Combination Systemic Therapies in Advanced Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs): A Comprehensive Review of Clinical Trials and Prospective Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. SSA-Based Regimens (Table 1)
3.1.1. SSAs and IFN-a
3.1.2. SSA and Inhibitors of the VEGF Pathway
3.1.3. SSAs and Inhibitors of Mammalian Target of Rapamycin (mTORi)
Study | Design | Population | Diff | n | Regimen | Primary Endpoint | ORR | DCR | PFS and Related Outcomes | OS and Related Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Arnold [15] | Prospective randomized | Pancreatic, midgut | WDNET | 109 | IFN-α and octreotide vs. octreotide alone | TTF | 9% vs. 2% | 24% vs. 18% | TTF: median ~6 mos in both arms | Median OS: 51 m vs. 35 m |
Faiss [16] | Prospective randomized | Foregut, midgut, hindgut | WDNET | 84 | Lanreotide or IFN-α or combination | 1-year progression rate | 4% vs. 4% vs. 7% | 32% vs. 30% vs. 25% | 1-year progression rate: 56% vs. 56% vs. 50% | - |
Kolby [17] | Prospective randomized | Midgut, metastatic to the liver | WDNET | 68 | IFN-α and octreotide vs. octreotide alone | OS, risk of tumor progression * | - | - | Risk of tumor progression: HR 0.28 (0.16–0.45) * for combination arm | 5-year OS: 57% vs. 37% |
Yao [20] | Phase 2, two-stage design | Foregut, midgut, hindgut | WDNET | 44 | Stage 1: Octreotide LAR and BEV or IFN-α-2b. Stage 2: triple therapy | ORR, PFS for Stage 1 (first 18 wks of the study) * | 18%% (BEV) vs. 0% (IFN) | 95% (BEV) vs. 68% (IFN) | Stage 1 PFS rate 95% vs. 68% * Median PFS (duration of study): 66 vs. 56 wks | 1-year, 2-year, and 3-year survival rates; 93%, 67%, and 56% |
Yao [21] | Phase 3 | Mainly midgut | WDNET | 427 | Octreotide LAR and either BEV or IFN-α-2b | PFS | 13% (BEV) vs. 4% (IFN) | - | Median PFS: 16.6 m (BEV), 15.4 m (IFN) | Median OS: 35.2 m (BEV) vs. NR (IFN) |
Bendell [22] | Phase 2 | Carcinoids, pancreatic | WDNET | 43 | Octreotide LAR plus BEV and pertuzumab | ORR (at least 33% required) | 16% | 53% carcinoids, 23% pancreatic | Median PFS: 12 m (carcinoids), 5.5 m (pancreatic) | Median OS: NR (carcinoids), ~26 m (pancreatic) |
Phan [23] | Phase 2 | Carcinoid, pancreatic | WDNET | 52 | Octreotide LAR and pazopanib | ORR (at least 30% required) | 22% (pancreatic), 0% (carcinoids) | - | Median PFS: 14.4 (pancreatic), 12.2 (carcinoids) | Median OS: 25 m (pancreatic), 18.5 (carcinoid) |
Iyer [24] | Phase 2 | Non-pancreatic | WDNET | 32 | Octreotide LAR and nintedanib | PFS rate > 40% at 16 weeks * | 3% | 84% | 16-week PFS rate: 83% * Median PFS: 11 m | Median OS: 32.7 m |
Pavel [28] | Phase 3 | Carcinoid, pancreatic | WDNET | 429 | Octreotide LAR and EVE vs. octreotide LAR | PFS (at least 33% risk reduction) * | 2% vs. 2% | 86% vs. 83% * | Median PFS: 16.4 m vs. 11.3 m | NR in both arms |
Kulke [30] | Phase 2 | Pancreatic | WDNET | 160 | EVE and pasireotide LAR vs. EVE alone | PFS | 20% vs. 6% | 77% vs. 83% | Median PFS: 16.8 m (combination) vs. 16.6 m | No difference (numbers not provided) |
Kulke [31] | Phase 2 | Pancreatic | WDNET | 150 | Octretotide LAR and EVE +/− BEV | PFS (p < 0.15) * | 31% vs. 12% * | - | Median PFS: 16.7 m vs. 14 m (p = 0.1) * | 42.1 m vs. 42.5 m |
3.2. PRRT-Based Combinations (Table 2)
3.2.1. PPRT and SSAs
3.2.2. Dual PPRT
3.2.3. PRRT and mTORi
3.2.4. PRRT and Chemotherapy
Study | Design | Population | Diff | n | Regimen | Primary Endpoint | ORR | DCR | PFS and Related Outcomes | OS and Related Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Strosberg [12] | Randomized phase 3 | Midgut | WDNET | 229 | 177Lu-Dotatate and octreotide LAR vs. octreotide LAR alone | PFS * | 18% vs. 3% | - | NR vs. 8.4 m * | 48 m vs. 36 m |
Seregni [34] | Phase 2 | Carcinoid, pancreatic | WDNET | 26 | Tandem 177Lu-Dotatate and 90Y-Dotatate | ORR (at least 40% required), safety | 42.3% * | 84.6% | 25 m | 2-year OS: 78% |
Villard [35] | Prospective randomized | Carcinoid, pancreatic | WDNET | 486 | 177Lu-Dotatoc and 90Y-Dotatoc vs. 90Y-Dotatoc alone | OS * | 21% vs. 16% | 45% vs. 31% | - | 5.5 y vs. 4 y * |
Kunikowska [36] | Prospective | Foregut, midgut, hindgut NETs | WDNET | 50 | 177Lu-Dotatate and 90Y-Dotatate vs. 90Y-Dotatate alone | OS *, EFS | 12% vs. 20% | 76% vs. 72% | mEFS: 29.4 vs. 21.4 m | NR vs. 26.2 m * |
Kunikowska [37] | Prospective | Carcinoid, pancreatic | WDNET | 59 | 177Lu-Dotatate and 90Y-Dotatate | PFS, OS, DCR | 24% | 89% | 32 m | 82 m |
Claringbold [38] | Phase 1 | GEP | WDNET | 16 | 177Lu-Dotatate and EVE | Optimal safety dose | 44% | 57% | - | 2-year OS: 63% |
Claringbold [40] | Phase 2 | Carcinoid, pancreatic | WDNET | 33 | 177Lu-Dotatate and CAP | ORR/DCR, safety | 24% | 94% | NR (16 m follow-up) | NR (16 m follow-up) |
Nicolini [41] | Phase 2 | GEP | WDNET | 37 | 177Lu-Dotatate and metronomic CAP | DCR | 30% | 85% | 31.4 m (pNETs), 36.1 m (GI-NETs) | |
Claringbold [42] | Phase 1/2 | Carcinoid, pancreatic | WDNET | 35 | 177Lu-Dotatate and CAPTEM | Optimal safety dose | 53% | 91% | 31 m | NR |
Pavlakis [43] | Phase 2 | Midgut/pancreas | WDNET | 75 | 177Lu-Dotatate and CAPTEM vs. PRRT (midgut) or CAPTEM (pNET) | PFS * (for pancreatic only) | - | - | 61 vs. 33% at 27 m (pancreatic) 66 vs. 62% at 33 m (midgut) | No difference |
Ballal [44] | Prospective | GEP | WDNET | 91 | 225Ac-Dotatate and CAP | Median OS | 44% (prior PRRT), 44% (naïve) | 72% (prior PRRT), 64.6% (naïve) | 2-year PFS: 67.5% | 2-year OS: 70.8% |
3.3. Targeted Therapy/Chemotherapy-Based Combinations (Table 3)
3.3.1. Targeted-Therapy Combinations
3.3.2. Chemotherapy and Anti-VEGF Combinations
Study | Design | Population | Grade | n | Regimen | Primary Endpoint | ORR | DCR | PFS and Related Outcomes | OS and Related Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Castellano [45] | Phase 2 | Carcinoid, pancreatic | WDNET | 44 | Sorafenib and bevacizumab | Efficacy (PFS rate), safety | 10% | 95% | PFS rate 91%, median PFS: 12.4 m | - |
Chan [46] | Phase 1 | Carcinoid, pancreatic | WDNET | 21 | Sorafenib and everolimus | Safety, preliminary efficacy (ORR) | 6% | 82% | - | - |
Hobday [47] | Phase 2 | Pancreatic | WDNET | 56 | Temsirolimus and bevacizumab | Efficacy (ORR, PFS), safety | 41% * | - | 6-month PFS: 79%, median PFS 13.2 m * | Median OS: 34 m |
Mitry [49] | Phase 2 | Non-pancreatic | WDNET | 49 | CAP and BEV | PFS * | 18% | 88% | Median PFS: 23.4 m* | 2-year OS: 85% |
Ducreux [50] | Phase 2 | Pancreatic | WDNET | 34 | 5FU/STZ and BEV | PFS * | 56% | 100% | Median PFS: 23.7 m * | 2-year OS: 88% |
Chan [51] | Phase 2 | Carcinoid, pancreatic | WDNET | 34 | TEM and BEV | Efficacy (ORR), toxicity | 15% (all pancreatic) | 80% | Median PFS: 11 m | Median OS: 33 m |
Bhave [52] | Phase 1/2 | Pancreatic | WDNET | 28 | TEM and pazopanib | Efficacy (ORR), toxicity | 25% | 70% | Median PFS: 12 m | Median OS: 36 m |
Kunz [53] | Phase 2 | Carcinoid, pancreatic | Mainly WDNETs, PDNECs | 36 | mFOLFOX and BEV | ORR, PFS, toxicity | 31% | 95% | Median PFS: 21 m | - |
Kunz [53] | Phase 2 | Carcinoid, pancreatic | WDNETs, PDNECs | 40 | CAPOX and BEV | ORR, PFS, toxicity | 17% | 77% | Median PFS: 16.7 m | - |
Berruti [54] | Phase 2 | Carcinoid, pancreatic | WDNET | 45 | Metronomic CAP and BEV and octreotide LAR | ORR | 18% | 82% | Median PFS: 15 m | Median OS: NR |
Koumarianou [55] | Phase 1 | Carcinoid, pancreatic | WDNET | 15 | Metronomic TEM and BEV and octreotide LAR | Efficacy (ORR, TTP), safety | 64% | 85% | Median TTP: 36 weeks | - |
Grande [56] | Phase 2 | Pancreatic | WDNET | 17 | Sunitinib and evophosphamide | ORR | 17.6% | 82% | 10.4 m | NR |
3.4. Immune-Checkpoint Inhibitors (ICIs) and Combinations (Table 4)
3.4.1. Dual ICIs
Study | Design | Population | Grade | n | Regimen | Primary Endpoint | ORR | DCR | PFS and Related Outcomes | OS and Related Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Klein [57] | Phase 2 | NENs of all sites (mainly lung/GEP) | WDNET/PDNEC | 29 | Ipilimumab/Nivolumab induction→Nivolumab maintenance | CBR (CR + PR + SD)~DCR | 24% | 74% | Median PFS: 4.8 m | Median OS: 14.8 m |
Patel [58] | Phase 2 | Non-pancreatic NENs | WDNET/PDNEC | 32 | Ipilimumab/Nivolumab | ORR | 25% (no responses in WDNETs) | 65% | 6-month PFS: 31% | Median OS: 11 m |
Capdevilla [59] | Phase 2 | C1: lung carcinoids C2: G1–2 GI carcinoids C3: G1–2 pancreatic C4: G3 GEP | G1–3 NENs | 123 | Durvalumab/Tremelimumab | CBR (CR + PR + SD) for G1/2 NETs, 9-month OS for G3 NENs * | C1: 7.4% C2: 0% C3: 6.3% C4: 9.1% | C1: 7.4% C2:32.3% C3: 25% | - | 9-month OS: 36% * |
Owen [60] | Phase 2 | GI/lung NENs | WDNET/PDNEC | 28 | Nivolumab and TEM | ORR | 32% | - | Median PFS: 8.8 m | Median OS: 32.3 m |
Halperin [61] | Single-arm, open-label nonrandomized | Carcinoids, pancreatic | WDNET | 40 | Atezolizumab and BEV | ORR | 18% overall, 20% (pancreatic), 15% (non-pancreatic) | - | Median PFS: 14.9 m (pancreatic), 14.2 m (non-pancreatic) | - |
3.4.2. Miscellaneous ICI-Based Combinations
3.5. Studies in Progress
4. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ameri, P.; Ferone, D. Diffuse endocrine system, neuroendocrine tumors and immunity: What’s new? Neuroendocrinology 2012, 95, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Strosberg, J.R. Gastroenteropancreatic Neuroendocrine Tumors. CA Cancer J. Clin. 2018, 68, 471–487. [Google Scholar] [CrossRef] [PubMed]
- Rindi, G.; Klimstra, D.S.; Abedi-Ardekani, B.; Asa, S.L.; Bosman, F.T.; Brambilla, E.; Busam, K.J.; de Krijger, R.R.; Dietel, M.; El-Naggar, A.K.; et al. A common classification framework for neuroendocrine neoplasms: An International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod. Pathol. 2018, 31, 1770–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cidon, E.U. New therapeutic approaches to metastatic gastroenteropancreatic neuroendocrine tumors: A glimpse into the future. World J. Gastrointest. Oncol. 2017, 9, 4–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaçmaz, E.; Sarasqueta, A.F.; van Eeden, S.; Dreijerink, K.M.A.; Klümpen, H.J.; Tanis, P.J.; van Dijkum, E.; Engelsman, A.F. Update on Incidence, Prevalence, Treatment and Survival of Patients with Small Bowel Neuroendocrine Neoplasms in the Netherlands. World J. Surg. 2021, 45, 2482–2491. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, L.; Dai, S.; Chen, M.; Li, F.; Sun, J.; Luo, F. Epidemiologic Trends of and Factors Associated With Overall Survival for Patients With Gastroenteropancreatic Neuroendocrine Tumors in the United States. JAMA Netw. Open 2021, 4, e2124750. [Google Scholar] [CrossRef]
- Zalatnai, A.; Galambos, E.; Perjesi, E. Importance of Immunohistochemical Detection of Somatostatin Receptors. Pathol. Oncol. Res. 2019, 25, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Rinke, A.; Muller, H.H.; Schade-Brittinger, C.; Klose, K.J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.F.; Blaker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID Study Group. J. Clin. Oncol. 2009, 27, 4656–4663. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Cwikla, J.B.; Phan, A.T.; Raderer, M.; Sedlackova, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Raymond, E.; Dahan, L.; Raoul, J.L.; Bang, Y.J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Ocaña, A.; Freedman, O.; Amir, E.; Seruga, B.; Pandiella, A. Biological insights into effective and antagonistic combinations of targeted agents with chemotherapy in solid tumors. Cancer Metastasis Rev. 2014, 33, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberg, K. Interferon in the management of neuroendocrine GEP-tumors: A review. Digestion 2000, 62 (Suppl. S1), 92–97. [Google Scholar] [CrossRef] [PubMed]
- Arnold, R.; Rinke, A.; Klose, K.J.; Müller, H.H.; Wied, M.; Zamzow, K.; Schmidt, C.; Schade-Brittinger, C.; Barth, P.; Moll, R.; et al. Octreotide versus octreotide plus interferon-alpha in endocrine gastroenteropancreatic tumors: A randomized trial. Clin. Gastroenterol. Hepatol. 2005, 3, 761–771. [Google Scholar] [CrossRef]
- Faiss, S.; Pape, U.F.; Böhmig, M.; Dörffel, Y.; Mansmann, U.; Golder, W.; Riecken, E.O.; Wiedenmann, B. Prospective, randomized, multicenter trial on the antiproliferative effect of lanreotide, interferon alfa, and their combination for therapy of metastatic neuroendocrine gastroenteropancreatic tumors--the International Lanreotide and Interferon Alfa Study Group. J. Clin. Oncol. 2003, 21, 2689–2696. [Google Scholar] [CrossRef]
- Kölby, L.; Persson, G.; Franzén, S.; Ahrén, B. Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumours. Br. J. Surg. 2003, 90, 687–693. [Google Scholar] [CrossRef]
- Abdel-Rahman, O. Vascular endothelial growth factor (VEGF) pathway and neuroendocrine neoplasms (NENs): Prognostic and therapeutic considerations. Tumour Biol. 2014, 35, 10615–10625. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, Z.; Li, Q.; Wang, L.; Rashid, A.; Zhu, Z.; Evans, D.B.; Vauthey, J.N.; Xie, K.; Yao, J.C. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer 2007, 109, 1478–1486. [Google Scholar] [CrossRef]
- Yao, J.C.; Phan, A.; Hoff, P.M.; Chen, H.X.; Charnsangavej, C.; Yeung, S.C.; Hess, K.; Ng, C.; Abbruzzese, J.L.; Ajani, J.A. Targeting vascular endothelial growth factor in advanced carcinoid tumor: A random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J. Clin. Oncol. 2008, 26, 1316–1323. [Google Scholar] [CrossRef]
- Yao, J.C.; Guthrie, K.A.; Moran, C.; Strosberg, J.R.; Kulke, M.H.; Chan, J.A.; LoConte, N.; McWilliams, R.R.; Wolin, E.M.; Mattar, B.; et al. Phase III Prospective Randomized Comparison Trial of Depot Octreotide Plus Interferon Alfa-2b Versus Depot Octreotide Plus Bevacizumab in Patients With Advanced Carcinoid Tumors: SWOG S0518. J. Clin. Oncol. 2017, 35, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Bendell, J.C.; Zakari, A.; Lang, E.; Waterhouse, D.; Flora, D.; Alguire, K.; McCleod, M.; Peacock, N.; Ruehlman, P.; Lane, C.M.; et al. A Phase II Study of the Combination of Bevacizumab, Pertuzumab, and Octreotide LAR for Patients with Advanced Neuroendocrine Cancers. Cancer Invest. 2016, 34, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.T.; Halperin, D.M.; Chan, J.A.; Fogelman, D.R.; Hess, K.R.; Malinowski, P.; Regan, E.; Ng, C.S.; Yao, J.C.; Kulke, M.H. Pazopanib and depot octreotide in advanced, well-differentiated neuroendocrine tumours: A multicentre, single-group, phase 2 study. Lancet Oncol. 2015, 16, 695–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, R.V.; Konda, B.; Fountzilas, C.; Mukherjee, S.; Owen, D.; Attwood, K.; Wang, C.; Maguire, O.; Minderman, H.; Suffren, S.A.; et al. Multicenter phase 2 trial of nintedanib in advanced nonpancreatic neuroendocrine tumors. Cancer 2020, 126, 3689–3697. [Google Scholar] [CrossRef]
- Missiaglia, E.; Dalai, I.; Barbi, S.; Beghelli, S.; Falconi, M.; della Peruta, M.; Piemonti, L.; Capurso, G.; Di Florio, A.; delle Fave, G.; et al. Pancreatic endocrine tumors: Expression profiling evidences a role for AKT-mTOR pathway. J. Clin. Oncol. 2010, 28, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.C.; Fazio, N.; Singh, S.; Buzzoni, R.; Carnaghi, C.; Wolin, E.; Tomasek, J.; Raderer, M.; Lahner, H.; Voi, M.; et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): A randomised, placebo-controlled, phase 3 study. Lancet 2016, 387, 968–977. [Google Scholar] [CrossRef]
- Pavel, M.E.; Hainsworth, J.D.; Baudin, E.; Peeters, M.; Hörsch, D.; Winkler, R.E.; Klimovsky, J.; Lebwohl, D.; Jehl, V.; Wolin, E.M.; et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): A randomised, placebo-controlled, phase 3 study. Lancet 2011, 378, 2005–2012. [Google Scholar] [CrossRef]
- Castellano, D.; Bajetta, E.; Panneerselvam, A.; Saletan, S.; Kocha, W.; O’Dorisio, T.; Anthony, L.B.; Hobday, T. Everolimus plus octreotide long-acting repeatable in patients with colorectal neuroendocrine tumors: A subgroup analysis of the phase III RADIANT-2 study. Oncologist 2013, 18, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Kulke, M.H.; Ruszniewski, P.; Van Cutsem, E.; Lombard-Bohas, C.; Valle, J.W.; De Herder, W.W.; Pavel, M.; Degtyarev, E.; Brase, J.C.; Bubuteishvili-Pacaud, L.; et al. A randomized, open-label, phase 2 study of everolimus in combination with pasireotide LAR or everolimus alone in advanced, well-differentiated, progressive pancreatic neuroendocrine tumors: COOPERATE-2 trial. Ann. Oncol. 2017, 28, 1309–1315. [Google Scholar] [CrossRef]
- Kulke, M.H.; Ou, F.S.; Niedzwiecki, D.; Huebner, L.; Kunz, P.; Kennecke, H.F.; Wolin, E.M.; Chan, J.A.; O’Reilly, E.M.; Meyerhardt, J.A.; et al. Everolimus with or without bevacizumab in advanced pNET: CALGB 80701 (Alliance). Endocr Relat Cancer 2022, 29, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.E.; Zhernosekov, K. The evolution of PRRT for the treatment of neuroendocrine tumors; What comes next? Front Endocrinol (Lausanne) 2022, 13, 941832. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.R.; Caplin, M.E.; Kunz, P.L.; Ruszniewski, P.B.; Bodei, L.; Hendifar, A.; Mittra, E.; Wolin, E.M.; Yao, J.C.; Pavel, M.E.; et al. (177)Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): Final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 1752–1763. [Google Scholar] [CrossRef] [PubMed]
- Seregni, E.; Maccauro, M.; Chiesa, C.; Mariani, L.; Pascali, C.; Mazzaferro, V.; De Braud, F.; Buzzoni, R.; Milione, M.; Lorenzoni, A.; et al. Treatment with tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE of neuroendocrine tumours refractory to conventional therapy. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 223–230. [Google Scholar] [CrossRef]
- Villard, L.; Romer, A.; Marincek, N.; Brunner, P.; Koller, M.T.; Schindler, C.; Ng, Q.K.; Mäcke, H.R.; Müller-Brand, J.; Rochlitz, C.; et al. Cohort study of somatostatin-based radiopeptide therapy with [(90)Y-DOTA]-TOC versus [(90)Y-DOTA]-TOC plus [(177)Lu-DOTA]-TOC in neuroendocrine cancers. J. Clin. Oncol. 2012, 30, 1100–1106. [Google Scholar] [CrossRef]
- Kunikowska, J.; Królicki, L.; Hubalewska-Dydejczyk, A.; Mikołajczak, R.; Sowa-Staszczak, A.; Pawlak, D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: Which is a better therapy option? Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1788–1797. [Google Scholar] [CrossRef] [Green Version]
- Kunikowska, J.; Pawlak, D.; Bąk, M.I.; Kos-Kudła, B.; Mikołajczak, R.; Królicki, L. Long-term results and tolerability of tandem peptide receptor radionuclide therapy with (90)Y/(177)Lu-DOTATATE in neuroendocrine tumors with respect to the primary location: A 10-year study. Ann. Nucl. Med. 2017, 31, 347–356. [Google Scholar] [CrossRef]
- Claringbold, P.G.; Turner, J.H. NeuroEndocrine Tumor Therapy with Lutetium-177-octreotate and Everolimus (NETTLE): A Phase I Study. Cancer Biother. Radiopharm. 2015, 30, 261–269. [Google Scholar] [CrossRef]
- Feijtel, D.; de Jong, M.; Nonnekens, J. Peptide Receptor Radionuclide Therapy: Looking Back, Looking Forward. Curr. Top. Med. Chem. 2020, 20, 2959–2969. [Google Scholar] [CrossRef]
- Claringbold, P.G.; Brayshaw, P.A.; Price, R.A.; Turner, J.H. Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 302–311. [Google Scholar] [CrossRef]
- Nicolini, S.; Bodei, L.; Bongiovanni, A.; Sansovini, M.; Grassi, I.; Ibrahim, T.; Monti, M.; Caroli, P.; Sarnelli, A.; Diano, D.; et al. Combined use of 177Lu-DOTATATE and metronomic capecitabine (Lu-X) in FDG-positive gastro-entero-pancreatic neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3260–3267. [Google Scholar] [CrossRef] [PubMed]
- Claringbold, P.G.; Price, R.A.; Turner, J.H. Phase I-II study of radiopeptide 177Lu-octreotate in combination with capecitabine and temozolomide in advanced low-grade neuroendocrine tumors. Cancer Biother. Radiopharm. 2012, 27, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Pavlakis, N.; Ransom, D.T.; Wyld, D.; Sjoquist, K.M.; Wilson, K.; Gebski, V.; Murray, J.; Kiberu, A.D.; Burge, M.E.; Macdonald, W.; et al. Australasian Gastrointestinal Trials Group (AGITG) CONTROL NET Study: 177Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) and capecitabine plus temozolomide (CAPTEM) for pancreas and midgut neuroendocrine tumours (pNETS, mNETS)—Final results. J. Clin. Oncol. 2022, 40, 4122. [Google Scholar] [CrossRef]
- Ballal, S.; Yadav, M.P.; Tripathi, M.; Sahoo, R.K.; Bal, C. Survival Outcomes in Metastatic Gastroenteropancreatic Neuroendocrine Tumor Patients receiving Concomitant (225)Ac-DOTATATE Targeted Alpha Therapy and Capecitabine: A Real-world Scenario Management Based Long-term Outcome Study. J. Nucl. Med. 2023, 64, 211–218. [Google Scholar] [CrossRef]
- Castellano, D.; Capdevila, J.; Sastre, J.; Alonso, V.; Llanos, M.; García-Carbonero, R.; Manzano Mozo, J.L.; Sevilla, I.; Durán, I.; Salazar, R. Sorafenib and bevacizumab combination targeted therapy in advanced neuroendocrine tumour: A phase II study of Spanish Neuroendocrine Tumour Group (GETNE0801). Eur. J. Cancer 2013, 49, 3780–3787. [Google Scholar] [CrossRef]
- Chan, J.A.; Mayer, R.J.; Jackson, N.; Malinowski, P.; Regan, E.; Kulke, M.H. Phase I study of sorafenib in combination with everolimus (RAD001) in patients with advanced neuroendocrine tumors. Cancer Chemother. Pharmacol. 2013, 71, 1241–1246. [Google Scholar] [CrossRef] [Green Version]
- Hobday, T.J.; Qin, R.; Reidy-Lagunes, D.; Moore, M.J.; Strosberg, J.; Kaubisch, A.; Shah, M.; Kindler, H.L.; Lenz, H.J.; Chen, H.; et al. Multicenter Phase II Trial of Temsirolimus and Bevacizumab in Pancreatic Neuroendocrine Tumors. J. Clin. Oncol. 2015, 33, 1551–1556. [Google Scholar] [CrossRef]
- Cremolini, C.; Loupakis, F.; Antoniotti, C.; Lupi, C.; Sensi, E.; Lonardi, S.; Mezi, S.; Tomasello, G.; Ronzoni, M.; Zaniboni, A.; et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: Updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 2015, 16, 1306–1315. [Google Scholar] [CrossRef]
- Mitry, E.; Walter, T.; Baudin, E.; Kurtz, J.E.; Ruszniewski, P.; Dominguez-Tinajero, S.; Bengrine-Lefevre, L.; Cadiot, G.; Dromain, C.; Farace, F.; et al. Bevacizumab plus capecitabine in patients with progressive advanced well-differentiated neuroendocrine tumors of the gastro-intestinal (GI-NETs) tract (BETTER trial)--a phase II non-randomised trial. Eur. J. Cancer 2014, 50, 3107–3115. [Google Scholar] [CrossRef]
- Ducreux, M.; Dahan, L.; Smith, D.; O’Toole, D.; Lepère, C.; Dromain, C.; Vilgrain, V.; Baudin, E.; Lombard-Bohas, C.; Scoazec, J.Y.; et al. Bevacizumab combined with 5-FU/streptozocin in patients with progressive metastatic well-differentiated pancreatic endocrine tumours (BETTER trial)--a phase II non-randomised trial. Eur. J. Cancer 2014, 50, 3098–3106. [Google Scholar] [CrossRef]
- Chan, J.A.; Stuart, K.; Earle, C.C.; Clark, J.W.; Bhargava, P.; Miksad, R.; Blaszkowsky, L.; Enzinger, P.C.; Meyerhardt, J.A.; Zheng, H.; et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 2012, 30, 2963–2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhave, M.A.; Kircher, S.M.; Kalyan, A.; Berlin, J.; Mulcahy, M.F.; Cohen, S.J.; Denlinger, C.S.; Chiorean, E.G.; Sahai, V.; Zalupski, M.; et al. A phase I/II study of the combination of temozolomide (TM) and pazopanib (PZ) in advanced pancreatic neuroendocrine tumors (PNETs) (NCT01465659). J. Clin. Oncol. 2018, 36, 4096. [Google Scholar] [CrossRef]
- Kunz, P.L.; Balise, R.R.; Fehrenbacher, L.; Pan, M.; Venook, A.P.; Fisher, G.A.; Tempero, M.A.; Ko, A.H.; Korn, W.M.; Hwang, J.; et al. Oxaliplatin-Fluoropyrimidine Chemotherapy Plus Bevacizumab in Advanced Neuroendocrine Tumors: An Analysis of 2 Phase II Trials. Pancreas 2016, 45, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Berruti, A.; Fazio, N.; Ferrero, A.; Brizzi, M.P.; Volante, M.; Nobili, E.; Tozzi, L.; Bodei, L.; Torta, M.; D’Avolio, A.; et al. Bevacizumab plus octreotide and metronomic capecitabine in patients with metastatic well-to-moderately differentiated neuroendocrine tumors: The XELBEVOCT study. BMC Cancer 2014, 14, 184. [Google Scholar] [CrossRef] [Green Version]
- Koumarianou, A.; Antoniou, S.; Kanakis, G.; Economopoulos, N.; Rontogianni, D.; Ntavatzikos, A.; Tsavaris, N.; Pectasides, D.; Dimitriadis, G.; Kaltsas, G. Combination treatment with metronomic temozolomide, bevacizumab and long-acting octreotide for malignant neuroendocrine tumours. Endocr. Relat. Cancer 2012, 19, L1–L4. [Google Scholar] [CrossRef] [PubMed]
- Grande, E.; Rodriguez-Antona, C.; López, C.; Alonso-Gordoa, T.; Benavent, M.; Capdevila, J.; Teulé, A.; Custodio, A.; Sevilla, I.; Hernando, J.; et al. Sunitinib and Evofosfamide (TH-302) in Systemic Treatment-Naïve Patients with Grade 1/2 Metastatic Pancreatic Neuroendocrine Tumors: The GETNE-1408 Trial. Oncologist 2021, 26, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Klein, O.; Kee, D.; Markman, B.; Michael, M.; Underhill, C.; Carlino, M.S.; Jackett, L.; Lum, C.; Scott, C.; Nagrial, A.; et al. Immunotherapy of Ipilimumab and Nivolumab in Patients with Advanced Neuroendocrine Tumors: A Subgroup Analysis of the CA209-538 Clinical Trial for Rare Cancers. Clin. Cancer Res. 2020, 26, 4454–4459. [Google Scholar] [CrossRef]
- Patel, S.P.; Othus, M.; Chae, Y.K.; Giles, F.J.; Hansel, D.E.; Singh, P.P.; Fontaine, A.; Shah, M.H.; Kasi, A.; Baghdadi, T.A.; et al. A Phase II Basket Trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors. Clin. Cancer Res. 2020, 26, 2290–2296. [Google Scholar] [CrossRef]
- Capdevila, J.; Teule, A.; López, C.; García-Carbonero, R.; Benavent, M.; Custodio, A.; Cubillo, A.; Alonso, V.; Gordoa, T.A.; Carmona-Bayonas, A.; et al. 1157O A multi-cohort phase II study of durvalumab plus tremelimumab for the treatment of patients (pts) with advanced neuroendocrine neoplasms (NENs) of gastroenteropancreatic or lung origin: The DUNE trial (GETNE 1601). Ann. Oncol. 2020, 31, S770–S771. [Google Scholar] [CrossRef]
- Owen, D.H.; Benner, B.; Wei, L.; Sukrithan, V.; Goyal, A.; Zhou, Y.; Pilcher, C.; Suffren, S.A.; Christenson, G.; Curtis, N.; et al. A Phase II Clinical Trial of Nivolumab and Temozolomide for Neuroendocrine Neoplasms. Clin. Cancer Res. 2023, 29, 731–741. [Google Scholar] [CrossRef]
- Halperin, D.M.; Liu, S.; Dasari, A.; Fogelman, D.; Bhosale, P.; Mahvash, A.; Estrella, J.S.; Rubin, L.; Morani, A.C.; Knafl, M.; et al. Assessment of Clinical Response Following Atezolizumab and Bevacizumab Treatment in Patients With Neuroendocrine Tumors: A Nonrandomized Clinical Trial. JAMA Oncol. 2022, 8, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Labadie, B.W.; Fojo, A.T. Requirements for Meaningful Progress in the Therapy of Neuroendocrine Cancers. JAMA Oncol. 2023, 9, 606–608. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diamantopoulos, L.N.; Kalligeros, M.; Halfdanarson, T.R.; Diamantis, N.; Toumpanakis, C. Combination Systemic Therapies in Advanced Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs): A Comprehensive Review of Clinical Trials and Prospective Studies. Biology 2023, 12, 1069. https://doi.org/10.3390/biology12081069
Diamantopoulos LN, Kalligeros M, Halfdanarson TR, Diamantis N, Toumpanakis C. Combination Systemic Therapies in Advanced Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs): A Comprehensive Review of Clinical Trials and Prospective Studies. Biology. 2023; 12(8):1069. https://doi.org/10.3390/biology12081069
Chicago/Turabian StyleDiamantopoulos, Leonidas N., Markos Kalligeros, Thorvardur R. Halfdanarson, Nikolaos Diamantis, and Christos Toumpanakis. 2023. "Combination Systemic Therapies in Advanced Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs): A Comprehensive Review of Clinical Trials and Prospective Studies" Biology 12, no. 8: 1069. https://doi.org/10.3390/biology12081069
APA StyleDiamantopoulos, L. N., Kalligeros, M., Halfdanarson, T. R., Diamantis, N., & Toumpanakis, C. (2023). Combination Systemic Therapies in Advanced Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs): A Comprehensive Review of Clinical Trials and Prospective Studies. Biology, 12(8), 1069. https://doi.org/10.3390/biology12081069