Identification of Prominent Genes between 3D Glioblastoma Models and Clinical Samples via GEO/TCGA/CGGA Data Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. RNA-Seq Expression Data
2.2. Identification of Differentially Expressed Genes
2.3. Construction of Gene Interaction Network
2.4. Over-Representation Analysis
2.5. Survival Analysis
3. Results
3.1. Commonly Regulated Genes in 3D Cultures Are Replicated in GBM Patients
3.2. Differentially Expressed Genes in GBM Patients with Different Characteristics
3.3. Gene Interactions among Differentially Expressed Genes
3.4. Functional Enrichment of the Differentially Expressed Genes
3.5. Correlation of Upregulated Genes with GBM Patients’ Overall Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rønning, P.A.; Helseth, E.; Meling, T.R.; Johannesen, T.B. A population-based study on the effect of temozolomide in the treatment of glioblastoma multiforme. Neuro Oncol. 2012, 14, 1178–1184. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro Oncol. 2021, 23 (Suppl. S3), iii1–iii105. [Google Scholar] [CrossRef] [PubMed]
- Breslin, S.; O’driscoll, L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today 2013, 18, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Birgersdotter, A.; Sandberg, R.; Ernberg, I. Gene expression perturbation in vitro—A growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol. 2005, 15, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, L.; Lamperska, K. 2D and 3D cell cultures—A comparison of different types of cancer cell cultures. Arch. Med. Sci. 2018, 14, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.A.; Gutman, D.A.; Chisolm, C.; Appin, C.; Kong, J.; Rong, Y.; Kurc, T.; Van Meir, E.G.; Saltz, J.H.; Moreno, C.S.; et al. The Tumor Microenvironment Strongly Impacts Master Transcriptional Regulators and Gene Expression Class of Glioblastoma. Am. J. Pathol. 2012, 180, 2108–2119. [Google Scholar] [CrossRef]
- Galon, J.; Pagès, F.; Marincola, F.M.; Thurin, M.; Trinchieri, G.; Fox, B.A.; Gajewski, T.F.; Ascierto, P.A. The immune score as a new possible approach for the classification of cancer. J. Transl. Med. 2012, 10, 1. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Roschke, A.V.; Tonon, G.; Gehlhaus, K.S.; Mctyre, N.; Bussey, K.J.; Lababidi, S.; Scudiero, D.A.; Weinstein, J.N.; Kirsch, I.R. Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Res. 2003, 63, 8634–8647. [Google Scholar]
- Ross, D.T.; Scherf, U.; Eisen, M.B.; Perou, C.M.; Rees, C.; Spellman, P.; Iyer, V.; Jeffrey, S.S.; Van de Rijn, M.; Waltham, M.; et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 2000, 24, 227–235. [Google Scholar] [CrossRef]
- Masters, J.R.W. Human cancer cell lines: Fact and fantasy. Nat. Rev. Mol. Cell Biol. 2000, 1, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Jacks, T.; Weinberg, R.A. Taking the Study of Cancer Cell Survival to a New Dimension. Cell 2002, 111, 923–925. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Oliva, R.; Domínguez-García, S.; Carrascal, L.; Abalos-Martínez, J.; Pardillo-Díaz, R.; Verástegui, C.; Castro, C.; Nunez-Abades, P.; Geribaldi-Doldán, N. Evolution of Experimental Models in the Study of Glioblastoma: Toward Finding Efficient Treatments. Front. Oncol. 2021, 10, 614295. [Google Scholar] [CrossRef]
- Phon, B.W.S.; Kamarudin, M.N.; Bhuvanendran, S.; Radhakrishnan, A.K. Transitioning pre-clinical glioblastoma models to clinical settings with biomarkers identified in 3D cell-based models: A systematic scoping review. Biomed. Pharmacother. 2021, 145, 112396. [Google Scholar] [CrossRef]
- Huang, T.; Yang, Y.; Song, X.; Wan, X.; Wu, B.; Sastry, N.; Horbinski, C.M.; Zeng, C.; Tiek, D.; Goenka, A.; et al. PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells. Mol. Cell 2021, 81, 1276–1291.e9. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, Y.; Huang, Y.; Sandanaraj, E.; Yu, J.S.; Lin, R.Y.-T.; Dakle, P.; Ke, X.-Y.; Chong, Y.K.; Koh, L.; et al. Topography of transcriptionally active chromatin in glioblastoma. Sci. Adv. 2021, 7, eabd4676. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.; Kim, S.; Chowdhury, T.; Yu, H.J.; Kim, K.-M.; Kang, H.; Won, J.-K.; Park, S.-H.; Shin, J.H.; Park, C.-K. Genome-wide perturbations of Alu expression and Alu-associated post-transcriptional regulations distinguish oligodendroglioma from other gliomas. Commun. Biol. 2022, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.E.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- Vivian, J.; Rao, A.A.; Nothaft, F.A.; Ketchum, C.; Armstrong, J.; Novak, A.; Pfeil, J.; Narkizian, J.; Deran, A.D.; Musselman-Brown, A.; et al. Toil enables reproducible, open source, big biomedical data analyses. Nat. Biotechnol. 2017, 35, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, K.-N.; Wang, Q.; Li, G.; Zeng, F.; Zhang, Y.; Wu, F.; Chai, R.; Wang, Z.; Zhang, C.; et al. Chinese Glioma Genome Atlas (CGGA): A Comprehensive Resource with Functional Genomic Data from Chinese Glioma Patients. Genom. Proteom. Bioinform. 2021, 19, 1–12. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, X.; Li, G.; Chang, X.; Li, S.; Chen, J.; Zhao, Z.; Wang, J.; Jiang, T.; Chai, R. Clinical management and survival outcomes of patients with different molecular subtypes of diffuse gliomas in China (2011–2017): A multicenter retrospective study from CGGA. Cancer Biol. Med. 2022, 19, 1460–1476. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, T.; You, G.; Peng, X.; Chen, C.; You, Y.; Yao, K.; Wu, C.; Ma, J.; Sha, Z.; et al. Localizing seizure-susceptible brain regions associated with low-grade gliomas using voxel-based lesion-symptom mapping. Neuro Oncol. 2014, 17, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Y.; Qian, Z.; Sun, Z.; Xu, K.; Wang, K.; Liu, S.; Fan, X.; Li, S.; Zhang, Z.; et al. A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. NeuroImage Clin. 2018, 20, 1070–1077. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Blighe, K.; Rana, S.; Lewis, M. Enhanced Volano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling. 2021. Available online: https://bioconductor.org/packages/devel/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html (accessed on 2 December 2022).
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000. [Google Scholar]
- Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves Using ‘ggplot2’. 2021. Available online: https://rpkgs.datanovia.com/survminer/ (accessed on 6 December 2022).
- Labussiere, M.; Sanson, M.; Idbaih, A.; Delattre, J.Y. IDH1 Gene Mutations: A New Paradigm in Glioma Prognosis and Therapy? Oncol. 2010, 15, 196–199. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, X.-Q.; Zhou, B.; Zhang, L. The prognostic value of MGMT promoter methylation in Glioblastoma multiforme: A meta-analysis. Fam. Cancer 2013, 12, 449–458. [Google Scholar] [CrossRef]
- Jia, W.; Jiang, X.; Liu, W.; Wang, L.; Zhu, B.; Zhu, H.; Liu, X.; Zhong, M.; Xie, D.; Huang, W.; et al. Effects of three-dimensional collagen scaffolds on the expression profiles and biological functions of glioma cells. Int. J. Oncol. 2018, 52, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Roman, N.; Stevenson, K.; Gilmour, L.; Hamilton, G.; Chalmers, A.J. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro Oncol. 2016, 19, 229–241. [Google Scholar] [CrossRef]
- Wang, K.; Kievit, F.M.; Erickson, A.E.; Silber, J.R.; Ellenbogen, R.G.; Zhang, M. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Adv. Health Mater. 2016, 5, 3173–3181. [Google Scholar] [CrossRef]
- Florczyk, S.J.; Wang, K.; Jana, S.; Wood, D.L.; Sytsma, S.K.; Sham, J.G.; Kievit, F.M.; Zhang, M. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials 2013, 34, 10143–10150. [Google Scholar] [CrossRef] [PubMed]
- Pedron, S.; Becka, E.; Harley, B.A. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials 2013, 34, 7408–7417. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.G. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 2012, 22, 457–472. [Google Scholar] [CrossRef]
- Zhang, M.; Song, T.; Yang, L.; Chen, R.; Wu, L.; Yang, Z.; Fang, J. Nestin and CD133: Valuable stem cell-specific markers for determining clinical outcome of glioma patients. J. Exp. Clin. Cancer Res. 2008, 27, 85. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Jain, R.K.; Di Tomaso, E.; Duda, D.G.; Loeffler, J.S.; Sorensen, A.G.; Batchelor, T.T. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 2007, 8, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Tompa, M.; Kalovits, F.; Nagy, A.; Kalman, B. Contribution of the Wnt Pathway to Defining Biology of Glioblastoma. NeuroMolecular Med. 2018, 20, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Jiao, J.; Li, Y.; Tian, T. Overexpression of FZD7 promotes glioma cell proliferation by upregulating TAZ. Oncotarget 2016, 7, 85987–85999. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yu, X.; Sun, S.; Zhang, X.; Yang, W.; Zhang, J.; Zhang, X.; Jiang, Z. Increased expression of MMP-2 and MMP-9 indicates poor prognosis in glioma recurrence. Biomed. Pharmacother. 2019, 118, 109369. [Google Scholar] [CrossRef] [PubMed]
- Mikheeva, S.A.; Mikheev, A.M.; Petit, A.; Beyer, R.; Oxford, R.G.; Khorasani, L.; Maxwell, J.-P.; Glackin, C.A.; Wakimoto, H.; González-Herrero, I.; et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol. Cancer 2010, 9, 194. [Google Scholar] [CrossRef] [PubMed]
- Myung, J.K.; Choi, S.A.; Kim, S.-K.; Wang, K.-C.; Park, S.-H. Snail plays an oncogenic role in glioblastoma by promoting epithelial mesenchymal transition. Int. J. Clin. Exp. Pathol. 2014, 7, 1977–1987. [Google Scholar] [CrossRef]
- Iwadate, Y. Epithelial-mesenchymal transition in glioblastoma progression. Oncol. Lett. 2016, 11, 1615–1620. [Google Scholar] [CrossRef]
- Mooney, K.L.; Choy, W.; Sidhu, S.; Pelargos, P.; Bui, T.T.; Voth, B.; Barnette, N.; Yang, I. The role of CD44 in glioblastoma multiforme. J. Clin. Neurosci. 2016, 34, 1–5. [Google Scholar] [CrossRef]
- Murphy, G.; Nagase, H. Progress in matrix metalloproteinase research. Mol. Asp. Med. 2008, 29, 290–308. [Google Scholar] [CrossRef]
- Pankov, R.; Yamada, K.M. Fibronectin at a glance. J. Cell Sci. 2002, 115, 3861–3863. [Google Scholar] [CrossRef]
- Monteiro, A.R.; Hill, R.; Pilkington, G.J.; Madureira, P.A. The Role of Hypoxia in Glioblastoma Invasion. Cells 2017, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- SongTao, Q.; Lei, Y.; Si, G.; YanQing, D.; HuiXia, H.; XueLin, Z.; LanXiao, W.; Fei, Y. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 2011, 103, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Ren, J.; Shi, J.; Feng, L.; Wang, K.; Zeng, T.; Jin, T.; Gao, L. R132H mutation in IDH1 gene reduces proliferation, cell survival and invasion of human glioma by downregulating Wnt/β-catenin signaling. Int. J. Biochem. Cell Biol. 2016, 73, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Cai, G.; Yu, Q.; Shen, J.; Gu, Z.; Chen, J.; Shi, W.; Shi, J. IDH1 mutation diminishes aggressive phenotype in glioma stem cells. Int. J. Oncol. 2017, 52, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Chen, G.; Li, J.; Yang, F. Snail expression contributes to temozolomide resistance in glioblastoma. Am. J. Transl. Res. 2019, 11, 4277–4289. [Google Scholar]
- Siebzehnrubl, F.A.; Silver, D.J.; Tugertimur, B.; Deleyrolle, L.P.; Siebzehnrubl, D.; Sarkisian, M.R.; Devers, K.G.; Yachnis, A.T.; Kupper, M.D.; Neal, D.; et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol. Med. 2013, 5, 1196–1212. [Google Scholar] [CrossRef]
- Wu, S.; Liu, C.; Wei, X.; Nong, W.-X.; Lin, L.-N.; Li, F.; Xie, X.-X.; Liao, X.-S.; Luo, B.; Zhang, Q.-M.; et al. High Expression of Fibronectin 1 Predicts a Poor Prognosis in Glioblastoma. Curr. Med Sci. 2022, 42, 1055–1065. [Google Scholar] [CrossRef]
- Mikheev, A.M.; Mikheeva, S.A.; Severs, L.J.; Funk, C.C.; Huang, L.; McFaline-Figueroa, J.L.; Schwensen, J.; Trapnell, C.; Price, N.; Wong, S.; et al. Targeting TWIST 1 through loss of function inhibits tumorigenicity of human glioblastoma. Mol. Oncol. 2018, 12, 1188–1202. [Google Scholar] [CrossRef]
- Singh, S.K.; Abbas, S.; Saxena, A.K.; Tiwari, S.; Sharma, L.K.; Tiwari, M. Critical role of three-dimensional tumorsphere size on experimental outcome. Biotechniques 2020, 69, 333–338. [Google Scholar] [CrossRef]
- Chaicharoenaudomrung, N.; Kunhorm, P.; Promjantuek, W.; Rujanapun, N.; Heebkaew, N.; Soraksa, N.; Noisa, P. Transcriptomic Profiling of 3D Glioblastoma Tumoroids for the Identification of Mechanisms Involved in Anticancer Drug Resistance. In Vivo 2020, 34, 199–211. [Google Scholar] [CrossRef]
- Mehta, G.; Hsiao, A.Y.; Ingram, M.; Luker, G.D.; Takayama, S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control. Release 2012, 164, 192–204. [Google Scholar] [CrossRef] [PubMed]
Genes | Function |
---|---|
Upregulated Genes | |
PROM1 | Stemness-Related |
NES | |
SOX2 | |
TAZ | |
POU5F1 | |
NANOG | |
FOS | |
MSI1 | |
CD44 | EMT-Related |
TWIST1 | |
SNAI1 | |
FN1 | |
VIM | |
CDH2 | |
YAP1 | |
MMP1 | Angiogenesis/Migration |
MMP2 | |
MMP9 | |
VEGFA | |
EPHA3 | |
ABCG2 | Drug Efflux |
ABCB1 | |
ABCA1 | |
ABCA2 | |
ABCC7 | |
SLC17A3 | |
GFAP | ECM-Related |
ITGA6 | |
EPCAM | |
HIF1A | Hypoxia |
PLAT | |
DKK1 | Wnt Signalling |
FZD7 | |
RELB | Regulation of Gene Expression |
MAML1 | |
IKBKB | NFκB Signalling |
CDKN1B | Cell Cycle |
EDNRB | Cell Division |
CYP1A1 | Drug Response |
NOTCH2 | Notch Signalling |
Downregulated Genes | |
CDH1 | EMT-Related |
ITGA3 | ECM-Related |
CCND1 | Cell Cycle-Related |
CDC20 | |
MYC |
Dataset | GBM Patients | Healthy Brain Samples |
---|---|---|
GSE145645 | 32 | 3 |
GSE147352 | 85 | 15 |
GSE165595 | 17 | 17 |
CGGA | 388 | 20 |
TCGA/GTEX | 166 | 212 |
GSE145645 | GSE147352 | GSE165595 |
---|---|---|
Upregulated Genes | ||
ABCA1 | ABCA1 | ABCA1 |
CCND1 | CCND1 | CCND1 |
CD44 | CD44 | CD44 |
CDC20 | CDC20 | CDC20 |
CDH2 | CDH1 | FN1 |
EDNRB | CDH2 | FOS |
EPHA3 | DKK1 | FZD7 |
FN1 | EDNRB | HIF1A |
FOS | FN1 | MMP2 |
FZD7 | FOS | MMP9 |
HIF1A | FZD7 | MSI1 |
ITGA3 | GFAP | MYC |
MAML1 | HIF1A | NES |
MMP1 | IKBKB | PLAT |
MMP2 | ITGA3 | PROM1 |
MMP9 | ITGA6 | RELB |
MSI1 | MMP1 | SOX2 |
MYC | MMP2 | VEGFA |
NES | MMP9 | VIM |
NOTCH2 | MSI1 | |
PLAT | MYC | |
PROM1 | NES | |
RELB | NOTCH2 | |
SNAI1 | PLAT | |
SOX2 | PROM1 | |
TWIST1 | RELB | |
VEGFA | SLC17A3 | |
VIM | SNAI1 | |
YAP1 | SOX2 | |
TWIST1 | ||
VEGFA | ||
VIM | ||
YAP1 | ||
Downregulated Genes | ||
ABCA2 | CYP1A1 | ABCA2 |
EPCAM | EPCAM | EPCAM |
CYP1A1 | CYP1A1 |
Total Number (n = 166) | Total Number (n = 388) | |
---|---|---|
Sex Male Female Not Reported | 106 59 1 | 235 153 - |
Age >65 <65 Not Reported | 101 54 11 | 38 350 - |
IDH Status Wild-Type Mutant Not Reported | 136 8 22 | 288 90 10 |
MGMT Methylation Status Methylated Unmethylated Not Reported | 54 65 47 | 172 163 53 |
Sample Type Primary Recurrent | 153 13 | 255 133 |
Event Living Deceased Not Reported | 48 106 12 | 53 322 13 |
TCGA/GTEx | CGGA |
---|---|
Upregulated Genes | |
ABCA1 | ABCA1 |
CCND1 | CD44 |
CD44 | CDC20 |
CDC20 | DKK1 |
CDH2 | EPHA3 |
DKK1 | FN1 |
EDNRB | FZD7 |
EPHA3 | HIF1A |
FN1 | ITGA3 |
FZD7 | MMP1 |
GFAP | MMP2 |
HIF1A | MMP9 |
ITGA3 | MSI1 |
MMP1 | MYC |
MMP2 | NANOG |
MMP9 | NES |
MSI1 | NOTCH2 |
MYC | PLAT |
NES | PROM1 |
PLAT | RELB |
PROM1 | SLC17A3 |
RELB | SNAI1 |
SLC17A3 | SOX2 |
SOX2 | TWIST1 |
TWIST1 | VEGFA |
VEGFA | VIM |
VIM | |
Downregulated Genes | |
ABCA2 | ABCA2 |
CYP1A1 | EPCAM |
EPCAM |
Genes | 3D vs. 2D | GSE145645 | GSE165595 | GSE147352 | CGGA | TCGA/GTEx | Gene Function |
---|---|---|---|---|---|---|---|
FOS | ↑ | ↑ | ↑ | ↑ | Stemness-Related | ||
MSI1 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
NANOG | ↑ | ↑ | |||||
NES | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
PROM1 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
SOX2 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
CD44 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | EMT-Related |
CDH2 | ↑ | ↑ | ↑ | ↑ | |||
FN1 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
SNAI1 | ↑ | ↑ | ↑ | ↑ | |||
TWIST1 | ↑ | ↑ | ↑ | ↑ | ↑ | ||
VIM | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
YAP1 | ↑ | ↑ | ↑ | ||||
EPHA3 | ↑ | ↑ | ↑ | ↑ | Angiogenesis/Migration | ||
MMP1 | ↑ | ↑ | ↑ | ↑ | ↑ | ||
MMP2 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
MMP9 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
VEGFA | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
ABCA1 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | Drug Efflux |
ABCA2 | ↑ | ↓ | ↓ | ↓ | ↓ | ||
SLC17A3 | ↑ | ↑ | ↑ | ↑ | |||
GFAP | ↑ | ↑ | ↑ | ECM-Related | |||
ITGA6 | ↑ | ↑ | |||||
EPCAM | ↑ | ↓ | ↓ | ↓ | ↓ | ↓ | |
ITGA3 | ↓ | ↑ | ↑ | ↑ | ↑ | ||
HIF1A | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | Hypoxia |
PLAT | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
DKK1 | ↑ | ↑ | ↑ | ↑ | Wnt Signaling | ||
FZD7 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
MAML1 | ↑ | ↑ | Regulation of Gene Expression | ||||
RELB | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |
IKBKB | ↑ | ↑ | NF-κB Signalling | ||||
CCND1 | ↓ | ↑ | ↑ | ↑ | ↑ | Cell Cycle-Related | |
CDC20 | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | |
MYC | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | |
EDNRB | ↑ | ↑ | ↑ | ↑ | Cell Division | ||
NOTCH2 | ↑ | ↑ | ↑ | ↑ | Notch Signaling | ||
CYP1A1 | ↑ | ↓ | ↓ | ↓ | ↓ | Drug Response |
IDH1R132 Wild-Type vs. IDH1R132 Mutant | |
---|---|
NES | Upregulated |
PROM1 | Upregulated |
TWIST1 | Upregulated |
VEGFA | Upregulated |
MMP1 | Upregulated |
MMP9 | Upregulated |
PLAT | Upregulated |
DKK1 | Upregulated |
FZD7 | Upregulated |
EPHA3 | Upregulated |
ITGA3 | Upregulated |
IDH1R132 Wild-Type vs. IDH1R132 Mutant | |
---|---|
CD44 | Upregulated |
MMP9 | Upregulated |
VEGFA | Upregulated |
ITGA3 | Upregulated |
PLAT | Upregulated |
FZD7 | Upregulated |
SNAI1 | Upregulated |
SLC17A3 | Upregulated |
DKK1 | Upregulated |
EDNRB | Downregulated |
Unmethylated MGMT GBMs vs. Methylated MGMT GBMs | |
TWIST1 | Upregulated |
IDH1R132 Wild-Type vs. IDH1R132 Mutant | |
---|---|
DKK1 | Upregulated |
FN1 | Upregulated |
FZD7 | Upregulated |
ITGA3 | Upregulated |
MMP1 | Upregulated |
MMP9 | Upregulated |
SLC17A3 | Upregulated |
SNAI1 | Upregulated |
VEGFA | Upregulated |
CCND1 | Downregulated |
Unmethylated MGMT GBMs vs. Methylated MGMT GBMs | |
MMP1 | Upregulated |
Biological Processes | p-Value | FDR | Genes ** |
Response to Hypoxia (GO:0001666) | 8.51 × 10−6 | 4.31 × 10−6 | FOS, TWIST1, MMP2, VEGFA, HIF1A, PLAT, MYC, CYP1A1 |
Mesenchyme Development (GO:0060485) | 9.71 × 10−5 | 9.71 × 10−5 | CDH2, FN1, SNAI1, TWIST1, EPHA3, HIF1A, MYC |
Negative Regulation of DNA Damage Response (GP:0043518) | 2.25 × 10−6 | 1.54 × 10−4 | CD44, SNAI1, TWIST1 |
Mesenchymal Cell Differentiation (GO:0048762) | 1.54 × 10−4 | 2.92 × 10−4 | CDH2, FN1, SNAI1, TWIST1, EPHA3, HIF1A |
Mesenchymal Cell Migration (GO:0090497) | 2.92 × 10−4 | 2.94 × 10−4 | CDH2, FN1, TWIST1, HIF1A |
Response to Xenobiotic Stimulus | 2.94 × 10−4 | 2.35 × 10−4 | FOS, MMP2, ABCA2, ITGA3, CCND1, MYC, CYP1A1 |
Positive Regulation of MAPK Cascade (GO:0043410) | 4.44 × 10−4 | 4 × 10−4 | SOX2, CD44, CDH2, VEGFA, DKK1, FZD7, NOTCH2 |
Stem Cell Development (GO:0048864) | 7.52 × 10−4 | 7.52 × 10−4 | CDH2, FN1, TWIST1, HIF1A |
Wnt Signalling Pathway (GO:0016055) | 2.75 × 10−3 | 1.46 × 10−3 | SOX2, CDH2, ITGA3, DKK1, FZD7, CCND1 |
Positive Regulation of Epithelial Cell Migration (GO:0010634) | 2.89 × 10−3 | 1.5 × 10−3 | MMP9, VEGFA, ITGA3, HIF1A |
Extracellular Matrix Disassembly (GO:0022617) | 3.22 × 10−3 | 1.7 × 10−3 | MMP1, MMP2, MMP9 |
Epithelial to Mesenchymal Transition (GO:0001837) | 3.34 × 10−3 | 1.8 × 10−3 | SNAI1, TWIST1, EPHA3, HIF1A |
KEGG Pathway | p-Value | FDR | Genes ** |
MicroRNAs in Cancer | 6.58 × 10−5 | 4.4 × 10−6 | MMP9, CD44, VIM, MYC, VEGFA, CCND1, NOTCH2 |
Wnt Signalling Pathway | 3.04 × 10−3 | 0.023 | FZD7, MYC, DKK1, CCND1 |
ECM-Receptor Interaction | 3.98 × 10−3 | 0.027 | CD44, FN1, ITGA3 |
Transcriptional Misregulation in Cancer | 4.94 × 10−3 | 0.029 | MMP9, MYC, PLAT, PROM1 |
PI3K-Akt Signalling Pathway | 8.63 × 10−3 | 0.028 | FN1, MYC, VEGFA, ITGA3, CCND1 |
Gene | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|
ABCA1 | 1.402785 | 1.13~1.75 | 0.002547 |
CD44 | 1.408099 | 1.13~1.76 | 0.002341 |
CDC20 | 1.26485 | 1.01~1.58 | 0.036394 |
CDH2 | 1.323025 | 1.06~1.65 | 0.012566 |
FN1 | 1.403916 | 1.13~1.75 | 0.002561 |
FOS | 1.382786 | 1.11~1.72 | 0.003926 |
ITGA3 | 1.304676 | 1.05~1.63 | 0.01783 |
MMP1 | 1.249728 | 1~1.56 | 0.046397 |
MMP2 | 1.308285 | 1.05~1.63 | 0.016909 |
MMP9 | 1.249362 | 1~1.56 | 0.04784 |
MSI1 | 1.306559 | 1.05~1.63 | 0.017031 |
MYC | 1.289035 | 1.04~1.61 | 0.023265 |
NES | 1.337433 | 1.07~1.67 | 0.009639 |
PLAT | 1.407802 | 1.13~1.76 | 0.002363 |
RELB | 1.250162 | 1~1.56 | 0.046568 |
SNAI1 | 1.421935 | 1.14~1.77 | 0.001759 |
VEGFA | 1.353984 | 1.09~1.69 | 0.006891 |
VIM | 1.422233 | 1.14~1.77 | 0.00175 |
YAP1 | 1.248786 | 1~1.55 | 0.047023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phon, B.W.S.; Bhuvanendran, S.; Ayub, Q.; Radhakrishnan, A.K.; Kamarudin, M.N.A. Identification of Prominent Genes between 3D Glioblastoma Models and Clinical Samples via GEO/TCGA/CGGA Data Analysis. Biology 2023, 12, 648. https://doi.org/10.3390/biology12050648
Phon BWS, Bhuvanendran S, Ayub Q, Radhakrishnan AK, Kamarudin MNA. Identification of Prominent Genes between 3D Glioblastoma Models and Clinical Samples via GEO/TCGA/CGGA Data Analysis. Biology. 2023; 12(5):648. https://doi.org/10.3390/biology12050648
Chicago/Turabian StylePhon, Brandon Wee Siang, Saatheeyavaane Bhuvanendran, Qasim Ayub, Ammu Kutty Radhakrishnan, and Muhamad Noor Alfarizal Kamarudin. 2023. "Identification of Prominent Genes between 3D Glioblastoma Models and Clinical Samples via GEO/TCGA/CGGA Data Analysis" Biology 12, no. 5: 648. https://doi.org/10.3390/biology12050648
APA StylePhon, B. W. S., Bhuvanendran, S., Ayub, Q., Radhakrishnan, A. K., & Kamarudin, M. N. A. (2023). Identification of Prominent Genes between 3D Glioblastoma Models and Clinical Samples via GEO/TCGA/CGGA Data Analysis. Biology, 12(5), 648. https://doi.org/10.3390/biology12050648