Cheng, S.; Yang, W.; Zhao, Y.; Zhou, D.-X. Rice Homeodomain Protein WOX11 Recruits a Histone Acetyltransferase Complex to Establish Programs of Cell Proliferation of Crown Root Meristem[OPEN]. Plant Cell 2017, 29, 1088–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsilimigka, F.; Poulios, S.; Mallioura, A.; Vlachonasios, K. ADA2b and GCN5 Affect Cytokinin Signaling by Modulating Histone Acetylation and Gene Expression during Root Growth of Arabidopsis Thaliana. Plants 2022, 11, 1335. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yang, W.; Forner, J.; Lohmann, J.U.; Noh, B.; Noh, Y. Epigenetic Reprogramming by Histone Acetyltransferase HAG1/AtGCN5 Is Required for Pluripotency Acquisition in Arabidopsis. EMBO J. 2018, 37, e98726. [Google Scholar] [CrossRef]
- Benhamed, M.; Bertrand, C.; Servet, C.; Zhou, D.-X. Arabidopsis GCN5, HD1, and TAF1/HAF2 Interact to Regulate Histone Acetylation Required for Light-Responsive Gene Expression. Plant Cell 2006, 18, 2893–2903. [Google Scholar] [CrossRef] [Green Version]
- Vlachonasios, K.E.; Thomashow, M.F.; Triezenberg, S.J. Disruption Mutations of ADA2b and GCN5 Transcriptional Adaptor Genes Dramatically Affect Arabidopsis Growth, Development, and Gene Expression. Plant Cell 2003, 15, 626–638. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-Y.; Oh, J.E.; Noh, Y.-S.; Noh, B. Epigenetic Control of Juvenile-to-Adult Phase Transition by the Arabidopsis SAGA-like Complex. Plant J. 2015, 83, 537–545. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Liu, D.; Zhang, K.; Li, A.; Mao, L. SQUAMOSA Promoter-Binding Protein-Like Transcription Factors: Star Players for Plant Growth and Development. J. Integr. Plant Biol. 2010, 52, 946–951. [Google Scholar] [CrossRef]
- Gan, L.; Wei, Z.; Yang, Z.; Li, F.; Wang, Z. Updated Mechanisms of GCN5—The Monkey King of the Plant Kingdom in Plant Development and Resistance to Abiotic Stresses. Cells 2021, 10, 979. [Google Scholar] [CrossRef]
- Hu, Z.; Song, N.; Zheng, M.; Liu, X.; Liu, Z.; Xing, J.; Ma, J.; Guo, W.; Yao, Y.; Peng, H.; et al. Histone Acetyltransferase GCN5 Is Essential for Heat Stress-Responsive Gene Activation and Thermotolerance in Arabidopsis. Plant J. 2015, 84, 1178–1191. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Liu, X.; Lin, J.; Liu, X.; Wang, Z.; Xin, M.; Yao, Y.; Peng, H.; Zhou, D.-X.; Ni, Z.; et al. Histone Acetyltransferase GCN5 Contributes to Cell Wall Integrity and Salt Stress Tolerance by Altering the Expression of Cellulose Synthesis Genes. Plant J. 2019, 97, 587–602. [Google Scholar] [CrossRef] [PubMed]
- Waterworth, W.M.; Drury, G.E.; Blundell-Hunter, G.; West, C.E. Arabidopsis TAF1 Is an MRE11-Interacting Protein Required for Resistance to Genotoxic Stress and Viability of the Male Gametophyte. Plant J. 2015, 84, 545–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, R.H.; Ladurner, A.G.; King, D.S.; Tjian, R. Structure and Function of a Human TAFII250 Double Bromodomain Module. Science 2000, 288, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Lawit, S.J.; O’Grady, K.; Gurley, W.B.; Czarnecka-Verner, E. Yeast Two-Hybrid Map of Arabidopsis TFIID. Plant Mol. Biol. 2007, 64, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, C.; Benhamed, M.; Li, Y.-F.; Ayadi, M.; Lemonnier, G.; Renou, J.-P.; Delarue, M.; Zhou, D.-X. Arabidopsis HAF2 Gene Encoding TATA-Binding Protein (TBP)-Associated Factor TAF1, Is Required to Integrate Light Signals to Regulate Gene Expression and Growth. J. Biol. Chem. 2005, 280, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Fina, J.P.; Masotti, F.; Rius, S.P.; Crevacuore, F.; Casati, P. HAC1 and HAF1 Histone Acetyltransferases Have Different Roles in UV-B Responses in Arabidopsis. Front. Plant Sci. 2017, 8, 1179. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Seo, P.J. The HAF2 Protein Shapes Histone Acetylation Levels of PRR5 and LUX Loci in Arabidopsis. Planta 2018, 248, 513–518. [Google Scholar] [CrossRef]
- Zhang, C.-J.; Hou, X.-M.; Tan, L.-M.; Shao, C.-R.; Huang, H.-W.; Li, Y.-Q.; Li, L.; Cai, T.; Chen, S.; He, X.-J. The Arabidopsis Acetylated Histone-Binding Protein BRAT1 Forms a Complex with BRP1 and Prevents Transcriptional Silencing. Nat. Commun. 2016, 7, 11715. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.X.; Revenko, A.S.; Li, L.B.; Gemo, A.T.; Chen, H.-W. ANCCA, an Estrogen-Regulated AAA+ ATPase Coactivator for ERα, Is Required for Coregulator Occupancy and Chromatin Modification. Proc. Natl. Acad. Sci. USA 2007, 104, 18067–18072. [Google Scholar] [CrossRef]
- Ciró, M.; Prosperini, E.; Quarto, M.; Grazini, U.; Walfridsson, J.; McBlane, F.; Nucifero, P.; Pacchiana, G.; Capra, M.; Christensen, J.; et al. ATAD2 Is a Novel Cofactor for MYC, Overexpressed and Amplified in Aggressive Tumors. Cancer Res. 2009, 69, 8491–8498. [Google Scholar] [CrossRef] [Green Version]
- Gradolatto, A.; Rogers, R.S.; Lavender, H.; Taverna, S.D.; Allis, C.D.; Aitchison, J.D.; Tackett, A.J. Saccharomyces Cerevisiae Yta7 Regulates Histone Gene Expression. Genetics 2008, 179, 291–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardi, L.M.; Ellahi, A.; Rine, J. Direct Regulation of Nucleosome Density by the Conserved AAA-ATPase Yta7. Proc. Natl. Acad. Sci. USA 2011, 108, E1302–E1311. [Google Scholar] [CrossRef] [PubMed]
- Tseng, R.-J.; Armstrong, K.R.; Wang, X.; Chamberlin, H.M. The Bromodomain Protein LEX-1 Acts with TAM-1 to Modulate Gene Expression in C. Elegans. Mol. Genet. Genom. 2007, 278, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Sukarta, O.C.A.; Townsend, P.D.; Llewelyn, A.; Dixon, C.H.; Slootweg, E.J.; Pålsson, L.-O.; Takken, F.L.W.; Goverse, A.; Cann, M.J. A DNA-Binding Bromodomain-Containing Protein Interacts with and Reduces Rx1-Mediated Immune Response to Potato Virus X. Plant Commun. 2020, 1, 100086. [Google Scholar] [CrossRef]
- Boyer, L.A.; Latek, R.R.; Peterson, C.L. The SANT Domain: A Unique Histone-Tail-Binding Module? Nat. Rev. Mol. Cell Biol. 2004, 5, 158–163. [Google Scholar] [CrossRef]
- Aasland, R.; Stewart, A.F.; Gibson, T. The SANT Domain: A Putative DNA-Binding Domain in the SWI-SNF and ADA Complexes, the Transcriptional Co-Repressor N-CoR and TFIIIB. Trends Biochem. Sci. 1996, 21, 87–88. [Google Scholar] [CrossRef]
- Fenyk, S.; Townsend, P.D.; Dixon, C.H.; Spies, G.B.; De San Eustaquio Campillo, A.; Slootweg, E.J.; Westerhof, L.B.; Gawehns, F.K.K.; Knight, M.R.; Sharples, G.J.; et al. The Potato Nucleotide-Binding Leucine-Rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-Dependent DNA-Deforming Protein. J. Biol. Chem. 2015, 290, 24945–24960. [Google Scholar] [CrossRef] [Green Version]
- Pistoni, M.; Rossi, T.; Donati, B.; Torricelli, F.; Polano, M.; Ciarrocchi, A. Long Noncoding RNA NEAT1 Acts as a Molecular Switch for BRD4 Transcriptional Activity and Mediates Repression of BRD4/WDR5 Target Genes. Mol. Cancer Res. 2021, 19, 799–811. [Google Scholar] [CrossRef]
- Bai, S.W.; Herrera-Abreu, M.T.; Rohn, J.L.; Racine, V.; Tajadura, V.; Suryavanshi, N.; Bechtel, S.; Wiemann, S.; Baum, B.; Ridley, A.J. Identification and Characterization of a Set of Conserved and New Regulators of Cytoskeletal Organization, Cell Morphology and Migration. BMC Biol. 2011, 9, 54. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardani, E.; Kallemi, P.; Tselika, M.; Katsarou, K.; Kalantidis, K. Spotlight on Plant Bromodomain Proteins. Biology 2023, 12, 1076. https://doi.org/10.3390/biology12081076
Bardani E, Kallemi P, Tselika M, Katsarou K, Kalantidis K. Spotlight on Plant Bromodomain Proteins. Biology. 2023; 12(8):1076. https://doi.org/10.3390/biology12081076
Chicago/Turabian StyleBardani, Eirini, Paraskevi Kallemi, Martha Tselika, Konstantina Katsarou, and Kriton Kalantidis. 2023. "Spotlight on Plant Bromodomain Proteins" Biology 12, no. 8: 1076. https://doi.org/10.3390/biology12081076
APA StyleBardani, E., Kallemi, P., Tselika, M., Katsarou, K., & Kalantidis, K. (2023). Spotlight on Plant Bromodomain Proteins. Biology, 12(8), 1076. https://doi.org/10.3390/biology12081076