Global Potential Geographical Distribution of the Southern Armyworm (Spodoptera eridania) under Climate Change
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Access and Processing
2.2. Model Construction and Evaluation
2.3. Mapping the Potential Geographical Distribution and Spatial Variation
3. Results
3.1. Model Performance and Significant Variables
3.2. Potential Geographical Distribution under Near-Current Climate Conditions
3.3. Climate Change Impact on the Potential Geographical Distribution
3.4. Spatial Variation of Potential Geographical Distribution
4. Discussion
4.1. Model Prediction
4.2. Influence of Bioclimatic Variables on Potential Geographical Distribution
4.3. Changes in Potential Geographical Distribution
4.4. Spread and Prevention Efforts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; De Barro, P.J.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef]
- Kergoat, G.J.; Goldstein, P.Z.; Le Ru, B.; Meagher, R.L.; Zilli, A.; Mitchell, A.; Clamens, A.L.; Gimenez, S.; Barbut, J.; Nègre, N.; et al. A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae: Noctuinae): New insights into the evolution of a pest-rich genus. Mol. Phylogenet. Evol. 2021, 161, 107161. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.S.; Dewhurst, C.F. The genus Spodoptera (Lepidoptera, Noctuidae) in Africa and the Near East. Bull. Entomol. Res. 1975, 65, 221–262. [Google Scholar] [CrossRef]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J.; et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.J.; Yang, D.C.; Kang, D.L.; Zhao, Z.H.; Zhao, Z.H.; Yang, P.Y.; Li, Z.H. Potential economic loss assessment of maize industry caused by fall armyworm (Spodoptera frugiperda) in China. Plant Prot 2020, 46, 69–73. [Google Scholar] [CrossRef]
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Soo Hoo, C.F.; Fraenkel, G. The selection of food plants in a polyphagous insect, Prodenia eridania (Cramer). J. Insect Physiol. 1966, 12, 693–709. [Google Scholar] [CrossRef]
- Capinera, J.L. Southern armyworm, Spodoptera eridania (Cramer) (Insecta: Lepidoptera: Noctuidae): EENY-106/IN263, 8/1999. EDIS 2002, 2002, 1–3. [Google Scholar] [CrossRef]
- Goergen, G. Newsletter 112C. Crop. Prot. 2018, 112, 371–373. [Google Scholar] [CrossRef]
- Gaikwad, S.M. First report of Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae) on soybean [Glycine max (L.) Merrill] from Kolhapur, Maharashtra, India. J. Entomol. Zoöl. Stud. 2021, 9, 1419–1422. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (PLH); Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.; Miret, J.A.J.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; et al. Pest categorisation of Spodoptera eridania. EFSA J. 2020, 18, e05932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; de Barros, N.M. Immature stages of Spodoptera eridania (Lepidoptera: Noctuidae): Developmental parameters and host plants. J. Insect Sci. 2014, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, J.; Kostyk, B.C. Different formulations of proclaim for control of southern armyworm on staked tomato in Southwest Florida, 2019. Arthropod Manag. Tests 2021, 46, tsab092. [Google Scholar] [CrossRef]
- Resende, L.S.; Figueiredo, K.G.; Souza, B.H.; Carvalho, V.C.; Carvalho, G.A.; Presoto, J.C.; Nicolai, M.; Christoffoleti, P.J. Spodoptera eridania (Lepidoptera: Noctuidae): First report on Amaranthus hybridus (Amaranthaceae) in Brazil. Adv. Weed Sci. 2022, 40, e0202200024. [Google Scholar] [CrossRef]
- Sampaio, F.; Krechemer, F.S.; Marchioro, C.A. The hotter the better? Climate change and voltinism of Spodoptera eridania estimated with different methods. J. Therm. Biol. 2021, 98, 102946. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, F.; Krechemer, F.S.; Marchioro, C.A. Temperature-dependent development models describing the effects of temperature on the development of Spodoptera eridania. Pest Manag. Sci. 2021, 77, 919–929. [Google Scholar] [CrossRef]
- Everett, R.M.; James, H.T. Response of Spodoptera exigua and S. eridania (Lepidoptera: Noctuidae) males to synthetic pheromone and S. exigua females. Fla. Entomol. 1994, 77, 237–247. [Google Scholar] [CrossRef]
- Pearce-Higgins, J.W.; Ockendon, N.; Baker, D.J.; Carr, J.; White, E.C.; Almond, R.E.A.; Amano, T.; Bertram, E.; Bradbury, R.B.; Bradley, C.; et al. Geographical variation in species’ population responses to changes in temperature and precipitation. Proc. Biol. Sci. 2015, 282, 20151561. [Google Scholar] [CrossRef]
- Sims, S.R. Influence of soil type and rainfall on pupal survival and adult emergence of the fall armyworm (Lepidoptera: Noctuidae) in Southern Florida. J. Entomol. Sci. 2008, 43, 373–380. [Google Scholar] [CrossRef]
- Schneider, L.; Rebetez, M.; Rasmann, S. The effect of climate change on invasive crop pests across biomes. Curr. Opin. Insect Sci. 2022, 50, 100895. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; pp. 655–662. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, M.; Das, B.; Ramesh, R. Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J. Pest Sci. 2022, 95, 841–854. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Dudík, M.; Phillips, S.J.; Schapire, R.E. Correcting sample selection bias in maximum entropy density estimation. In Proceedings of the 18th International Conference on Neural Information Processing Systems (NIPS′05), MIT Press, Cambridge, MA, USA, 5–8 December 2005; pp. 323–330. [Google Scholar]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Syfert, M.M.; Smith, M.J.; Coomes, D.A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 2013, 8, e55158. [Google Scholar] [CrossRef]
- Ferreira, T.E.; Faleiro, F.G.; Junqueira, N.T.V.; de Camargo, A.J.A.; Teston, J.A.; Specht, A. First record of Isia alcumena, Spodoptera cosmioides and S. eridania (LEPIDOPTERA: NOCTUOIDEA) attacking Passion Fruit (Passiflora edulis Sims) in Brazil. Rev. Bras. Frutic. 2019, 41, 1–5. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.J.; Lan, S.; Zhao, Z.H.; Sun, H.Y.; Zhu, X.M.; Yang, P.Y.; Li, Z.H. Potential geographical distribution of the fall armyworm (Spodoptera frugiperda) in China. Plant Prot. 2019, 45, 43–47. [Google Scholar] [CrossRef]
- Swets, J.A.; Pickett, R.M.; Whitehead, S.F.; Getty, D.J.; Schnur, J.A.; Swets, J.B.; Freeman, B.A. Assessment of diagnostic technologies. Science 1979, 205, 753–759. [Google Scholar] [CrossRef]
- Byeon, D.H.; Jung, S.; Lee, W.H. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J. Asia-Pac. Biodivers. 2018, 11, 325–333. [Google Scholar] [CrossRef]
- Weinberg, J.; Ota, N.; Goergen, G.; Fagbohoun, J.R.; Tepa-Yotto, G.T.; Kriticos, D.J. Spodoptera eridania: Current and Emerging Crop Threats from Another Invasive, pesticide-Resistant Moth. Entomol. Gen. 2022, 42, 701–712. [Google Scholar] [CrossRef]
- Tepa-Yotto, G.T.; Gouwakinnou, G.N.; Fagbohoun, J.R.; Tamò, M.; Saethre, M.G. Horizon scanning to assess the bioclimatic potential for the alien species Spodoptera eridania and its parasitoids after pest detection in West and Central Africa. Pest Manag. Sci. 2021, 77, 4437–4446. [Google Scholar] [CrossRef] [PubMed]
- Bortolotto, O.C.; Frugery, A.P.; Barbosa, G.; Silva, G.V.; Pomari, A.F.; Mihsfeldt, L.H.; Bueno, A.F. Biological characteristics of Spodoptera eridania (Lepidoptera: Noctuidae) at different temperatures. Ecossistema 2012, 36, 75–80. [Google Scholar]
- Franklin, A.B.; Noon, B.R.; George, T.L. What is habitat fragmentation? Stud. Avian Biol. 2002, 25, 20–29. [Google Scholar]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Blackburn, T.M.; Song, T.; Li, X.; Huang, C.; Li, Y. Risks of biological invasion on the belt and road. Curr. Biol. 2019, 29, 499–505.e4. [Google Scholar] [CrossRef] [Green Version]
- A Otekunrin, O.; Sawicka, B. Cassava, a 21st century staple crop: How can Nigeria harness its enormous trade potentials? Acta Sci. Agric. 2019, 3, 194–202. [Google Scholar] [CrossRef]
- Sun, J.; Mooney, H.; Wu, W.B.; Tang, H.J.; Tong, Y.X.; Xu, Z.C.; Huang, B.R.; Cheng, Y.Q.; Yang, X.J.; Wei, D.; et al. Importing food damages domestic environment: Evidence from global soybean trade. Proc. Natl Acad. Sci. USA 2018, 115, 5415–5419. [Google Scholar] [CrossRef] [Green Version]
- Guan, Z.F.; Biswas, T.; Wu, F. The U.S. tomato industry: An overview of production and trade: FE1027, 9/2017. EDIS 2018, 2018, 1–4. [Google Scholar] [CrossRef]
- EPPO Global Database. Available online: https://gd.eppo.int/taxon/PRODER/categorization (accessed on 11 April 2023).
- Li, H.M.; Wang, M.Z.; Li, T.J.; Yin, K.K.; Gu, H.J.; Zhang, F. Precaution of southern armyworm, Spodoptera eridania (Stoll), potential invasive pest in China. J. Environ. Entomol. 2022, 45, 389–394. [Google Scholar]
Bioclimatic Variables | Principal Components | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Annual mean temperature (bio1) | 0.598 | −0.319 | 0.586 | 0.426 |
Mean diurnal range (bio2) | −0.428 | −0.071 | −0.658 | 0.069 |
Isothermality (bio3) | 0.774 | −0.344 | 0.327 | −0.270 |
Temperature seasonality (bio4) | −0.716 | 0.405 | −0.477 | 0.248 |
Max temperature of warmest month (bio5) | −0.208 | 0.020 | −0.177 | 0.935 |
Min temperature of coldest month (bio6) | 0.720 | −0.301 | 0.597 | 0.074 |
Temperature annual range (bio7) | −0.705 | 0.275 | −0.586 | 0.214 |
Mean temperature of wettest quarter (bio8) | 0.031 | −0.213 | 0.749 | 0.376 |
Mean temperature of driest quarter (bio9) | 0.775 | −0.090 | 0.110 | 0.232 |
Mean temperature of warmest quarter (bio10) | −0.066 | 0.100 | 0.184 | 0.963 |
Mean temperature of coldest quarter (bio11) | 0.709 | −0.380 | 0.565 | 0.099 |
Annual precipitation (bio12) | 0.831 | 0.401 | 0.168 | −0.231 |
Precipitation of Wettest Month (bio13) | 0.883 | −0.040 | 0.194 | −0.201 |
Precipitation of driest month (bio14) | −0.042 | 0.962 | 0.004 | −0.012 |
Precipitation seasonality (bio15) | 0.357 | −0.867 | 0.134 | −0.109 |
Precipitation of wettest quarter (bio16) | 0.877 | −0.029 | 0.210 | −0.256 |
Precipitation of driest quarter (bio17) | 0.056 | 0.977 | 0.004 | 0.004 |
Precipitation of warmest quarter (bio18) | 0.145 | 0.302 | 0.661 | −0.273 |
Precipitation of coldest quarter (bio19) | 0.725 | 0.520 | −0.218 | 0.046 |
Continents | Near-Current | 2030s, SSP1-2.6 | 2030s, SSP5-8.5 | 2050s, SSP1-2.6 | 2050s, SSP5-8.5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area | % | Area | % | Area | % | Area | % | Area | % | |
Africa | 703.87 | 20.54 | 581.69 | 17.25 | 727.04 | 19.96 | 636.83 | 17.69 | 645.23 | 18.47 |
Asia | 651.43 | 19.01 | 617.84 | 18.32 | 682.25 | 18.73 | 729.67 | 20.27 | 652.91 | 18.69 |
Europe | 149.46 | 4.36 | 174.82 | 5.18 | 197.55 | 5.42 | 198.41 | 5.51 | 176.72 | 5.06 |
North America | 456.04 | 13.31 | 510.05 | 15.12 | 515.25 | 14.14 | 535.46 | 14.88 | 553.25 | 15.84 |
Oceania | 252.24 | 7.36 | 256.32 | 7.60 | 257.31 | 7.06 | 265.25 | 7.37 | 251.77 | 7.21 |
South America | 1213.39 | 35.41 | 1232.37 | 36.54 | 1263.81 | 34.69 | 1233.67 | 34.28 | 1213.01 | 34.73 |
World | 3426.43 | 3373.10 | 3643.21 | 3599.29 | 3492.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, H.; Qi, Y.; Li, M.; Yang, N.; Guo, J.; Xian, X.; Liu, W. Global Potential Geographical Distribution of the Southern Armyworm (Spodoptera eridania) under Climate Change. Biology 2023, 12, 1040. https://doi.org/10.3390/biology12071040
Zhang Y, Zhao H, Qi Y, Li M, Yang N, Guo J, Xian X, Liu W. Global Potential Geographical Distribution of the Southern Armyworm (Spodoptera eridania) under Climate Change. Biology. 2023; 12(7):1040. https://doi.org/10.3390/biology12071040
Chicago/Turabian StyleZhang, Yu, Haoxiang Zhao, Yuhan Qi, Ming Li, Nianwan Yang, Jianyang Guo, Xiaoqing Xian, and Wanxue Liu. 2023. "Global Potential Geographical Distribution of the Southern Armyworm (Spodoptera eridania) under Climate Change" Biology 12, no. 7: 1040. https://doi.org/10.3390/biology12071040
APA StyleZhang, Y., Zhao, H., Qi, Y., Li, M., Yang, N., Guo, J., Xian, X., & Liu, W. (2023). Global Potential Geographical Distribution of the Southern Armyworm (Spodoptera eridania) under Climate Change. Biology, 12(7), 1040. https://doi.org/10.3390/biology12071040