Estrogen Receptor Gene 1 (ESR1) Mediates Lipid Metabolism in Goose Hierarchical Granulosa Cells Rather than in Pre-Hierarchical Granulosa Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Transcriptome Analysis
2.3. Cloning CDS Region of Goose ESR1
2.4. Sequence Analysis of Goose ESR1
2.5. Isolation and Culture of phGCs and poGCs
2.6. Construction of ESR1 Overexpression and Interference Model in GCs
2.7. Oil Red O Staining
2.8. BODIPY Staining of Lipids in GCs
2.9. Detection of Triglycerides (TG) and Cholesterol (CH) in GCs
2.10. Lipid-Related Gene Expression Detection
2.11. Statistical Analysis
3. Results
3.1. Cloning and Sequence Analysis of Goose ESR1
3.2. Differential Expression of ESR1 in the Granulosa Layer of Follicles at Different Developmental Stages
3.3. Effect of ESR1 on Lipid Metabolism of phGCs
3.4. Effect of ESR1 on Lipid Metabolism of poGCs
3.5. Expression Profiles of Lipid Metabolism-Related Marker Genes in poGCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Du, X.; Wang, L.; Shi, K.; Li, Q. TGF-β1 controls porcine granulosa cell states: A miRNA-mRNA network view. Theriogenology 2021, 160, 50–60. [Google Scholar] [CrossRef]
- Gao, S.; Gan, X.; He, H.; Hu, S.; Deng, Y.; Chen, X.; Li, L.; Hu, J.; Li, L.; Wang, J. Dynamic characteristics of lipid metabolism in cultured granulosa cells from geese follicles at different developmental stages. Biosci. Rep. 2019, 39, BSR20192188. [Google Scholar] [CrossRef]
- Chen, X.; Huang, K.; Hu, S.; Lan, G.; Gan, X.; Gao, S.; Deng, Y.; Hu, J.; Li, L.; Hu, B.; et al. Integrated Transcriptome and Metabolome Analysis Reveals the Regulatory Mechanisms of FASN in Geese Granulosa Cells. Int. J. Mol. Sci. 2022, 23, 14717. [Google Scholar] [CrossRef]
- Weickert, C.S.; Miranda-Angulo, A.L.; Wong, J.; Perlman, W.R.; Ward, S.E.; Radhakrishna, V.; Straub, R.E.; Weinberger, D.R.; Kleinman, J.E. Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. Hum. Mol. Genet. 2012, 21, 5238. [Google Scholar] [CrossRef]
- Bleecker, E.R.; Xu, J.; Reboussin, D.M.; Brosnihan, K.B.; Zheng, S.L.; Hawkins, G.A.; Herrington, D.M.; Howard, T.D.; Meyers, D.A. Estrogen-receptor polymorphisms and effects of estrogen replacement on high-density lipoprotein cholesterol in women with coronary disease. N. Engl. J. Med. 2002, 346, 967–974. [Google Scholar]
- Schomberg, D.W.; Couse, J.F.; Abir, M.; Lubahn, D.B.; Sar, M.; Mayo, K.E.; Korach, K.S. Targeted disruption of the estrogen receptor-alpha gene in female mice: Characterization of ovarian responses and phenotype in the adult. Endocrinology 1999, 140, 2733. [Google Scholar] [CrossRef] [PubMed]
- Couse, J.F.; Yates, M.M.; Walker, V.R.; Korach, K.S. Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) Null mice reveals hypergonadism and endocrine sex reversal in females lacking ERalpha but not ERbeta. Mol. Endocrinol. 2003, 17, 1039–1053. [Google Scholar] [CrossRef]
- Singh, S.P.; Wolfe, A.; Ng, Y.; DiVall, S.A.; Buggs, C.; Levine, J.E.; Wondisford, F.E.; Radovick, S. Impaired estrogen feedback and infertility in female mice with pituitary-specific deletion of estrogen receptor alpha (ESR1). Biol. Reprod. 2009, 81, 488–496. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.M.; Li, T.T.; Chen, F.X.; Wu, P.F.; Wang, Y.; Chen, L.; Xie, K.Z.; Wang, J.Y.; Zhang, G.X. Transcriptomic Analysis of circRNAs and mRNAs Reveals a Complex Regulatory Network That Participate in Follicular Development in Chickens. Front. Genet. 2020, 11, 503. [Google Scholar] [CrossRef]
- Zheng, S.; Ouyang, J.; Liu, S.; Tang, H.; Xiong, Y.; Yan, X.; Chen, H. Genomic signatures reveal selection in Lingxian white goose. Poult. Sci. 2023, 102, 102269. [Google Scholar] [CrossRef]
- Efstathiadou, Z.A.; Sakka, C.; Polyzos, S.A.; Goutou, M.; Stakias, N.; Bargiota, A.; Koukoulis, G.N. Associations of estrogen receptor alpha and Beta gene polymorphisms with lipid levels and insulin resistance in men. Metabolism 2015, 64, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Guclu-Geyik, G. The rs2175898 Polymorphism in theESR1Gene has a Significant Sex-Specific Effect on Obesity. Biochem. Genet. 2020, 58, 935–952. [Google Scholar] [CrossRef] [PubMed]
- Khristi, V.; Ratri, A.; Ghosh, S.; Pathak, D.; Borosha, S.; Dai, E.; Roy, R.; Chakravarthi, V.P.; Wolfe, M.W.; Karim Rumi, M.A. Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats. Mol. Cell Endocrinol. 2019, 490, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Ribas, V.; Drew, B.G.; Zhou, Z.; Phun, J.; Kalajian, N.Y.; Soleymani, T.; Daraei, P.; Widjaja, K.; Wanagat, J.; de Aguiar Vallim, T.Q.; et al. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci. Transl. Med. 2016, 8, 334ra354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, A.B.; Evans, A.J.; Perry, M.M.; Davidson, M.H. A method for separating the granulosa cells, the basal lamina and the theca of the preovulatory ovarian follicle of the domestic fowl (Gallus domesticus). J. Reprod. Fertil. 1977, 50, 179–181. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Hu, S.; Wang, Y.; Deng, Y.; Yang, S.; Hu, J.; Li, L.; Wang, J. mRNA and miRNA Transcriptome Profiling of Granulosa and Theca Layers From Geese Ovarian Follicles Reveals the Crucial Pathways and Interaction Networks for Regulation of Follicle Selection. Front. Genet. 2019, 10, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, G.; Hu, S.; Zhang, K.; Wang, H.; Xie, Y.; Zhang, C.; Wu, R.; Zhao, X.; Zhang, H.; Wang, Q. Genome-Wide Gene Expression Profiles Reveal Distinct Molecular Characteristics of the Goose Granulosa Cells. Front. Genet. 2021, 12, 786287. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Walther, T.C.; Farese, R.V., Jr. The life of lipid droplets. Biochim. Biophys. Acta 2009, 1791, 459–466. [Google Scholar] [CrossRef]
- Silva, R.C.; Bao, S.N.; Jivago, J.L.; Lucci, C.M. Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development: Lipid component evolution. Theriogenology 2011, 76, 1647–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturmey, R.G.; O’Toole, P.J.; Leese, H.J. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 2006, 132, 829–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Colin, S.; Briand, O.; Touche, V.; Wouters, K.; Baron, M.; Pattou, F.; Hanf, R.; Tailleux, A.; Chinetti, G.; Staels, B.; et al. Activation of intestinal peroxisome proliferator-activated receptor-alpha increases high-density lipoprotein production. Eur. Heart J. 2013, 34, 2566–2574. [Google Scholar] [CrossRef]
- Sirwi, A.; Hussain, M.M. Lipid transfer proteins in the assembly of apoB-containing lipoproteins. J. Lipid Res. 2018, 59, 1094–1102. [Google Scholar] [CrossRef] [Green Version]
- Smiderle, L.; Fiegenbaum, M.; Hutz, M.H.; Van Der Sand, C.R.; Van Der Sand, L.C.; Ferreira, M.E.; Pires, R.C.; Almeida, S. ESR1 polymorphisms and statin therapy: A sex-specific approach. Pharmacogenomics J. 2016, 16, 507–513. [Google Scholar] [CrossRef]
- Nogueira-de-Souza, N.C.; Guerreiro da Silva, I.D.; Carvalho, C.V.; Pulchinelli, A.; Haidar, M.A.; Baracat, E.C.; Massad-Costa, A.M. Effect of estrogen receptor-alpha (ESR1) gene polymorphism on high density lipoprotein levels in response to hormone replacement therapy. Braz. J. Med. Biol. Res. 2009, 42, 1138–1142. [Google Scholar] [CrossRef]
- Illingworth, D.R. Lipoprotein metabolism. Am. J. Kidney Dis. 1993, 22, 90–97. [Google Scholar] [CrossRef]
- Feingold, K.R. Lipid and Lipoprotein Metabolism. Endocrinol. Metab. Clin. N. Am. 2022, 51, 437–458. [Google Scholar] [CrossRef]
- Kim, K.H. Regulation of mammalian acetyl-coenzyme A carboxylase. Annu. Rev. Nutr. 1997, 17, 77–99. [Google Scholar] [CrossRef]
- Wen, R.; Gan, X.; Hu, S.; Gao, S.; Deng, Y.; Qiu, J.; Sun, W.; Li, L.; Han, C.; Hu, J.; et al. Evidence for the existence of de novo lipogenesis in goose granulosa cells. Poult. Sci. 2019, 98, 1023–1030. [Google Scholar] [CrossRef]
- Hung, Y.H.; Carreiro, A.L.; Buhman, K.K. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.Q.; Gao, S.Y.; Zhu, J.R.; Gan, X.; Chen, X.; He, H.; Liang, L.; Hu, B.; Hu, J.W.; Liu, H.H.; et al. Differential actions of diacylglycerol acyltransferase (DGAT) 1 and 2 in regulating lipid metabolism and progesterone secretion of goose granulosa cells. J. Steroid. Biochem. 2020, 202, 105721. [Google Scholar] [CrossRef] [PubMed]
- Chitraju, C.; Walther, T.C.; Farese, R.V. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J. Lipid Res. 2019, 60, 1112–1120. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Abdul-Rahman, I.; Hu, S.; Li, L.; He, H.; Xia, L.; Hu, J.; Ran, M.; Liu, Y.; Abdulai, M.; et al. Mechanism of SCD Participation in Lipid Droplet-Mediated Steroidogenesis in Goose Granulosa Cells. Genes 2022, 13, 1516. [Google Scholar] [CrossRef]
- Yuan, X.; Hu, S.; Li, L.; Han, C.; Liu, H.; He, H.; Xia, L.; Hu, J.; Hu, B.; Ran, M.; et al. Lipidomics profiling of goose granulosa cell model of stearoyl-CoA desaturase function identifies a pattern of lipid droplets associated with follicle development. Cell Biosci. 2021, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Haemmerle, G.; Lass, A.; Zimmermann, R.; Gorkiewicz, G.; Meyer, C.; Rozman, J.; Heldmaier, G.; Maier, R.; Theussl, C.; Eder, S.; et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006, 312, 734–737. [Google Scholar] [CrossRef]
- Schlaepfer, I.R.; Joshi, M. CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology 2020, 161, bqz046. [Google Scholar] [CrossRef]
- Elis, S.; Desmarchais, A.; Maillard, V.; Uzbekova, S.; Monget, P.; Dupont, J. Cell proliferation and progesterone synthesis depend on lipid metabolism in bovine granulosa cells. Theriogenology 2015, 83, 840–853. [Google Scholar] [CrossRef]
siRNA | Forward Sequence (5′~3′) | Reserve Sequence (5′~3′) |
---|---|---|
ESR1-siRNA | GCCACCCAUAGUUUAUUCUTT | AGAAUAAACUAUGGGUGGCTT |
siRNA-NC | UUCUCCGAACGUGUCACGUTT | ACGUGACACGUUCGGAGAATT |
Primer Name | Forward Sequence (5′-3′) | Reserve Sequence (5′-3′) | Product Size (bp) |
---|---|---|---|
ACTB | CAACGAGCGGTTCAGGTGT | TGGAGTTGAAGGTGGTCTCG | 92 |
ESR1 | GAACAATGTCCCACCAAACCCT | TGGATAGGCTCCCTTTCTCGTTA | 227 |
PPARα | ATCTATCCCTGGCTTCTCCA | AGCATCCCATCCTTGTTCATT | 117 |
PPARγ | CCTCCTTCCCCACCCTATT | CTTGTCCCCACACACACGA | 108 |
APOB | CTCAAGCCAACGAAGAAG | AAGCAAGTCAAGGCAAAA | 153 |
CPT-1 | GTCTCCAAGGCTCCGACAA | GAAGACCCGAATGAAAGTA | 193 |
SCD1 | GCCATCGGTCCTACAAAGC | AGCCAATGTGGGAGAAGAAA | 180 |
DGAT1 | CCTGAGGAACTTGGACACG | CAGGGACTGGTGGAACTCG | 265 |
DGAT2 | CGCCATCATCATCGTGGT | CGTGCCGTAGAGCCAGTTT | 113 |
ACCα | TGCCTCCGAGAACCCTAA | AAGACCACTGCCACTCCA | 163 |
FASN | TGGGAGTAACACTGATGGC | TCCAGGCTTGATACCACA | 109 |
ATGL | TCGCAACCTCTACCGCCTCT | TCCGCACAAGCCTCCATAAGA | 300 |
Species | Nucleic Acid Length | Nucleic Acid Homology (%) | Amino Acid Length | Amino Acid Homology (%) |
---|---|---|---|---|
Anser cygnoides | 1866 | 100.00 | 621 | 100.00 |
Gallus gallus | 1770 | 94.63 | 589 | 98.30 |
Anas platyrhynchos | 1887 | 98.55 | 628 | 98.55 |
Xenopus Laevis | 1758 | 71.90 | 585 | 76.67 |
Danio rerio | 1842 | 56.78 | 613 | 52.42 |
Homo sapiens | 1788 | 75.28 | 595 | 78.91 |
Mus musculus | 1800 | 74.24 | 599 | 78.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Q.; Xie, H.; Ran, M.; Zhang, X.; He, Z.; Lin, Y.; Hu, S.; Hu, J.; He, H.; Li, L.; et al. Estrogen Receptor Gene 1 (ESR1) Mediates Lipid Metabolism in Goose Hierarchical Granulosa Cells Rather than in Pre-Hierarchical Granulosa Cells. Biology 2023, 12, 962. https://doi.org/10.3390/biology12070962
Ouyang Q, Xie H, Ran M, Zhang X, He Z, Lin Y, Hu S, Hu J, He H, Li L, et al. Estrogen Receptor Gene 1 (ESR1) Mediates Lipid Metabolism in Goose Hierarchical Granulosa Cells Rather than in Pre-Hierarchical Granulosa Cells. Biology. 2023; 12(7):962. https://doi.org/10.3390/biology12070962
Chicago/Turabian StyleOuyang, Qingyuan, Hengli Xie, Mingxia Ran, Xi Zhang, Zhiyu He, Yueyue Lin, Shenqiang Hu, Jiwei Hu, Hua He, Liang Li, and et al. 2023. "Estrogen Receptor Gene 1 (ESR1) Mediates Lipid Metabolism in Goose Hierarchical Granulosa Cells Rather than in Pre-Hierarchical Granulosa Cells" Biology 12, no. 7: 962. https://doi.org/10.3390/biology12070962
APA StyleOuyang, Q., Xie, H., Ran, M., Zhang, X., He, Z., Lin, Y., Hu, S., Hu, J., He, H., Li, L., Liu, H., & Wang, J. (2023). Estrogen Receptor Gene 1 (ESR1) Mediates Lipid Metabolism in Goose Hierarchical Granulosa Cells Rather than in Pre-Hierarchical Granulosa Cells. Biology, 12(7), 962. https://doi.org/10.3390/biology12070962