Solute Transport across the Lymphatic Vasculature in a Soft Skin Tissue
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Poroelastic Tissue Model
2.2. Transport Equations
2.2.1. Fluid Flow in the Interstitial Space
2.2.2. Solute Transport in the Interstitial Space
2.2.3. Transvascular Fluid Flow and Solute Transport
2.3. Computational Setup
3. Pressure Build-Up and Relaxation
3.1. Elasticity and Permeability
3.2. Variable Porosity and Permeability
4. Transport and Lymphatic Uptake of Drug
4.1. Multi-Layered Tissue with an Implicit Vessel Network
4.2. Multi-Layered Tissue with a Hybrid Vessel Network
4.2.1. Improved Kedem–Katchalsky Model
4.2.2. Structure of the Lymphatic Vessel Network
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Boundary Condition
Terms | ||||
---|---|---|---|---|
Scheme | Crank-Nicolson 0.9 | Gauss linear | Gauss limited Vanleer | Gauss linear corrected |
Appendix A.2. Injection Model
Appendix A.3. Qualification of the Poroelasticity Model
Appendix A.3.1. Comparison against the Analytical Solution
Appendix A.3.2. Comparison against the Full Poroelasticity Model
Appendix A.4. Non-Darcy Flow Effect
Model | Feature | Applicable Tissues |
---|---|---|
Darcy model | Darcy damping | Tumor tissue; perfused muscle tissue |
Brinkman model | Boundary effect and viscous effect | Microvessel walls; fluid-porous interface |
Forchheimer model | Inertial effect and drag force | Tissue enduring processes with large inertial effects |
References
- Swartz, M.A. The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 2001, 50, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.E.; Bertram, C.D. Lymphatic System Flows. Annu. Rev. Fluid Mech. 2018, 50, 459–482. [Google Scholar] [CrossRef] [PubMed]
- Breslin, J.W.; Yang, Y.; Scallan, J.P.; Sweat, R.S.; Adderley, S.P.; Murfee, W.L. Lymphatic Vessel Network Structure and Physiology. Compr. Physiol. 2018, 12, 207–299. [Google Scholar] [CrossRef]
- Oliver, G.; Kipnis, J.; Randolph, G.J.; Harvey, N.L. The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell 2020, 182, 270–296. [Google Scholar] [CrossRef]
- Swartz, M.A.; Kaipainen, A.; Netti, P.A.; Brekken, C.; Boucher, Y.; Grodzinsky, A.J.; Jain, R.K. Mechanics of interstitial-lymphatic fluid transport: Theoretical foundation and experimental validation. J. Biomech. 1999, 32, 1297–1307. [Google Scholar] [CrossRef]
- Viola, M.; Sequeira, J.; Seiça, R.; Veiga, F.; Serra, J.; Santos, A.C.; Ribeiro, A.J. Subcutaneous delivery of monoclonal antibodies: How do we get there? J. Control Release 2018, 286, 301–314. [Google Scholar] [CrossRef]
- McDonald, T.A.; Zepeda, M.L.; Tomlinson, M.J.; Bee, W.H.; Ivens, I.A. Subcutaneous administration of biotherapeutics: Current experience in animal models. Curr. Opin. Mol. Ther. 2010, 12, 461–470. [Google Scholar]
- Dychter, S.S.; Gold, D.A.; Haller, M.F. Subcutaneous drug delivery: A route to increased safety, patient satisfaction, and reduced costs. J. Infus. Nurs. 2012, 35, 154–160. [Google Scholar] [CrossRef]
- Reichert, J.M. Marketed therapeutic antibodies compendium. In Proceedings of the MAbs, Valencia, Spain, 4–8 June 2012; Taylor & Francis: Abingdon, UK, 2012; Volume 4, pp. 413–415. [Google Scholar]
- Wang, S.S.; Yan, Y.S.; Ho, K. US FDA-approved therapeutic antibodies with high-concentration formulation: Summaries and perspectives. Antib. Ther. 2021, 4, 262–272. [Google Scholar] [CrossRef]
- Han, D.; Rahimi, E.; Aramideh, S.; Ardekani, A.M. Transport and Lymphatic Uptake of Biotherapeutics Through Subcutaneous Injection. J. Pharm. Sci. 2022, 111, 752–768. [Google Scholar] [CrossRef]
- Rahimi, E.; Aramideh, S.; Han, D.; Gomez, H.; Ardekani, A.M. Transport and lymphatic uptake of monoclonal antibodies after subcutaneous injection. Microvasc. Res. 2022, 139, 104228. [Google Scholar] [CrossRef]
- Han, D.; Li, C.; Araimdeh, S.; Sree, V.; Rahimi, E.; Tepole, A.B.; Ardekani, A.M. Lymphatic uptake of biotherapeutics through a 3D hybrid discrete-continuum vessel network in the skin tissue. J. Control Release 2023, 354, 869–888. [Google Scholar] [CrossRef] [PubMed]
- de Lucio, M.; Bures, M.; Ardekani, A.M.; Vlachos, P.P.; Gomez, H. Isogeometric analysis of subcutaneous injection of monoclonal antibodies. Comput. Methods Appl. Mech. Eng. 2021, 373, 113550. [Google Scholar] [CrossRef]
- Thomsen, M.; Hernandez-Garcia, A.; Mathiesen, J.; Poulsen, M.; Sørensen, D.N.; Tarnow, L.; Feidenhans, R. Model study of the pressure build-up during subcutaneous injection. PLoS ONE 2014, 9, e104054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daugherty, A.L.; Mrsny, R.J. Formulation and delivery issues for monoclonal antibody therapeutics. Adv. Drug Deliv. Rev. 2006, 58, 686–706. [Google Scholar] [CrossRef] [PubMed]
- Doughty, D.V.; Clawson, C.Z.; Lambert, W.; Subramony, J.A. Understanding subcutaneous tissue pressure for engineering injection devices for large-volume protein delivery. J. Pharm. Sci. 2016, 105, 2105–2113. [Google Scholar] [CrossRef]
- Kim, H.; Park, H.; Lee, S.J. Effective method for drug injection into subcutaneous tissue. Sci. Rep. 2017, 7, 9613. [Google Scholar] [CrossRef] [Green Version]
- Speziale, S.; Tenti, G.; Sivaloganathan, S. A poroelastic model of transcapillary flow in normal tissue. Microvasc. Res. 2008, 75, 285–295. [Google Scholar] [CrossRef]
- Sachs, D.; Wahlsten, A.; Kozerke, S.; Restivo, G.; Mazza, E. A biphasic multilayer computational model of human skin. Biomech. Model. Mechanobiol. 2021, 20, 969–982. [Google Scholar] [CrossRef] [PubMed]
- Leiderman, R.; Barbone, P.E.; Oberai, A.A.; Bamber, J.C. Coupling between elastic strain and interstitial fluid flow: Ramifications for poroelastic imaging. Phys. Med. Biol. 2006, 51, 6291–6313. [Google Scholar] [CrossRef]
- Leng, Y.; Wang, H.; de Lucio, M.; Gomez, H. Mixed-dimensional multi-scale poroelastic modeling of adipose tissue for subcutaneous injection. Biomech. Model. Mechanobiol. 2022, 21, 1825–1840. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.G.; Bert, J.L.; Bowen, B.D. A mathematical model of interstitial transport: II. Microvascular exchange in mesentery. Microvasc. Res. 1990, 39, 279–306. [Google Scholar] [CrossRef]
- MacMinn, C.W.; Dufresne, E.R.; Wettlaufer, J.S. Large deformations of a soft porous material. Phys. Rev. Appl. 2016, 5, 044020. [Google Scholar] [CrossRef] [Green Version]
- Akalp, U.; Bryant, S.J.; Vernerey, F.J. Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: A mathematical model. Soft Matter 2016, 12, 752–755. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Biswas, A.; Finkelstein, J.; Grein, S.; Kapoor, Y.; Milewski, M.; Queisser, G. Modeling Drug Absorption from the Dermis after an Injection. J. Pharm. Sci. 2021, 110, 1279–1291.e1. [Google Scholar] [CrossRef]
- Ibrahim, R.; Nitsche, J.M.; Kasting, G.B. Dermal Clearance Model for Epidermal Bioavailability Calculations. J. Pharm. Sci. 2012, 101, 2094–2108. [Google Scholar] [CrossRef]
- Kampmeier, O.F. The genetic history of the valves in the lymphatic system of man. Am. J. Anat. 1928, 40, 413–457. [Google Scholar] [CrossRef]
- Suami, H.; Scaglioni, M. Anatomy of the Lymphatic System and the Lymphosome Concept with Reference to Lymphedema. Semin. Plast. Surg. 2018, 32, 005–011. [Google Scholar] [CrossRef]
- Deegan, A.J.; Wang, R.K. Microvascular imaging of the skin. Phys. Med. Biol. 2019, 64, 07TR01. [Google Scholar] [CrossRef]
- Ulvmar, M.H.; Mäkinen, T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc. Res. 2016, 111, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Biot, M.A. General Theory of Three - Dimensional Consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Biot, M.A. Mechanics of Deformation and Acoustic Propagation in Porous Media. J. Appl. Phys. 1962, 33, 1482–1498. [Google Scholar] [CrossRef]
- Biot, M.A.; Temple, G. Theory of Finite Deformations of Porous Solids. Indiana Univ. Math. J. 1972, 21, 597–620. [Google Scholar] [CrossRef]
- Coussy, O. Poromechanics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Taylor, D.G.; Bert, J.L.; Bowen, B.D. A mathematical model of interstitial transport: I. Theory. Microvasc. Res. 1990, 39, 253–278. [Google Scholar] [CrossRef]
- Steuperaert, M.; Falvo D’Urso Labate, G.; Debbaut, C.; De Wever, O.; Vanhove, C.; Ceelen, W.; Segers, P. Mathematical modeling of intraperitoneal drug delivery: Simulation of drug distribution in a single tumor nodule. Drug Deliv. 2017, 24, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Baxter, L.T.; Jain, R.K. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 1989, 37, 77–104. [Google Scholar] [CrossRef]
- Teo, C.S.; Tan, W.H.K.; Lee, T.; Wang, C. Transient interstitial fluid flow in brain tumors: Effect on drug delivery. Chem. Eng. Sci. 2005, 60, 4803–4821. [Google Scholar] [CrossRef]
- Moghadam, M.C.; Deyranlou, A.; Sharifi, A.; Niazmand, H. Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism. Microvasc. Res. 2015, 101, 62–71. [Google Scholar] [CrossRef]
- Biot, M.A. The elastic coefficients of the theory of consolidation. J. Appl. Mech. 1957, 24, 594–601. [Google Scholar] [CrossRef]
- Sefidgar, M.; Soltani, M.; Raahemifar, K.; Sadeghi, M.; Bazmara, H.; Bazargan, M.; Naeenian, M.M. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc. Res. 2015, 99, 43–56. [Google Scholar] [CrossRef]
- Pishko, G.L.; Astary, G.W.; Mareci, T.H.; Sarntinoranont, M. Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity. Ann. Biomed. Eng. 2011, 39, 2360. [Google Scholar] [CrossRef] [Green Version]
- Heppell, C.; Roose, T.; Richardson, G. A Model for Interstitial Drainage Through a Sliding Lymphatic Valve. Bull. Math. Biol. 2015, 77, 1101–1131. [Google Scholar] [CrossRef] [Green Version]
- Adamson, R. Microvascular Endothelial Cell Shape and Size in Situ. Microvasc. Res. 1993, 46, 77–88. [Google Scholar] [CrossRef]
- Michel, C.C.; Curry, F.E. Microvascular Permeability. Physiol. Rev. 1999, 79, 703–761. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, J.K.; Wenby, R.B.; Meiselman, H.J.; Fisher, T.C. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J. 2004, 87, 4259–4270. [Google Scholar] [CrossRef] [Green Version]
- Han, D. Quantitative Investigation of Transport and Lymphatic Uptake of Biotherapeutics through Three-Dimensional Physics-Based Computational Modeling. Ph.D. Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2023. [Google Scholar]
- Gibney, M.A.; Arce, C.H.; Byron, K.J.; Hirsch, L.J. Skin and subcutaneous adipose layer thickness in adults with diabetes at sites used for insulin injections: Implications for needle length recommendations. Curr. Med. Res. Opin. 2010, 26, 1519–1530. [Google Scholar] [CrossRef]
- Baxter, L.T.; Jain, R.K. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc. Res. 1990, 40, 246–263. [Google Scholar] [CrossRef]
- Baxter, L.T.; Jain, R.K. Transport of fluid and macromolecules in tumors: III. Role of binding and metabolism. Microvasc. Res. 1991, 41, 5–23. [Google Scholar] [CrossRef]
- d’Esposito, A.; Sweeney, P.W.; Ali, M.; Saleh, M.; Ramasawmy, R.; Roberts, T.A.; Agliardi, G.; Desjardins, A.; Lythgoe, M.F.; Pedley, R.B.; et al. Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours. Nat. Biomed. Eng. 2018, 2, 773–787. [Google Scholar] [CrossRef] [Green Version]
- Kalra, A.; Lowe, A. An Overview of Factors Affecting the Skins Youngs Modulus. J. Aging Sci. 2016, 4, 1000156. [Google Scholar] [CrossRef]
- van Kuilenburg, J.; Masen, M.A.; van Der Heide, E. Contact modelling of human skin: What value to use for the modulus of elasticity? Proc. Inst. Mech. Eng. Part J Eng. Tribol. 2013, 227, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Zakaria El-R, J.; Lofthouse, M.F.; Flessner, M.F. In vivo hydraulic conductivity of muscle: Effects of hydrostatic pressure. Am. J. Physiol. 1997, 273, H2774. [Google Scholar] [CrossRef]
- González-Suárez, A.; Gutierrez-Herrera, E.; Berjano, E.; Jimenez Lozano, J.N.; Franco, W. Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: Numerical study. Lasers Surg. Med. 2015, 47, 183–195. [Google Scholar] [CrossRef]
- Swartz, M.A.; Fleury, M.E. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 2007, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Levick, J.R. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 1987, 72, 409–437. [Google Scholar] [CrossRef]
- Oftadeh, R.; Connizzo, B.K.; Nia, H.T.; Ortiz, C.; Grodzinsky, A.J. Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics. Acta Biomater. 2018, 70, 249–259. [Google Scholar] [CrossRef]
- Barry, S.I.; Aldis, G.K. Comparison of models for flow induced deformation of soft biological tissue. J. Biomech. 1990, 23, 647–654. [Google Scholar] [CrossRef]
- Salathe, E.P.; An, K. A mathematical analysis of fluid movement across capillary walls. Microvasc. Res. 1976, 11, 1–23. [Google Scholar] [CrossRef]
- DuFort, C.; DelGiorno, K.; Carlson, M.; Osgood, R.; Zhao, C.; Huang, Z.; Thompson, C.; Connor, R.; Thanos, C.; Scott Brockenbrough, J.; et al. Interstitial Pressure in Pancreatic Ductal Adenocarcinoma Is Dominated by a Gel-Fluid Phase. Biophys. J. 2016, 110, 2106–2119. [Google Scholar] [CrossRef] [Green Version]
- Ozerdem, U. Measuring interstitial fluid pressure with fiberoptic pressure transducers. Microvasc. Res. 2009, 77, 226–229. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Graf, O.; Milovic, N.; Luan, X.; Bluemel, M.; Smolny, M.; Forrer, K. Formulation development of antibodies using robotic system and high-throughput laboratory (HTL). J. Pharm. Sci. 2010, 99, 2279–2294. [Google Scholar] [CrossRef]
- Chary, S.R.; Jain, R.K. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl. Acad. Sci. USA 1989, 86, 5385–5389. [Google Scholar] [CrossRef] [Green Version]
- Ryan, T.J. Structure and Function of Lymphatics. J. Investig. Dermatol. 1989, 93, S18–S24. [Google Scholar] [CrossRef]
- Sree, V.D.; Rausch, M.K.; Tepole, A.B. Linking microvascular collapse to tissue hypoxia in a multiscale model of pressure ulcer initiation. Biomech. Model. Mechanobiol. 2019, 18, 1947–1964. [Google Scholar] [CrossRef]
- Roose, T.; Swartz, M.A. Multiscale modeling of lymphatic drainage from tissues using homogenization theory. J. Biomech. 2011, 45, 107–115. [Google Scholar] [CrossRef]
- Rathore, N.; Pranay, P.; Bernacki, J.; Bruce, E.; Ji, W.; Walls, E. Characterization of protein rheology and delivery forces for combination products. J. Pharm. Sci. 2012, 101, 4472–4480. [Google Scholar] [CrossRef]
- Khaled, A.R.; Vafai, K. The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 2003, 46, 4989–5003. [Google Scholar] [CrossRef]
- Beavers, G.S.; Joseph, D.D. Boundary conditions at a naturally permeable wall. J. Fluid Mech. 1967, 30, 197–207. [Google Scholar] [CrossRef]
- Le Reun, T.; Hewitt, D.R. High-Rayleigh-number convection in porous-fluid layers. J. Fluid Mech. 2021, 920, A35. [Google Scholar] [CrossRef]
- Beavers, G.S.; Sparrow, E.M. Non-Darcy Flow Through Fibrous Porous Media. J. Appl. Mech. 1969, 36, 711–714. [Google Scholar] [CrossRef]
Parameter | Value and Range | Unit | References |
---|---|---|---|
Slit length per unit area of vessel wall | [27,45] | ||
Valve width | 10 | nm | [44] |
Valve width | 50 | nm | [44] |
Fraction of length of slit opening to valve width f | 0.5 | 1 | [46] |
Diffusion coefficient within a valve | [47] | ||
Solute permeability within a valve | m/s | calculated | |
Lymphatic capillary radius | 200 | [2] | |
Lymphatic capillary membrane thickness | m | [26,27] | |
Stokes radius of solute | m | [47] |
Parameter | Value and Range | Unit |
---|---|---|
Hydraulic permeability | ||
Elastic modulus E | 80 | kPa |
Bulk modules M | 267 | kPa |
Initial porosity | 0.01 | 1 |
Retardation factor | 1 | 1 |
Diffusion coefficient D | 1 | |
Vascular hydraulic conductivity | ||
Vascular hydraulic conductivity | ||
Reflection coefficient | 0.3 | 1 |
Osmotic pressure | 3000 | Pa |
Osmotic pressure | 1500 | Pa |
Blood vessel pressure | 3500 | Pa |
Lymphatic pressure | 0 | Pa |
Surface area per volume | 7000 |
Layers | E () | k () | () | Thickness () |
---|---|---|---|---|
dermis | 35 | 5000 | 2.2 | |
subcutaneous tissue | 10 | 3000 | 13.9 | |
muscle | 80 | 1000 | 20.0 |
Molecule Size (nm) | 3 | 5 | 9 |
---|---|---|---|
(h) with different | 1.4 | 8.9 | 48.8 |
(h) with fixed | 8.4 | 8.9 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Huang, Z.; Rahimi, E.; Ardekani, A.M. Solute Transport across the Lymphatic Vasculature in a Soft Skin Tissue. Biology 2023, 12, 942. https://doi.org/10.3390/biology12070942
Han D, Huang Z, Rahimi E, Ardekani AM. Solute Transport across the Lymphatic Vasculature in a Soft Skin Tissue. Biology. 2023; 12(7):942. https://doi.org/10.3390/biology12070942
Chicago/Turabian StyleHan, Dingding, Ziyang Huang, Ehsan Rahimi, and Arezoo M. Ardekani. 2023. "Solute Transport across the Lymphatic Vasculature in a Soft Skin Tissue" Biology 12, no. 7: 942. https://doi.org/10.3390/biology12070942
APA StyleHan, D., Huang, Z., Rahimi, E., & Ardekani, A. M. (2023). Solute Transport across the Lymphatic Vasculature in a Soft Skin Tissue. Biology, 12(7), 942. https://doi.org/10.3390/biology12070942