Biological and Genetic Characterizations of a Novel Lytic ΦFifi106 against Indigenous Erwinia amylovora and Evaluation of the Control of Fire Blight in Apple Plants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Culture Condition
2.2. Propagation and Purification of ΦFifi106
2.3. Morphological Analysis of ΦFifi106
2.4. Genomic Sequencing and Annotation of ΦFifi106
2.5. Phylogenetic and Comparative Genomic Analyses of ΦFifi106
2.6. Host Range Analysis of ΦFifi106
2.7. Temperature, pH, and Ultraviolet Irradiation Stabilities of ΦFifi106
2.8. One-Step Growth Curve Analysis of ΦFifi106
2.9. Time Killing Assay of ΦFifi106 with Different MOIs against E. amylovora
2.10. In Vivo Evaluation of ΦFifi106 Efficacy against Fire Blight Development in M9 Apple Plants
2.11. Statistical Analysis
3. Results
3.1. Propagation, Purification, and Morphological Characterization of ΦFifi106
3.2. Genomic Characterization of ΦFifi106
3.3. Phylogenetic and Genomic Comparative Analysis of ΦFifi106
3.4. Host Specificity and Stability of ΦFifi106
3.5. One-Step Growth Curve of ΦFifi106
3.6. Time–Killing Curves of ΦFifi106 with Different MOIs against E. amylovora
3.7. In Vivo Evaluation of ΦFifi106 Efficacy for the Control of Fire Blight in M9 Apple Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and bacterial plant diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar]
- Van der Zwet, T.; Orolaza-Halbrendt, N.; Zeller, W. Fire Blight: History, Biology, and Management; Am Phytopath Society: St. Paul, MN, USA, 2012. [Google Scholar]
- Piqué, N.; Miñana-Galbis, D.; Merino, S.; Tomás, J.M. Virulence factors of Erwinia amylovora: A review. Int. J. Mol. Sci. 2015, 16, 12836–12854. [Google Scholar] [CrossRef] [Green Version]
- Dellagi, A.; Brisset, M.-N.; Paulin, J.-P.; Expert, D. Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol. Plant-Microbe Interact. 1998, 11, 734–742. [Google Scholar]
- Jurgens, A.; Babadoost, M. Sensitivity of Erwinia amylovora in Illinois apple orchards to streptomycin, oxytetracyline, kasugamycin, and copper. Plant Dis. 2013, 97, 1484–1490. [Google Scholar]
- Park, J.; Kim, B.; Song, S.; Lee, Y.W.; Roh, E. Isolation of nine bacteriophages shown effective against Erwinia amylovora in Korea. Plant Pathol. J. 2022, 38, 248–253. [Google Scholar] [PubMed]
- Huang, Y.; Wang, W.; Zhang, Z.; Gu, Y.; Huang, A.; Wang, J.; Hao, H. Phage products for fighting antimicrobial resistance. Microorganisms 2022, 10, 1324. [Google Scholar]
- Lee, C.; Choi, I.Y.; Park, D.H.; Park, M.-K. Isolation and characterization of a novel Escherichia coli O157: H7-specific phage as a biocontrol agent. J. Environ. Health Sci. Eng. 2020, 18, 189–199. [Google Scholar]
- Kim, S.G.; Lee, S.B.; Giri, S.S.; Kim, H.J.; Kim, S.W.; Kwon, J.; Park, J.; Roh, E.; Park, S.C. Characterization of novel Erwinia amylovora jumbo bacteriophages from Eneladusvirus genus. Viruses 2020, 12, 1373. [Google Scholar]
- Schwarczinger, I.; Kolozsváriné Nagy, J.; Künstler, A.; Szabó, L.; Geider, K.; Király, L.; Pogány, M. Characterization of Myoviridae and Podoviridae family bacteriophages of Erwinia amylovora from Hungary-potential of application in biological control of fire blight. Eur. J. Plant Pathol. 2017, 149, 639–652. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-H.; Park, M.-K. Recent trends in Salmonella outbreaks and emerging technology for biocontrol of Salmonella using phages in foods: A review. J. Microbiol. Biotechnol. 2017, 27, 2075–2088. [Google Scholar] [PubMed] [Green Version]
- Kim, S.-H.; Adeyemi, D.E.; Park, M.-K. Characterization of a new and efficient polyvalent phage infecting E. coli O157: H7, Salmonella spp., and Shigella sonnei. Microorganisms 2021, 9, 2105. [Google Scholar] [PubMed]
- Park, J.; Lee, G.M.; Kim, D.; Park, D.H.; Oh, C.-S. Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol. J. 2018, 34, 445. [Google Scholar]
- Sharma, R.; Pielstick, B.A.; Bell, K.A.; Nieman, T.B.; Stubbs, O.A.; Yeates, E.L.; Baltrus, D.A.; Grose, J.H. A novel, highly related jumbo family of bacteriophages that were isolated against Erwinia. Front. Microbiol. 2019, 10, 1533. [Google Scholar]
- Kolozsváriné Nagy, J.; Schwarczinger, I.; Künstler, A.; Pogány, M.; Király, L. Penetration and translocation of Erwinia amylovora-specific bacteriophages in apple-a possibility of enhanced control of fire blight. Eur. J. Plant Pathol. 2015, 142, 815–827. [Google Scholar]
- Boulé, J.; Sholberg, P.; Lehman, S.; O’gorman, D.; Svircev, A. Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Can. J. Plant Pathol. 2011, 33, 308–317. [Google Scholar]
- Akremi, I.; Holtappels, D.; Brabra, W.; Jlidi, M.; Hadj Ibrahim, A.; Ben Ali, M.; Fortuna, K.; Ahmed, M.; Meerbeek, B.V.; Rhouma, A. First report of filamentous phages isolated from tunisian orchards to control Erwinia amylovora. Microorganisms 2020, 8, 1762. [Google Scholar]
- Müller, I.; Lurz, R.; Kube, M.; Quedenau, C.; Jelkmann, W.; Geider, K. Molecular and physiological properties of bacteriophages from North America and Germany affecting the fire blight pathogen Erwinia amylovora. Microb. Biotechnol. 2011, 4, 735–745. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [PubMed] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [PubMed] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA genes in genomic sequences. In Gene Prediction; Humana: New York, NY, USA, 2019; pp. 1–14. [Google Scholar]
- Kleinheinz, K.A.; Joensen, K.G.; Larsen, M.V. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 2014, 4, e27943. [Google Scholar]
- Tynecki, P.; Guziński, A.; Kazimierczak, J.; Jadczuk, M.; Dastych, J.; Onisko, A. PhageAI-bacteriophage life cycle recognition with machine learning and natural language processing. BioRxiv 2020. [Google Scholar] [CrossRef]
- Alikhan, N.-F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar]
- Meier-Kolthoff, J.P.; Göker, M. VICTOR: Genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 2017, 33, 3396–3404. [Google Scholar]
- Lee, I.; Kim, Y.O.; Park, S.-C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar]
- Choi, I.Y.; Park, D.H.; Chin, B.A.; Lee, C.; Lee, J.; Park, M.-K. Exploring the feasibility of Salmonella Typhimurium-specific phage as a novel bio-receptor. J. Anim. Sci. Technol. 2020, 62, 668. [Google Scholar]
- Maisetta, G.; Batoni, G.; Caboni, P.; Esin, S.; Rinaldi, A.C.; Zucca, P. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement. Altern. Med. 2019, 19, 82. [Google Scholar]
- Addy, H.S.; Ahmad, A.A.; Huang, Q. Molecular and biological characterization of Ralstonia phage RsoM1USA, a new species of P2virus, isolated in the United States. Front. Microbiol. 2019, 10, 267. [Google Scholar] [CrossRef]
- Arens, D.K.; Brady, T.S.; Carter, J.L.; Pape, J.A.; Robinson, D.M.; Russell, K.A.; Staley, L.A.; Stettler, J.M.; Tateoka, O.B.; Townsend, M.H. Characterization of two related Erwinia myoviruses that are distant relatives of the PhiKZ-like Jumbo phages. PLoS ONE 2018, 13, e0200202. [Google Scholar]
- Born, Y.; Fieseler, L.; Marazzi, J.; Lurz, R.; Duffy, B.; Loessner, M.J. Novel virulent and broad-host-range Erwinia amylovora bacteriophages reveal a high degree of mosaicism and a relationship to Enterobacteriaceae phages. Appl. Environ. Microbiol. 2011, 77, 5945–5954. [Google Scholar]
- Hassan, W.; Ahmed, O.; Hassan, R.E.; Youssef, S.A.; Shalaby, A. Isolation and characterization of three bacteriophages infecting Erwinia amylovora and their potential as biological control agent. Egypt. J. Biol. Pest Control 2023, 33, 60. [Google Scholar]
- Kim, S.G.; Roh, E.; Park, J.; Giri, S.S.; Kwon, J.; Kim, S.W.; Kang, J.W.; Lee, S.B.; Jung, W.J.; Lee, Y.M. The bacteriophage pEp_SNUABM_08 is a novel singleton siphovirus with high host specificity for Erwinia pyrifoliae. Viruses 2021, 13, 1231. [Google Scholar] [CrossRef]
- Escursell, M.M.; Roschi, A.; Smits, T.H.; Rezzonico, F. Characterization and direct molecular discrimination of rpsL mutations leading to high streptomycin resistance in Erwinia amylovora. J. Plant Pathol. 2021, 103, 99–108. [Google Scholar]
- Thomson, S. The role of the stigma in fire blight infections. Phytopathology 1986, 76, 476–482. [Google Scholar]
- Retamales, J.; Núñez, P.; Alvarado, R.; Campan, E.D.; Otto, T.; Segovia, C.; Vasquez, I.; Santander, J. Characterization of Xanthomonas arboricola pv. juglandis bacteriophages against bacterial walnut blight and field evaluation. Viruses 2022, 14, 1380. [Google Scholar]
- Holtappels, D.; Fortuna, K.; Lavigne, R.; Wagemans, J. The future of phage biocontrol in integrated plant protection for sustainable crop production. Curr. Opin. Biotechnol. 2021, 68, 60–71. [Google Scholar]
- Kim, S.-G.; Lee, S.-B.; Jo, S.-J.; Cho, K.; Park, J.-K.; Kwon, J.; Giri, S.S.; Kim, S.-W.; Kang, J.-W.; Jung, W.-J. Phage cocktail in combination with kasugamycin as a potential treatment for fire blight caused by Erwinia amylovora. Antibiotics 2022, 11, 1566. [Google Scholar]
- Evseev, P.; Shneider, M.; Miroshnikov, K. Evolution of phage tail sheath protein. Viruses 2022, 14, 1148. [Google Scholar]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A roadmap for genome-based phage taxonomy. Viruses 2021, 13, 506. [Google Scholar]
- Jo, S.J.; Kim, S.G.; Lee, Y.M.; Giri, S.S.; Kang, J.W.; Lee, S.B.; Jung, W.J.; Hwang, M.H.; Park, J.; Cheng, C. Evaluation of the Antimicrobial potential and characterization of novel T7-Like Erwinia bacteriophages. Biology 2023, 12, 180. [Google Scholar] [PubMed]
- Zhang, J.; Li, Z.; Cao, Z.; Wang, L.; Li, X.; Li, S.; Xu, Y. Bacteriophages as antimicrobial agents against major pathogens in swine: A review. J. Anim. Sci. Biotechnol. 2015, 6, 39. [Google Scholar] [PubMed] [Green Version]
- Jończyk, E.; Kłak, M.; Międzybrodzki, R.; Górski, A. The influence of external factors on bacteriophages. Folia Microbiol. 2011, 56, 191–200. [Google Scholar]
- Ravanat, J.-L.; Douki, T.; Cadet, J. Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B Biol. 2001, 63, 88–102. [Google Scholar]
- Pfeifer, G.P. Formation and processing of UV photoproducts: Effects of DNA sequence and chromatin environment. Photochem. Photobiol. 1997, 65, 270–283. [Google Scholar]
- Ham, H.; Lee, Y.-K.; Kong, H.G.; Hong, S.J.; Lee, K.J.; Oh, G.-R.; Lee, M.-H.; Lee, Y.H. Outbreak of fire blight of apple and Asian pear in 2015–2019 in Korea. Res. Plant Dis. 2020, 26, 222–228. [Google Scholar]
- Visser, T.; Verhaegh, J. Inheritance and selection of some fruit characters of apple. II. The relation between leaf and fruit pH as a basis for preselection. Euphytica 1978, 27, 761–765. [Google Scholar]
- Aggelopoulou, K.; Pateras, D.; Fountas, S.; Gemtos, T.; Nanos, G. Soil spatial variability and site-specific fertilization maps in an apple orchard. Precis. Agric. 2011, 12, 118–129. [Google Scholar]
- Balogh, B.; Jones, J.B.; Momol, M.; Olson, S.; Obradovic, A.; King, P.; Jackson, L. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis. 2003, 87, 949–954. [Google Scholar]
- Iriarte, F.; Balogh, B.; Momol, M.; Smith, L.; Wilson, M.; Jones, J. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microbiol. 2007, 73, 1704–1711. [Google Scholar] [PubMed] [Green Version]
- Born, Y.; Bosshard, L.; Duffy, B.; Loessner, M.J.; Fieseler, L. Protection of Erwinia amylovora bacteriophage Y2 from UV-induced damage by natural compounds. Bacteriophage 2015, 5, e1074330. [Google Scholar]
- Manohar, P.; Tamhankar, A.J.; Lundborg, C.S.; Nachimuthu, R. Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front. Microbiol. 2019, 10, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Vu, N.-T.; Oh, E.-J.; Rahimi-Midani, A.; Thi, T.-N.; Song, Y.-R.; Hwang, I.-S.; Choi, T.-J.; Oh, C.-S. Biocontrol of soft rot caused by Pectobacterium odoriferum with bacteriophage phiPccP-1 in Kimchi cabbage. Microorganisms 2021, 9, 779. [Google Scholar] [PubMed]
- Chen, L.; Yuan, S.; Liu, Q.; Mai, G.; Yang, J.; Deng, D.; Zhang, B.; Liu, C.; Ma, Y. In vitro design and evaluation of phage cocktails against Aeromonas salmonicida. Front. Microbiol. 2018, 9, 1476. [Google Scholar] [PubMed] [Green Version]
- Buttimer, C.; Born, Y.; Lucid, A.; Loessner, M.J.; Fieseler, L.; Coffey, A. Erwinia amylovora phage vB_EamM_Y3 represents another lineage of hairy Myoviridae. Res. Microbiol. 2018, 169, 505–514. [Google Scholar] [PubMed]
- Knecht, L.E.; Born, Y.; Pothier, J.F.; Loessner, M.J.; Fieseler, L. Complete genome sequences of Erwinia amylovora phages vB_EamP-S2 and vB_EamM-Bue1. Microbiol. Resour. Ann. 2018, 7, e00891-18. [Google Scholar] [PubMed] [Green Version]
Phytobacteria (1) | Clear Zone Formation (2) | Isolation Source |
---|---|---|
Erwinia amylovora YKB 14808 | + | Pear |
E. amylovora YKB 14748 | + | Apple |
E. amylovora YKB 14750 | + | Apple |
E. amylovora YKB 14758 | + | Apple |
E. amylovora YKB 14776 | + | Apple |
E. amylovora YKB 14787 | + | Pear |
E. amylovora YKB 14814 | + | Apple |
E. amylovora YKB 14818 | + | Apple |
E. amylovora YKB 14820 | + | Apple |
E. amylovora YKB 14822 | + | Apple |
E. pyrifoliae RP0098 | + | Pear |
E. pyrifoliae RP0099 | + | Pear |
E. pyrifoliae RP0100 | + | Pear |
E. pyrifoliae RP0108 | + | Pear |
E. pyrifoliae RP0112 | + | Pear |
E. pyrifoliae RP0113 | + | Pear |
E. pyrifoliae RP0115 | + | Pear |
E. pyrifoliae RP0116 | + | Pear |
E. pyrifoliae KACC 13945 | + | NA (3) |
E. pyrifoliae KACC 13946 | + | NA |
E. pyrifoliae KACC 13947 | + | NA |
Pectobacterium carotovorum KACC 14884 | − | NA |
P. carotovorum KACC 14888 | − | NA |
P. carotovorum KACC 14890 | − | Horseradish |
P. carotovorum KACC 14893 | − | NA |
P. carotovorum KACC 16999 | − | Calla |
P. carotovorum KACC 17004 | − | Cabbage |
Xanthomonas arboricola pv. pruni KACC 18153 | − | Apricot |
X. arboricola pv. pruni KACC 18154 | − | Apricot |
X. arboricola pv. pruni KACC 18155 | − | Apricot |
X. campestris ATCC 33913 (2) | − | Brussels sprout |
Host | Experiment | Phage | MOI | Host (CFU/mL) | Treatment | Time (Day) | Temp. (°C) | Result | Reference | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Scale | Control | Phage | |||||||||
E. amylovora YKB14808 | M9 apple plant (Malus spp.) | ΦFifi106 | 103 | 105 | Spray | 14 | 25 | Severity (0−4) | 2.6 | 0.4 | This study |
Incidence (%) | 100 | 37.0 | |||||||||
E. amylovora Ea1 | Pear slice (P. communis L. Conference) | Cocktail of PEar1, PEar2, PEar4, and PEar6 | 100 | 106 | Soak | 7 | − (1) | Severity (%) | 58.3 | 33.8 | [18] |
101 | 58.3 | 16.6 | |||||||||
102 | 58.3 | 11.7 | |||||||||
E. amylovora Ea1/79Sm | Pear slice (P. communis L. Jules Guyot Dr.) | Cocktail of ΦH2A, ΦEaH5K, and ΦH7B | 105 | 105 | Soak | 4 | 28 | Severity (0−6) | 3.5 | 2.1 | [8] |
Pear slice (P. communis L. Conference) | 105 | 4.2 | 3.0 | ||||||||
E. amylovora Ea1/79Sm | Pear slice (Pyrus spp.) | ΦEa1h | 106 | 102 | Soak | 5 | 28 | Severity (0−3) | 2.2 | 1.3 | [19] |
ΦEa100 | 106 | 2.2 | 1.0 | ||||||||
ΦEa104 | 106 | 2.2 | 0.9 | ||||||||
ΦEa116 | 106 | 2.2 | 1.0 | ||||||||
E. amylovora Ea1/79Sm | Root of apple plant (M. domestica B. Pinova) | ΦEaH5K | 101 | 105 | Drench | 5 | − | Severity (0−5) | 3.8 | 2.2 | [16] |
1011 | 3.4 | 2.1 | |||||||||
ΦEa104 | 101 | 105 | Drench | 5 | − | Severity (0−5) | 3.8 | 2.7 | |||
1011 | 3.4 | 1.3 | |||||||||
E. amylovora Ea1/79Sm | Leaf and stem of apple plant (M. domestica B. Pinova) | ΦEaH5K | 10−1 | 105 | Spray | 5 | − | Severity (0−5) | 4.1 | 2.6 | |
109 | 4.0 | 0.9 | |||||||||
ΦEa104 | 10−1 | 105 | Spray | 5 | − | Severity (0−5) | 4.1 | 2.6 | |||
109 | 4.0 | 1.5 | |||||||||
E. amylovora Ea1/79Sm | Cotyledon of apple plant (M. domestica B. Pinova) | ΦEaH5K | 107 | 106 | Inoculate | 5 | − | Severity (0−5) | 4.5 | 1.5 | |
ΦEa104 | 107 | 4.5 | 2.5 | ||||||||
E. amylovora Ea1337 and E. amylovora Ea2345 | Flower of B9 apple plant (M. domestica 8S6923) | ΦEa2345-6 | 101 | 108 | Spray | 8–20 | − | Incidence (%) | 27.4 | 12.4 | [17] |
ΦEa2345-19 | 101 | 27.4 | 63.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choe, J.; Kim, B.; Park, M.-K.; Roh, E. Biological and Genetic Characterizations of a Novel Lytic ΦFifi106 against Indigenous Erwinia amylovora and Evaluation of the Control of Fire Blight in Apple Plants. Biology 2023, 12, 1060. https://doi.org/10.3390/biology12081060
Choe J, Kim B, Park M-K, Roh E. Biological and Genetic Characterizations of a Novel Lytic ΦFifi106 against Indigenous Erwinia amylovora and Evaluation of the Control of Fire Blight in Apple Plants. Biology. 2023; 12(8):1060. https://doi.org/10.3390/biology12081060
Chicago/Turabian StyleChoe, Jaein, Byeori Kim, Mi-Kyung Park, and Eunjung Roh. 2023. "Biological and Genetic Characterizations of a Novel Lytic ΦFifi106 against Indigenous Erwinia amylovora and Evaluation of the Control of Fire Blight in Apple Plants" Biology 12, no. 8: 1060. https://doi.org/10.3390/biology12081060
APA StyleChoe, J., Kim, B., Park, M. -K., & Roh, E. (2023). Biological and Genetic Characterizations of a Novel Lytic ΦFifi106 against Indigenous Erwinia amylovora and Evaluation of the Control of Fire Blight in Apple Plants. Biology, 12(8), 1060. https://doi.org/10.3390/biology12081060