Biotechnologically Engineered Plants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Early Engineered Plants
2.1. Insect Resistance
2.2. Virus Resistance
2.3. Herbicide Resistance
3. Antibody Production
4. Pharmaceutical Production
5. Vaccine Production
6. Increasing Nutritional Content
7. Modifying Fruits and Flowers
8. Fungal and Bacterial Resistance
9. Increasing Plant Yield
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DDT—A Brief History and Status. 2023. Available online: https://www.epa.gov/ingredients-used-pesticide-products/ddt-brief-history-and-status (accessed on 11 January 2023).
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Schnepf, H.E.; Whiteley, H.R. Cloning and Expression of the Bacillus Thuringiensis Crystal Protein Gene in Escherichia Coli. Proc. Natl. Acad. Sci. USA 1981, 78, 2893–2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ely, S. The Engineering of Plants to Express Bacillus Thuringiensis δ-Endotoxins. In Bacillus Thuringiensis, an Environmental Biopesticide: Theory and Practice; Entwistle, P.F., Cory, J.S., Bailey, M.J., Higgs, S., Eds.; John Wiley & Sons: Chichester, UK, 1993; pp. 105–124. [Google Scholar]
- Aronson, A.I.; Shai, Y. Why Bacillus Thuringiensis Insecticidal Toxins Are so Effective: Unique Features of Their Mode of Action. FEMS Microbiol. Lett. 2001, 195, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerda, H.; Paoletti, M.G. Genetic Engineering with Bacillus Thuringiensis and Conventional Approaches for Insect Resistance in Crops. Crit. Rev. Plant Sci. 2004, 23, 317–323. [Google Scholar] [CrossRef]
- Halpin, C. Gene stacking in transgenic plants—The challenge for 21st century plant biotechnology. Plant Biotechnol. J. 2005, 3, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Strategies for Enhanced Crop Resistance to Insect Pests. Annu. Rev. Plant Biol. 2018, 69, 637–660. [Google Scholar] [CrossRef] [Green Version]
- Rauf, I.; Javaid, S.; Naqvi, R.Z.; Mustafa, T.; Amin, I.; Muktar, Z.; Jander, G.; Mansoor, S. In-Planta Expression of Insecticidal Proteins Provides Protection against Lepidopteran Insects. Sci. Rep. 2019, 9, 6745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagu, M. The Future of Plant Biotechnology in a Globalized and Environmentally Endangered World. Genet. Mol. Biol. 2020, 43, e20190040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bel, Y.; Ferré, J.; Hernández-Martínez, P. Bacillus Thuringiensis Toxins: Functional Characterization and Mechanism of Action. Toxins 2020, 12, 785. [Google Scholar] [CrossRef]
- ISAAA Inc. Available online: http://www.isaaa.org/gmapprovaldatabase/ (accessed on 11 January 2023).
- Gaur, R.K.; Ali, A.; Cheng, X.; Mäkinen, K.; Agindotan, B.; Wang, X. Editorial: Plant Viruses, Volume II: Molecular Plant Virus Epidemiology and Its Management. Front. Microbiol. 2021, 12, 756807. [Google Scholar] [CrossRef]
- Beachy, R.N.; Loesch-Fries, S.; Tumer, N.E. Coat Protein-Mediated Resistance against Virus Infection. Annu. Rev. Phytopathol. 1990, 28, 451–474. [Google Scholar] [CrossRef]
- Fitchen, J.H.; Beachy, R.N. Genetically Engineering Protection against Viruses in Transgenic Plants. Annu. Rev. Microbiol. 1993, 47, 739–763. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, M.; Gonsalves, D. Resistance of Transgenic Hybrid Squash ZW-20 Expressing the Coat Protein Genes of Zucchini Yellow Mosaic Virus and Watermelon Mosaic Virus 2 to Mixed Infections by Both Potyviruses. Bio/Technology 1995, 13, 1466–1473. [Google Scholar] [CrossRef]
- Tricoli, D.M.; Carney, K.J.; Russell, P.F.; McMaster, J.R.; Groff, D.W.; Hadden, K.C.; Himmel, P.T.; Hubbard, J.P.; Boeshore, M.L.; Quemada, H.D. Field Evaluation of Transgenic Squash Containing Single or Multiple Virus Coat Protein Gene Constructs for Resistance to Cucumber Mosaic Virus, Watermelon Mosaic Virus 2, and Zucchini Yellow Mosaic Virus. Bio/Technology 1995, 13, 1458–1465. [Google Scholar] [CrossRef]
- Gonsalves, D. Control of papaya ringspot virus in papaya: A case study. Annu. Rev. Phytopathol. 1998, 36, 415–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindbro, J.A.; Falk, B.W. The Impact of “coat Protein-Mediated Virus Resistance in Applied Plant Pathology and Basic Research. Phytopathology 2017, 107, 624–634. [Google Scholar] [CrossRef] [Green Version]
- Niraula, P.M.; Fondong, V.N. Development and Adoption of Genetically Engineered Plants for Virus Resistance: Advances, Opportunities and Challenges. Plants 2021, 10, 2339. [Google Scholar] [CrossRef]
- Report Linker. Available online: https://www.reportlinker.com/report-summary/Pesticide/20359/North-American-Pesticide-Industry.html (accessed on 6 April 2023).
- Schütte, G.; Eckerstorfer, M.; Rastelli, V.; Reichenbecher, W.; Restrepo-Vassalli, S.; Ruohonen-Lehto, M.; Saucy, A.-G.W.; Mertens, M. Herbicide resistance and biodiversity: Agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ. Sci. Eur. 2017, 29, 5. [Google Scholar] [CrossRef] [Green Version]
- UCBiotech. Available online: http://ucbiotech.org/biotech_info/PDFs/Sankula_2005_BiotechnologyDerivedCropsPlantedin2004.pdf (accessed on 11 January 2023).
- Funke, T.; Han, H.; Healy-Fried, M.L.; Schönbrunn, E. Molecular Basis for the Herbicide Resistance of Roundup Ready Crops. Proc. Natl. Acad. Sci. USA 2006, 103, 13010–13015. [Google Scholar] [CrossRef] [Green Version]
- Cruz, R.; Domínguez-Martínez, P.A.; Silveira, H.; Cruz-Hipólito, H.E.; Palma-Bautista, C.; Vázquez-García, J.G.; Domínguez-Valenzuela, J.A.; Prado, R. Management of Glyphosate-Resistant Weeds in Mexican Citrus Groves: Chemical Alternatives and Economic Viability. Plants 2019, 8, 325. [Google Scholar] [CrossRef] [Green Version]
- Kniss, A.R. Genetically Engineered Herbicide—Resistant Crops and Herbicide—Resistant Weed Evolution in the United States. Weed Sci. 2018, 66, 260–273. [Google Scholar] [CrossRef] [Green Version]
- Tarazona, J.V.; Court-Marques, D.; Tiramani, M.; Reich, H.; Pfeil, R.; Istace, F.; Crivellente, F. Glyphosate Toxicity and Carcinogenicity: A Review of the Scientific Basis of the European Union Assessment and Its Differences with IARC. Arch. Toxicol. 2017, 91, 2723–2743. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.Z.; Wu, H.; Liu, C.; Huang, C.; Lan, J.; Zhao, Y.; Xie, C. Precise Base Editing of Non-Allelic Acetolactate Synthase Genes Confers Sulfonylurea Herbicide Resistance in Maize. Crop J. 2020, 8, 449–456. [Google Scholar] [CrossRef]
- Fartyal, D.; Agarwal, A.; James, D.; Borphukan, B.; Ram, B.; Sheri, V.; Agarwal, P.K.; Achary, V.M.M.; Reddy, M.K. Developing Dual Herbicide Tolerant Transgenic Rice Plants for Sustainable Weed Management. Sci. Rep. 2018, 8, 11598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, H.; Huang, Y.; Wang, K. The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes 2021, 12, 912. [Google Scholar] [CrossRef]
- Duke, S.O. Perspectives on Transgenic, Herbicide-Resistant Crops in the United States Almost 20 Years after Introduction. Pest Manag. Sci. 2015, 71, 652–657. [Google Scholar] [CrossRef]
- Hernandez, I.; Bott, S.W.; Patel, A.S.; Wolf, C.G.; Hospodar, A.R.; Sampathkumar, S.; Shrank, W.H. Pricing of Monoclonal Antibody Therapies: Higher If Used for Cancer? A. J. Manag. Care 2018, 24, 109–112. [Google Scholar]
- Mardanova, E.S.; Blokhina, E.A.; Tsybalova, L.M.; Peyret, H.; Lomonossoff, G.P.; Ravin, N.V. Efficient Transient Expression of Recombinant Proteins in Plants by the Novel PEff Vector Based on the Genome of Potato Virus X. Front. Plant Sci. 2017, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Schähs, M.; Strasser, R.; Stadlmann, J.; Kunert, R.; Rademacher, T.W.; Steinkellner, H. Production of a Monoclonal Antibody in Plants with a Humanized N-Glycosylation Pattern. Plant Biotechnol. J. 2007, 5, 657–663. [Google Scholar] [CrossRef]
- Casthilho, A.; Gattinger, P.; Grass, J.; Jez, J.; Pabst, M.; Altmann, F.; Gorfer, M.; Strasser, R.; Steinkellner, H. N-Glycosylation Engineering of Plants for the Biosynthesis of Glycoproteins with Bisected and Branched Complex N-Glycans. Glycobiology. 2011, 21, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Castilho, A.; Steinkellner, H. Glyco-Engineering in Plants to Produce Human-like N-Glycan Structures. Biotechnol. J. 2012, 7, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Rozov, S.M.; Permyakova, N.V.; Deineko, E.V. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins. Biochemistry 2018, 83, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R.; Patten, C.L. Molecular Biotechnology: Principles and Applications of Recombinant DNA Technology, 6th ed.; American Society for Microbiology Press: Washington, DC, USA, 2022. [Google Scholar]
- Yusibov, V.; Kushnit, N.; Streatfield, S.J. Antibody Production in Plants and Green Algae. Annu. Rev. Plant Biol. 2016, 67, 669–701. [Google Scholar] [CrossRef]
- Hiatt, A.; Cafferkey, R.; Bowdish, K. Production of Antibodies in Transgenic Plants. Nature 1986, 342, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Zeitlin, L.; Olmsted, S.S.; Moench, T.R.; Co, M.S.; Martinell, B.J.; Paradkar, V.M.; Russell, D.R.; Queen, C.; Cone, R.A.; Whaley, K.J. A Humanized Monoclonal Antibody Produced in Transgenic Plants for Immunoprotection of the Vagina against Genital Herpes. Nat. Biotechnol. 1998, 16, 1361–1364. [Google Scholar] [CrossRef]
- Lai, H.; Engle, M.; Fuchs, A.; Chen, Q. Monoclonal Antibody Produced in Plants Efficiently Treats West Nile Virus Infection in Mice. Proc. Natl. Acad. Sci. USA 2010, 107, 2419–2424. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Park, D.Y.; Lee, K.-J.; Kim, Y.-K.; So, Y.-K.; Ryu, J.-S.; Oh, S.-H.; Han, Y.-S.; Ko, K.; Choo, Y.-K.; et al. Intracellular Programming of Expression, Glycosylation, and Function of a Plant-Derived Antiviral Therapeutic Monoclonal Antibody. PLoS ONE 2013, 8, e68772. [Google Scholar]
- Ma, J.K.-C.; Drossard, J.; Lewis, D.; Altmann, F.; Boyle, J.; Christou, P.; Cole, T.; Dale, P.; van Dolleweerd, C.J.; Isitt, V.; et al. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol. J. 2015, 13, 1106–1120. [Google Scholar] [CrossRef] [Green Version]
- Donini, M.; Marusic, C. Current State-of-the-Art in Plant-Based Antibody Production Systems. Biotechnol. Lett. 2019, 41, 335–346. [Google Scholar] [CrossRef]
- Nessa, M.U.; Rahman, M.A.; Kabir, Y. Plant-Produced Monoclonal Antibody as Immunotherapy for Cancer. BioMed. Res. Internat 2020, 2020, 3038564. [Google Scholar] [CrossRef]
- Singh, A.A.; Pooe, O.; Kwezi, L.; Lotter-Stark, T.; Stoychev, S.H.; Alexandra, K.; Gerber, I.; Bhiman, J.N.; Vorster, J.; Pauly, M.; et al. Plant-Based Production of Highly Potent Anti-HIV Antibodies with Engineered Posttranslational Modifications. Sci. Rep. 2020, 10, 6201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jugler, C.; Sun, H.; Grill, F.; Kibler, K.; Esqueda, A.; Lai, H.; Li, Y.; Lake, D.; Chen, Q. Potential for a plant-made SARS-CoV-2 neutralizing monoclonal antibody as a synergistic cocktail component. Vaccines 2022, 10, 772. [Google Scholar] [CrossRef]
- Rituximab Biosimilar Successfully Produced in Plants. Available online: https://www.gabionline.net/biosimilars/news/Rituximab-biosimilar-successfully-produced-in-plants (accessed on 6 April 2023).
- Zeitlin, L.; Bohorov, O.; Bohorova, N.; Hiatt, A.; Kim, D.H.; Pauly, M.H.; Velasco, J.; Whaley, K.J.; Barnard, D.L.; Bates, J.T.; et al. Prophylactic and Therapeutic Testing of Nicotiana-Derived RSV-Neutralizing Human Monoclonal Antibodies in the Cotton Rat Model. MAbs 2013, 5, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budzianowski, J. Tobacco against Ebola Virus Disease. Przegl. Lek. 2015, 72, 567–571. [Google Scholar]
- Almaraz-Delgado, A.L.; Flores-Uribe, J.; Pérez-España, V.H.; Salgado-Manjarrez, E.; Badillo-Corona, J.A. Production of Therapeutic Proteins in the Chloroplast of Chlamydomonas Reinhardtii. AMB Express 2014, 4, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larrick, J.W.; Yu, L.; Chen, J.; Jaiswal, S.; Wycoff, K. Production of Antibodies in Transgenic Plants. Res. Immunol. 1998, 149, 603–608. [Google Scholar] [CrossRef]
- O’Hara, J.M.; Whaley, K.; Pauly, M.; Zeitlin, L.; Mantis, N.J. Plant-Based Expression of a Partially Humanized Neutralizing Monoclonal IgG Directed against an Immunodominant Epitope on the Ricin Toxin A Subunit. Vaccines 2012, 30, 1239–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wycoff, K.; Maclean, J.; Belle, A.; Yu, L.; Tran, Y.; Roy, C.; Hayden, F. Anti-Infective Immunoadhesins from Plants. Plant Biotechnol. J. 2015, 13, 1078–1093. [Google Scholar] [CrossRef] [Green Version]
- Brodzik, R.; Spitsin, S.; Golovkin, M.; Bandurska, K.; Portocarrero, C.; Okulicz, M.; Steplewski, Z.; Koprowski, H. Plant-Derived EpCAM Antigen Induces Protective Anti-Cancer Response. Cancer Immunol. Immunother. 2008, 57, 317–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vamvaka, E.; Farré, G.; Molinos-Albert, L.M.; Evans, A.; Canela-Xandri, A.; Twyman, R.M.; Carrillo, J.; Ordóñez, R.A.; Shattock, R.J.; O’Keefe, B.R.; et al. Unexpected synergistic HIV neutralization by a triple microbicide produced in rice endosperm. Proc. Natl. Acad. Sci. USA 2018, 115, E7854–E7862. [Google Scholar] [CrossRef] [Green Version]
- Politch, J.A.; Cu-Uvin, S.; Moench, T.R.; Tashima, K.T.; Marathe, J.G.; Guthrie, K.M.; Cabral, H.; Nyhuis, T.; Brennan, M.; Zeitlin, L.; et al. Safety, Acceptability, and Pharmacokinetics of a Monoclonal Antibody-Based Vaginal Multipurpose Prevention Film (MB66): A Phase I Randomized Trial. PLoS Med. 2021, 18, e1003495. [Google Scholar] [CrossRef]
- Ventria. Available online: https://ventria.com/ (accessed on 6 April 2023).
- Invitria. Available online: https://invitria.com/ (accessed on 6 April 2023).
- Tacket, C.O. Plant-Based Vaccines against Diarrheal Diseases. Trans. Am. Clin. Climatol. Assoc. 2007, 118, 79–87. [Google Scholar]
- Landry, N.; Pillet, S.; Favre, D.; Poulin, J.-F.; Trépanier, S.; Yassine-Diab, B.; Ward, B.J. Influenza Virus-like Particle Vaccines Made in Nicotiana Benthamiana Elicit Durable, Poly-Functional and Cross-Reactive T Cell Responses to Influenza HA Antigens. Clin. Immunol. 2014, 154, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-Y.; Li, J.-Y.; Tien, N.-Q.-D.; Yang, M.-S. Expression and Assembly of Cholera Toxin B Subunit and Domain III of Dengue Virus 2 Envelope Fusion Protein in Transgenic Potatoes. Protein Expr. Purif. 2017, 139, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Pfizer and Protalix BioTherapeutics Announce FDA Approval of EELELYSOTM (Taliglucerase Alfa) for the Treatment of Gaucher Disease. Available online: https://www.pfizer.com/news/press-release/ (accessed on 6 April 2023).
- Mason, H.S.; Haq, T.A.; Clements, J.D.; Arntzen, C.J. Edible Vaccine Protects Mice against Escherichia Coli Heat-Labile Enterotoxin (LT): Potatoes Expressing a Synthetic LT-B Gene. Vaccines 1998, 16, 1336–1343. [Google Scholar] [CrossRef]
- Azzoni, A.R.; Kusnadi, A.R.; Miranda, E.A.; Nikolov, Z.L. Recombinant Aprotinin Produced in Transgenic Corn Seed: Extraction and Purification Studies. Biotechnol. Bioeng. 2002, 80, 268–276. [Google Scholar] [CrossRef] [PubMed]
- SemBioSys. Available online: https://www.reuters.com/article/sembiosysgenetics-idUKN3034433020090730 (accessed on 6 April 2023).
- Zhang, X.; Buehner, N.A.; Hutson, A.M.; Estes, M.K.; Mason, H.S. Tomato Is a Highly Effective Vehicle for Expression and Oral Immunization with Norwalk Virus Capsid Protein. Plant Biotechnol. J. 2006, 4, 419–432. [Google Scholar] [CrossRef]
- Orfgenetics. Available online: https://www.orfgenetics.com/ (accessed on 6 April 2023).
- Medical Life Sciences News. Available online: https://www.news-medical.net/health/Tobacco-Plants-and-Drug-Development.aspx (accessed on 11 January 2023).
- Lomonossoff, G.P.; D’Aoust, M.-A. Plant-Produced Biopharmaceuticals: A Case of Technical Developments Driving Clinical Deployment. Science 2016, 353, 1237–1240. [Google Scholar] [CrossRef]
- Clark, M.; Maselko, M. Transgene biocontainment strategies for molecular farming. Front. Plant Sci. 2020, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Maxmen, A. The Fight to Manufacture COVID Vaccines in Lower-Income Countries. Nature 2021, 597, 455–457. [Google Scholar] [CrossRef]
- Miquel-Clopés, A.; Bentley, E.G.; Stewart, J.P.; Carding, S.R. Mucosal Vaccines and Technology. Clin. Exp. Immunol. 2019, 196, 205–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyono, H.; Yuki, Y.; Nakahashi-Ouchida, R.; Fujhashi, K. Mucosal Vaccines: Wisdom from Now and Then. Internat. Immunol. 2021, 33, 767–774. [Google Scholar] [CrossRef]
- Shah, V.V.; Prajapati, R.A.; Shah, S.P.; Patel, S.R.; Patel, H.P. A Comprehensive Review on Edible Vaccine. J. Drug. Deiv. Therap. 2022, 12, 192–201. [Google Scholar] [CrossRef]
- Thanavala, Y.; Mahoney, M.; Pal, S.; Scott, A.; Richter, L.; Natarajan, N.; Goodwin, P.; Arntzen, C.J.; Mason, H.S. Immunogenicity in Humans of an Edible Vaccine for Hepatitis B. Proc. Natl. Acad. Sci. USA 2005, 102, 3378–3382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesolowska, A.; Ljunggren, M.K.; Jedlina, L.; Basalaj, K.; Legocki, A.; Wedrychowicz, H.; Kesik-Brodacka, M. A preliminary study of a lettuce-based edible vaccine expressing the cysteine proteinase of Fasciola hepatica for fasciolosis control in livestock. Front. Immunol. 2018, 9, 2592. [Google Scholar] [CrossRef]
- Bertini, E.; Merlin, M.; Gecchele, E.; Puggia, A.; Brozzetti, A.; Commisso, M.; Falorni, A.; Bini, V.; Klymyuk, V.; Pezzotti, M.; et al. Design of a type-1 diabetes vaccine candidate using edible plants expressing a major autoantigen. Front. Plant Sci. 2018, 9, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, A.; Mandal, A.K.; Dwivedi, K.; Kumar, V. A Cross Talk between the Immunization and Edible Vaccine: Current Challenges and Future Prospects. Life Sci. 2020, 261, 118343. [Google Scholar] [CrossRef]
- Gunasekaran, B.; Gothandam, K.M. A Review on Edible Vaccine and Their Prospects. Brazil. J. Med. Biol. Res. 2020, 53, e8749. [Google Scholar] [CrossRef] [Green Version]
- Nakarhira, Y.; Mizuno, K.; Yamashita, H.; Tsuchikura, M.; Takeuchi, K.; Shiina, T.; Kawakami, H. Mass Production of Virus-like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine against Fish Disease. Front. Plant Sci. 2021, 12, 717952. [Google Scholar] [CrossRef]
- Khalid, F.; Tahi, R.; Ellahi, M.; Amir, N.; Rizvi, S.F.A.; Hasnain, A. Emerging Trends of Edible Vaccine Therapy for Combating Human Diseases Especially COVID-19: Pros, Cons, and Future Challenges. Phytother. Res. 2022, 36, 2746–2766. [Google Scholar] [CrossRef]
- Patel, P.; Patel, R.; Patel, S.; Patel, Y.; Patel, M.; Trivedi, R. Edible vaccines: A nutritional substitute for traditional immunization. Pharmac. Rev. 2022, 16, 62–69. [Google Scholar] [CrossRef]
- Bolaños-Martínez, O.C.; Govea-Alonso, D.O.; Cervantes-Torres, J.; Hernández, M.; Fragoso, G.; Sciutto-Conde, E.; Rosales-Mendoza, S. Expression of Immunogenic Poliovirus Sabin Type 1 VP Proteins in Transgenic Tobacco. J. Biotechnol. 2020, 322, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Herzog, R.W.; Sherman, A.; Kwon, K.-C.; Chang, W.-J.; Daniell, H. Lettuce Plants Expressing High Levels of Factor VIII Antigen in the Chloroplast for Oral Tolerance in Hemophilia a. Blood 2017, 130, 362. [Google Scholar] [CrossRef]
- Orlova, N.A.; Kovnir, S.V.; Vorobiev, I.I.; Gabibov, A.G. Coagulation Factor IX for Hemophilia B Therapy. Acta Nat. 2012, 4, 62–73. [Google Scholar] [CrossRef]
- Martiniuk, F.; Reggi, S.; Tchou-Wong, K.-M.; Rom, W.N.; Busconi, M.; Fogher, C. Production of a Functional Human Acid Maltase in Tobacco Seeds: Biochemical Analysis, Uptake by Human GSDII Cells, and in Vivo Studies in GAA Knockout Mice. Appl. Biochem. Biotechnol. 2013, 171, 916–926. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Zhu, L.; Sherman, A.; Wang, X.; Lin, S.; Kamesh, A.; Norikane, J.H.; Streatfield, S.J.; Herzog, R.W.; Daniell, H. Low Cost Industrial Production of Coagulation Factor IX Bioencapsulated in Lettuce Cells for Oral Tolerance Induction in Hemophilia B. Biomaterials 2015, 70, 84–93. [Google Scholar] [CrossRef]
- Marsian, J.; Hurdiss, D.L.; Ranson, N.A.; Ritala, A.; Paley, R.; Cano, I.; Lomonossoff, G.P. Plant-Made Nervous Necrosis Virus-Like Particles Protect Fish Against Disease. Front. Plant Sci. 2019, 10, 880. [Google Scholar] [CrossRef] [PubMed]
- Detert, K.; Schmidt, H. Survival of Enterohemorrhagic Escherichia Coli O104:H4 Strain C227/11Φcu in Agricultural Soils Depends on RpoS and Environmental Factors. Pathogens 2021, 10, 1443. [Google Scholar] [CrossRef]
- Mason, H.S.; Ball, J.M.; Shi, J.J.; Jiang, X.; Estes, M.K.; Arntzen, C.J. Expression of Norwalk Virus Capsid Protein in Transgenic Tobacco and Potato and Its Oral Immunogenicity in Mice. Proc. Natl. Acad. Sci. USA 1996, 93, 5335–5340. [Google Scholar] [CrossRef] [Green Version]
- Mason, H.S.; Lam, D.M.; Arntzen, C.J. Expression of Hepatitis B Surface Antigen in Transgenic Plants. Proc. Natl. Acad. Sci. USA 1992, 89, 11745–11749. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.T.; Pham, V.T.; Ho, T.T.; Pham, N.B.; Chu, H.H.; Vu, T.H.; Abdelwhab, E.M.; Scheibner, D.; Mettenleiter, T.C.; Hanh, T.X.; et al. Immunization with Plant-Derived Multimeric H5 Hemagglutinins Protect Chicken against Highly Pathogenic Avian Influenza Virus H5N1. Vaccines 2020, 8, 593. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.; Koya, V.; Leppla, S.H.; Daniell, H. Expression of Bacillus Anthracis Protective Antigen in Transgenic Chloroplasts of Tobacco, a Non-Food/Feed Crop. Vaccines 2004, 22, 4374–4384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGarvey, P.B.; Hammond, J.; Dienelt, M.M.; Hooper, D.C.; Fu, Z.F.; Dietzschold, B.; Koprowski, H.; Michaels, F.H. Expression of the Rabies Virus Glycoprotein in Transgenic Tomatoes. Bio/Technology 1995, 13, 1484–1487. [Google Scholar] [CrossRef] [PubMed]
- Ponndorf, D.; Meshcheriakova, Y.; Thuenemann, E.C.; Dobon Alonso, A.; Overman, R.; Holton, N.; Dowall, S.; Kennedy, E.; Stocks, M.; Lomonossoff, G.P.; et al. Plant-Made Dengue Virus-like Particles Produced by Co-Expression of Structural and Non-Structural Proteins Induce a Humoral Immune Response in Mice. Plant Biotechnol. J. 2021, 19, 745–756. [Google Scholar] [CrossRef]
- Webster, D.E.; Cooney, M.L.; Huang, Z.; Drew, D.R.; Ramshaw, I.A.; Dry, I.B.; Strugnell, R.A.; Martin, J.L.; Wesselingh, S.L. Successful Boosting of a DNA Measles Immunization with an Oral Plant-Derived Measles Virus Vaccine. J. Virol. 2002, 76, 7910–7912. [Google Scholar] [CrossRef] [Green Version]
- Porceddu, A.; Falorni, A.; Ferradini, N.; Cosentino, A.; Calcinaro, F.; Faleri, C.; Cresti, M.; Lorenzetti, F.; Brunetti, P.; Pezzotti, M. Transgenic Plants Expressing Human Glutamic Acid Decarboxylase (GAD65), a Major Autoantigen in Insulin-Dependent Diabetes Mellitus. Mol. Breed. 1999, 5, 553–560. [Google Scholar] [CrossRef]
- Di Bonito, P.; Grasso, F.; Mangino, G.; Massa, S.; Illiano, E.; Franconi, R.; Fanales-Belasio, E.; Falchi, M.; Affabris, E.; Giorgi, C. Immunomodulatory Activity of a Plant Extract Containing Human Papillomavirus 16-E7 Protein in Human Monocyte-Derived Dendritic Cells. Int. J. Immunopathol. Pharm. 2009, 22, 967–978. [Google Scholar] [CrossRef] [Green Version]
- Fay, P.C.; Attoui, H.; Batten, C.; Mohd Jaafar, F.; Lomonossoff, G.P.; Daly, J.M.; Mertens, P.P.C. Bluetongue Virus Outer-Capsid Protein VP2 Expressed in Nicotiana Benthamiana Raises Neutralising Antibodies and a Protective Immune Response in IFNAR (-/-) Mice. Vaccine X 2019, 2, 100026. [Google Scholar] [CrossRef]
- Arakawa, T.; Chong, D.K.; Langridge, W.H. Efficacy of a Food Plant-Based Oral Cholera Toxin B Subunit Vaccine. Nat. Biotechnol. 1998, 16, 292–297. [Google Scholar] [CrossRef]
- Sinha, P.; Davis, J.; Saag, L.; Wanke, C.; Salgame, P.; Mesick, J.; Horsburgh, C.R.; Hochberg, N.S. Undernutrition and Tuberculosis: Public Health Implications. J. Infect. Dis. 2019, 219, 1356–1363. [Google Scholar] [CrossRef]
- Farre, G.; Twyman, R.M.; Zhu, C.; Capell, T.; Christou, P. Nutritionally Enhanced Crops and Food Security: Scientific Achievements versus Political Expediency. Curr. Opin. Biotechnol. 2011, 22, 245–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Al-Babili, S.; Klöti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Science 2000, 287, 303–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paine, J.A.; Shipton, C.A.; Chaggar, S.; Howells, R.M.; Kennedy, M.J.; Vernon, G.; Wright, S.Y.; Hinchliffe, E.; Adams, J.L.; Silverstone, A.L.; et al. Improving the Nutritional Value of Golden Rice through Increased Pro-Vitamin A Content. Nat. Biotechnol. 2005, 23, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Diretto, G.; Al-Babili, S.; Tavazza, R.; Papacchioli, V.; Beyer, P.; Giuliano, G. Metabolic Engineering of Potato Carotenoid Content through Tuber-Specific Overexpression of a Bacterial Mini-Pathway. PLoS ONE 2007, 2, e350. [Google Scholar] [CrossRef] [Green Version]
- Chitchumroonchokchai, C.; Diretto, G.; Parisi, B.; Giuliano, G.; Failla, M.L. Potential of Golden Potatoes to Improve Vitamin A and Vitamin E Status in Developing Countries. PLoS ONE 2017, 12, e0187102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, J.-Y.; Khanna, H.; Kleidon, J.; Hoang, P.; Geijskes, J.; Daniells, J.; Zaplin, E.; Rosenberg, Y.; James, A.; Mlalazi, B.; et al. Golden Bananas in the Field: Elevated Fruit pro-Vitamin A from the Expression of a Single Banana Transgene. Plant Biotechnol. J. 2017, 15, 520–532. [Google Scholar] [CrossRef] [Green Version]
- De Steur, H.; Mehta, S.; Gellynck, X.; Finkelstein, J.L. GM Biofortified Crops: Potential Effects on Targeting the Micronutrient Intake Gap in Human Populations. Curr. Opin. Biotechnol. 2017, 44, 181–188. [Google Scholar] [CrossRef]
- Naqvi, S.; Zhu, C.; Farre, G.; Ramessar, K.; Bassie, L.; Breitenbach, J.; Perez Conesa, D.; Ros, G.; Sandmann, G.; Capell, T.; et al. Transgenic Multivitamin Corn through Biofortification of Endosperm with Three Vitamins Representing Three Distinct Metabolic Pathways. Proc. Natl. Acad. Sci. USA 2009, 106, 7762–7767. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Gruissem, W.; Bhullar, N.K. Single Genetic Locus Improvement of Iron, Zinc and β-Carotene Content in Rice Grains. Sci. Rep. 2017, 7, 6883. [Google Scholar] [CrossRef]
- Grand Challenges. Available online: https://www.gcgh.org (accessed on 20 February 2023).
- De Steur, H.; Gellynck, X.; Blancquaert, D.; Lambert, W.; Van Der Straeten, D.; Qaim, M. Potential Impact and Cost-Effectiveness of Multi-Biofortified Rice in China. New Biotechnol. 2012, 29, 432–442. [Google Scholar] [CrossRef]
- Connorton, J.M.; Jones, E.R.; Rodríguez-Ramiro, I.; Fairweather-Tait, S.; Uauy, C.; Balk, J. Wheat Vacuolar Iron Transporter TaVIT2 Transports Fe and Mn and Is Effective for Biofortification. Plant Physiol. 2017, 174, 2434–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Eenennaam, A.; Li, G.; Venkatramesh, M.; Levering, C.; Gong, X.; Jamieson, A.; Rebar, E.; Shewmaker, C.; Case, C. Elevation of Seed α-Tocopherol Levels Using Plant-Based Transcription Factors Targeted to an Endogenous Locus. Metab. Eng. 2004, 6, 101–108. [Google Scholar] [CrossRef] [PubMed]
- GMO News. Available online: https://non-gmoreport.com/gene-edited-soybean-failing-due-to-slow-adoption-by-farmers-low-crop-yields/ (accessed on 20 February 2023).
- MacIntosh, S.; Shaw, M.; Connelly, M.; Yao, Z. Food and Feed Safety of NS-B5ØØ27-4 Omega-3 Canola (Brassica Napus): A New Source of Long-Chain Omega-3 Fatty Acids. Front. Nutr. 2021, 8, 716659. [Google Scholar] [CrossRef] [PubMed]
- Waltz, E. GABA-Enriched Tomato Is First CRISPR-Edited Food to Enter Market. Nat. Biotechnol. 2022, 40, 9–11. [Google Scholar] [CrossRef]
- Schwall, G.P.; Safford, R.; Westcott, R.J.; Jeffcoat, R.; Tayal, A.; Shi, Y.-C.; Gidley, M.J.; Jobling, S.A. Production of Very-High-Amylose Potato Starch by Inhibition of SBE A and B. Nat. Biotechnol. 2000, 18, 551–554. [Google Scholar] [CrossRef]
- Regina, A.; Bird, A.; Topping, D.; Bowden, S.; Freeman, J.; Barsby, T.; Kosar-Hashemi, B.; Li, Z.; Rahman, S.; Morell, M. High-Amylose Wheat Generated by RNA Interference Improves Indices of Large-Bowel Health in Rats. Proc. Natl. Acad. Sci. USA 2006, 103, 3546–3551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Jiao, G.; Liu, Z.; Zhang, X.; Li, J.; Guo, X.; Du, W.; Du, J.; Francis, F.; Zhao, Y.; et al. Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Front. Plant Sci. 2017, 8, 298. [Google Scholar] [CrossRef] [Green Version]
- Le, H.; Nguyen, N.H.; Ta, D.T.; Le, T.N.T.; Bui, T.P.; Le, N.T.; Nguyen, C.X.; Rolletschek, H.; Stacey, G.; Stacey, M.G.; et al. CRISPR/Cas9-Mediated Knockout of Galactinol Synthase-Encoding Genes Reduces Raffinose Family Oligosaccharide Levels in Soybean Seeds. Front. Plant Sci. 2020, 11, 612942. [Google Scholar] [CrossRef]
- Chen, K.; Wei, X.; Kortesniemi, M.; Pariyani, R.; Zhang, Y.; Yang, B. Effects of Acylated and Nonacylated Anthocyanins Extracts on Gut Metabolites and Microbiota in Diabetic Zucker Rats: A Metabolomic and Metagenomic Study. Food Res. Int. 2022, 153, 110978. [Google Scholar] [CrossRef]
- Krga, I.; Milenkovic, D. Anthocyanins: From Sources and Bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. J. Agric. Food Chem. 2019, 67, 1771–1783. [Google Scholar] [CrossRef]
- Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.-P.; Matros, A.; Peterek, S.; Schijlen, E.G.W.M.; Hall, R.D.; Bovy, A.G.; Luo, J.; et al. Enrichment of Tomato Fruit with Health-Promoting Anthocyanins by Expression of Select Transcription Factors. Nat. Biotechnol. 2008, 26, 1301–1308. [Google Scholar] [CrossRef]
- Ogo, Y.; Ozawa, K.; Ishimaru, T.; Murayama, T.; Takaiwa, F. Transgenic Rice Seed Synthesizing Diverse Flavonoids at High Levels: A New Platform for Flavonoid Production with Associated Health Benefits. Plant Biotechnol. J. 2013, 11, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Yu, S.; Zeng, D.; Liu, H.; Wang, H.; Yang, Z.; Xie, X.; Shen, R.; Tan, J.; Li, H.; et al. Development of “Purple Endosperm Rice” by Engineering Anthocyanin Biosynthesis in the Endosperm with a High-Efficiency Transgene Stacking System. Mol. Plant 2017, 10, 918–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klee, H.J. Improving the Flavor of Fresh Fruits: Genomics, Biochemistry, and Biotechnology. New Phytol. 2010, 187, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Gruber, K. Agrobiodiversity: The Living Library. Nature 2017, 544, S8–S10. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.C.; Grimm, C.C. Identification of Volatile Compounds in Cantaloupe at Various Developmental Stages Using Solid Phase Microextraction. J. Agric. Food Chem. 2001, 49, 1345–1352. [Google Scholar] [CrossRef]
- Davidovich-Rikanati, R.; Sitrit, Y.; Tadmor, Y.; Iijima, Y.; Bilenko, N.; Bar, E.; Carmona, B.; Fallik, E.; Dudai, N.; Simon, J.E.; et al. Enrichment of Tomato Flavor by Diversion of the Early Plastidial Terpenoid Pathway. Nat. Biotechnol. 2007, 25, 899–901. [Google Scholar] [CrossRef]
- Chambers, A.H.; Pillet, J.; Plotto, A.; Bai, J.; Whitaker, V.M.; Folta, K.M. Identification of a Strawberry Flavor Gene Candidate Using an Integrated Genetic-Genomic-Analytical Chemistry Approach. BMC Genom. 2014, 15, 217. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-I.; Lee, Y.-K.; Chung, W.-I.; Lee, I.-H.; Choi, J.-H.; Lee, W.-M.; Ezura, H.; Lee, S.-P.; Kim, I.-J. Modification of Sugar Composition in Strawberry Fruit by Antisense Suppression of an ADP-Glucose Pyrophosphorylase. Mol. Breed. 2006, 17, 269–279. [Google Scholar] [CrossRef]
- Bruening, G.; Lyons, J.M. The Case of the FLAVR SAVR Tomato. Calif. Agr. 2000, 54, 6–7. [Google Scholar] [CrossRef] [Green Version]
- Firoozbady, E.; Young, T.R. Pineapple Plant Named “Rose”. U.S. Patent PP25,763 P3, 4 August 2015. [Google Scholar]
- Pons, E.; Alquézar, B.; Rodríguez, A.; Martorell, P.; Genovés, S.; Ramón, D.; Rodrigo, M.J.; Zacarías, L.; Peña, L. Metabolic Engineering of β-Carotene in Orange Fruit Increases Its in Vivo Antioxidant Properties. Plant Biotechnol. J. 2014, 12, 17–27. [Google Scholar] [CrossRef]
- Cutanda-Perez, M.-C.; Ageorges, A.; Gomez, C.; Vialet, S.; Terrier, N.; Romieu, C.; Torregrosa, L. Ectopic Expression of VlmybA1 in Grapevine Activates a Narrow Set of Genes Involved in Anthocyanin Synthesis and Transport. Plant Mol. Biol. 2009, 69, 633–648. [Google Scholar] [CrossRef] [PubMed]
- Lin-Wang, K.; Bolitho, K.; Grafton, K.; Kortstee, A.; Karunairetnam, S.; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C. An R2R3 MYB Transcription Factor Associated with Regulation of the Anthocyanin Biosynthetic Pathway in Rosaceae. BMC Plant Biol. 2010, 10, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espley, R.V.; Hellens, R.P.; Putterill, J.; Stevenson, D.E.; Kutty-Amma, S.; Allan, A.C. Red Colouration in Apple Fruit Is Due to the Activity of the MYB Transcription Factor, MdMYB10. Plant J. 2007, 49, 414–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elitzur, T.; Yakir, E.; Quansah, L.; Zhangjun, F.; Vrebalov, J.; Khayat, E.; Giovannoni, J.J.; Friedman, H. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security. Plant Physiol. 2016, 171, 380–391. [Google Scholar] [CrossRef] [Green Version]
- Dandekar, A.M.; Teo, G.; Defilippi, B.G.; Uratsu, S.L.; Passey, A.J.; Kader, A.A.; Stow, J.R.; Colgan, R.J.; James, D.J. Effect of Down-Regulation of Ethylene Biosynthesis on Fruit Flavor Complex in Apple Fruit. Transgenic Res. 2004, 13, 373–384. [Google Scholar] [CrossRef]
- Gao, M.; Matsuta, N.; Murayama, H.; Toyomasu, T.; Mitsuhashi, W.; Dandekar, A.M.; Tao, R.; Nishimura, K. Gene Expression and Ethylene Production in Transgenic Pear (Pyrus Communis Cv. ‘La France’) with Sense or Antisense CDNA Encoding ACC Oxidase. Plant Sci. 2007, 173, 32–42. [Google Scholar] [CrossRef]
- Atkinson, R.G.; Gunaseelan, K.; Wang, M.Y.; Luo, L.; Wang, T.; Norling, C.L.; Johnston, S.L.; Maddumage, R.; Schröder, R.; Schaffer, R.J. Dissecting the Role of Climacteric Ethylene in Kiwifruit (Actinidia Chinensis) Ripening Using a 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Knockdown Line. J. Exp. Bot. 2011, 62, 3821–3835. [Google Scholar] [CrossRef] [Green Version]
- López-Gómez, R.; Cabrera-Ponce, J.L.; Saucedo-Arias, L.J.; Carreto-Montoya, L.; Villanueva-Arce, R.; Díaz-Perez, J.C.; Gómez-Lim, M.A.; Herrera-Estrella, L. Ripening in Papaya Fruit Is Altered by ACC Oxidase Cosuppression. Transgen. Res. 2009, 18, 89–97. [Google Scholar] [CrossRef]
- Stowe, E.; Dhingra, A. Development of the Arctic® Apple. Plant Breed. Rev. 2021, 44, 273–296. [Google Scholar] [CrossRef]
- APHIS. Interpretative Rule on Okanagan Specialty Fruits. Petition for Determination of Nonregulated Status: Arctic™ Apple (Malus × Domestica), Events GD743 and GS784, Docket No. APHIS-2012-0025. 2012. [Google Scholar]
- Uluisik, S.; Chapman, N.H.; Smith, R.; Poole, M.; Adams, G.; Gillis, R.B.; Besong, T.M.D.; Sheldon, J.; Stiegelmeyer, S.; Perez, L.; et al. Genetic Improvement of Tomato by Targeted Control of Fruit Softening. Nat. Biotechnol. 2016, 34, 950–952. [Google Scholar] [CrossRef] [Green Version]
- .Waltz, E. CRISPR-Edited Crops Free to Enter Market, Skip Regulation. Nat. Biotechnol. 2016, 34, 582. [Google Scholar] [CrossRef] [PubMed]
- Zsögön, A.; Čermák, T.; Naves, E.R.; Notini, M.M.; Edel, K.H.; Weinl, S.; Freschi, L.; Voytas, D.F.; Kudla, J.; Peres, L.E.P. De Novo Domestication of Wild Tomato Using Genome Editing. Nat. Biotechnol. 2018, 36, 1211–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulley, S.; Wright, M.; Rommens, C.; Yan, H.; Rassam, M.; Lin-Wang, K.; Andre, C.; Brewster, D.; Karunairetnam, S.; Allan, A.C.; et al. Enhancing Ascorbate in Fruits and Tubers through Over-Expression of the l-Galactose Pathway Gene GDP-l-Galactose Phosphorylase. Plant Biotechnol. J. 2012, 10, 390–397. [Google Scholar] [CrossRef]
- Soyk, S.; Müller, N.A.; Park, S.J.; Schmalenbach, I.; Jiang, K.; Hayama, R.; Zhang, L.; Van Eck, J.; Jiménez-Gómez, J.M.; Lippman, Z.B. Variation in the Flowering Gene SELF PRUNING 5G Promotes Day-Neutrality and Early Yield in Tomato. Nat. Genet. 2017, 49, 162–168. [Google Scholar] [CrossRef]
- van der Krol, A.R.; Lenting, P.E.; Veenstra, J.; van der Meer, I.M.; Koes, R.E.; Gerats, A.G.M.; Mol, J.N.M.; Stuitje, A.R. An Anti-Sense Chalcone Synthase Gene in Transgenic Plants Inhibits Flower Pigmentation. Nature 1988, 333, 866–869. [Google Scholar] [CrossRef]
- Nishihara, M.; Nakatsuka, T.; Yamamura, S. Flavonoid Components and Flower Color Change in Transgenic Tobacco Plants by Suppression of Chalcone Isomerase Gene. FEBS Lett. 2005, 579, 6074–6078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Blue Rose Project. Available online: https://www.suntory.com/sic/research/s_bluerose/story/ (accessed on 6 April 2023).
- Fukusaki, E.; Kawasaki, K.; Kajiyama, S.; An, C.-I.; Suzuki, K.; Tanaka, Y.; Kobayashi, A. Flower Color Modulations of Torenia Hybrida by Downregulation of Chalcone Synthase Genes with RNA Interference. J. Biotechnol. 2004, 111, 229–240. [Google Scholar] [CrossRef]
- Rajabi, A.; Fahmideh, L.; Keykhasaber, M.; Omran, V.G. Genetic Engineering of Novel Yellow Color African Violet (Saintpaulia Ionantha) Produced by Accumulation of Aureusidin 6-O-Glucoside. Biol. Proced. Online 2022, 24, 3. [Google Scholar] [CrossRef]
- Watanabe, K.; Kobayashi, A.; Endo, M.; Sage-Ono, K.; Toki, S.; Ono, M. CRISPR/Cas9-Mediated Mutagenesis of the Dihydroflavonol-4-Reductase-B (DFR-B) Locus in the Japanese Morning Glory Ipomoea (Pharbitis) Nil. Sci. Rep. 2017, 7, 10028. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Oda-Yamamizo, C.; Sage-Ono, K.; Ohmiya, A.; Ono, M. Alteration of Flower Colour in Ipomoea Nil through CRISPR/Cas9-Mediated Mutagenesis of Carotenoid Cleavage Dioxygenase 4. Transgen. Res. 2018, 27, 25–38. [Google Scholar] [CrossRef]
- Nishihara, M.; Higuchi, A.; Watanabe, A.; Tasaki, K. Application of the CRISPR/Cas9 System for Modification of Flower Color in Torenia Fournieri. BMC Plant Biol. 2018, 18, 331. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Kang, B.-C.; Naing, A.H.; Bae, S.-J.; Kim, J.-S.; Kim, H.; Kim, C.K. CRISPR/Cas9-Mediated Editing of 1-Aminocyclopropane-1-Carboxylate Oxidase1 Enhances Petunia Flower Longevity. Plant Biotechnol. J. 2020, 18, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Tu, L.; Subburaj, S.; Bae, S.; Lee, G.-J. Simultaneous Targeting of Duplicated Genes in Petunia Protoplasts for Flower Color Modification via CRISPR-Cas9 Ribonucleoproteins. Plant Cell Rep. 2021, 40, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Kusch, S.; Panstruga, R. Mlo-Based Resistance: An Apparently Universal “Weapon” to Defeat Powdery Mildew Disease. MPMI 2017, 30, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büschges, R.; Hollricher, K.; Panstruga, R.; Simons, G.; Wolter, M.; Frijters, A.; van Daelen, R.; van der Lee, T.; Diergaarde, P.; Groenendijk, J.; et al. The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell 1997, 88, 695–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze-Lefert, P.; Vogel, J. Closing the Ranks to Attack by Powdery Mildew. Trends Plant Sci. 2000, 5, 343–348. [Google Scholar] [CrossRef]
- Li, S.; Lin, D.; Zhang, Y.; Deng, M.; Chen, Y.; Lv, B.; Li, B.; Lei, Y.; Wang, Y.; Zhao, L.; et al. Genome-Edited Powdery Mildew Resistance in Wheat without Growth Penalties. Nature 2022, 602, 455–460. [Google Scholar] [CrossRef]
- Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering Canker-Resistant Plants through CRISPR/Cas9-Targeted Editing of the Susceptibility Gene CsLOB1 Promoter in Citrus. Plant Biotechnol. J. 2017, 15, 1509–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D.P. Demonstration of CRISPR/Cas9/SgRNA-Mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice. Nucleic Acids Res. 2013, 41, e188. [Google Scholar] [CrossRef] [PubMed]
- Antony, G.; Zhou, J.; Huang, S.; Li, T.; Liu, B.; White, F.; Yang, B. Rice Xa13 Recessive Resistance to Bacterial Blight Is Defeated by Induction of the Disease Susceptibility Gene Os-11N3. Plant Cell 2010, 22, 3864–3876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, K.; Khan, M.Z.; Amin, I.; Mukhtar, Z.; Yasmin, S.; Arif, M.; Ejaz, K.; Mansoor, S. Precise CRISPR-Cas9 Mediated Genome Editing in Super Basmati Rice for Resistance Against Bacterial Blight by Targeting the Major Susceptibility Gene. Front. Plant Sci. 2020, 11, 575. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, S.; Ge, W.; Zhao, L.; Hou, B.; Wang, K.; Lyu, Z.; Chen, L.; Xu, S.; Guo, J.; et al. Horizontal Gene Transfer of Fhb7 from Fungus Underlies Fusarium Head Blight Resistance in Wheat. Science 2020, 368, eaba5435. [Google Scholar] [CrossRef]
- Zhu, F.; Zhou, Y.-K.; Ji, Z.-L.; Chen, X.-R. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks. Front. Plant Sci. 2018, 9, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, Q.; Huang, L.; Yi, R.; Wang, S.; Ding, Y. Enhanced Resistance to Blast Fungus in Rice (Oryza sativa L.) by Expressing the Ribosome-Inactivating Protein Alpha-Momorcharin. Plant Sci. 2014, 217–218, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Salazar, R.; Cecere, B.; Ruocco, M.; Rao, R.; Corrado, G. A Comparison between Constitutive and Inducible Transgenic Expression of the PhRIP I Gene for Broad-Spectrum Resistance against Phytopathogens in Potato. Biotechnol. Lett. 2017, 39, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-E.; Ger, M.-J.; Yip, M.-K.; Chen, C.-Y.; Pandey, A.-K.; Feng, T.-Y. A Hypersensitive Response Was Induced by Virulent Bacteria in Transgenic Tobacco Plants Overexpressing a Plant Ferredoxin-like Protein (PFLP). Physiol. Mol. Plant Pathol. 2004, 64, 103–110. [Google Scholar] [CrossRef]
- Tripathi, L.; Tripathi, J.N.; Kiggundu, A.; Korie, S.; Shotkoski, F.; Tushemereirwe, W.K. Field Trial of Xanthomonas Wilt Disease-Resistant Bananas in East Africa. Nat. Biotechnol. 2014, 32, 868–870. [Google Scholar] [CrossRef]
- Tripathi, L.; Atkinson, H.; Roderick, H.; Kubiriba, J.; Tripathi, J.N. Genetically Engineered Bananas Resistant to Xanthomonas Wilt Disease and Nematodes. Food Energy Secur. 2017, 6, 37–47. [Google Scholar] [CrossRef]
- Muwonge, A.; Tripathi, J.; Kunert, K.; Tripathi, L. Expressing Stacked HRAP and PFLP Genes in Transgenic Banana Has No Synergistic Effect on Resistance to Xanthomonas Wilt Disease. S. Afr. J. Bot. 2016, 104, 125–133. [Google Scholar] [CrossRef]
- Choi, M.-S.; Kim, W.; Lee, C.; Oh, C.-S. Harpins, Multifunctional Proteins Secreted by Gram-Negative Plant-Pathogenic Bacteria. MPMI 2013, 26, 1115–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, M.; Xu, M.; Zhou, T.; Wang, D.; Tian, S.; Han, L.; Dong, H.; Zhang, C. Transgenic Expression of a Functional Fragment of Harpin Protein Hpa1 in Wheat Induces the Phloem-Based Defence against English Grain Aphid. J. Exp. Bot. 2014, 65, 1439–1453. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Lu, X.; Shao, M.; Long, J.; Wang, J. Genetic Diversity of Harpins from Xanthomonas oryzae and Their Activity to Induce Hypersensitive Response and Disease Resistance in Tobacco. Sci. China C Life Sci. 2004, 47, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Wang, X.; Li, M.; Song, C.; Wang, Y.; Hu, D.; Wang, J. Genetic Transformation of Cotton with a Harpin-Encoding Gene HpaXooconfers an Enhanced Defense Response against Different Pathogens through a Priming Mechanism. BMC Plant Biol. 2010, 10, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, R.; Wang, Y.; Ma, L.-L.; Qiao, J.-Q.; Shao, M.; Gao, X.-W. Assessment of Inheritance Pattern and Agronomic Performance of Transgenic Rapeseed Having Harpin Xooc-Encoding Hrf2 Gene. Transgen. Res. 2010, 19, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.M.; Laby, R.J.; Zumoff, C.H.; Bauer, D.W.; He, S.Y.; Collmer, A.; Beer, S.V. Harpin, Elicitor of the Hypersensitive Response Produced by the Plant Pathogen Erwinia Amylovora. Science 1992, 257, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Yang, J.; Zhang, J.; He, H.; Xing, G.; Zhao, Q.; Guo, D.; Sui, L.; Zhong, X.; Yang, X. Introduction of the HarpinXooc-Encoding Gene Hrf2 in Soybean Enhances Resistance against the Oomycete Pathogen Phytophthora Sojae. Transgen. Res. 2019, 28, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Moreno, L.; Song, Y.; Thomma, B.P. Transfer and Engineering of Immune Receptors to Improve Recognition Capacities in Crops. Curr. Opin. Plant Biol. 2017, 38, 42–49. [Google Scholar] [CrossRef]
- Ercoli, M.F.; Luu, D.D.; Rim, E.Y.; Shigenaga, A.; Teixeira de Araujo, A.; Chern, M.; Jain, R.; Ruan, R.; Joe, A.; Stewart, V.; et al. Plant Immunity: Rice XA21-Mediated Resistance to Bacterial Infection. Proc. Natl. Acad. Sci. USA 2022, 119, e2121568119. [Google Scholar] [CrossRef]
- Szankowski, I.; Waidmann, S.; Degenhardt, J.; Patocchi, A.; Paris, R.; Silfverberg-Dilworth, E.; Broggini, G.; Gessler, C. Highly Scab-Resistant Transgenic Apple Lines Achieved by Introgression of HcrVf2 Controlled by Different Native Promoter Lengths. Tree Genet. Genomes 2009, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Greene, G.H.; Yoo, H.; Liu, L.; Marqués, J.; Motley, J.; Dong, X. Global Translational Reprogramming Is a Fundamental Layer of Immune Regulation in Plants. Nature 2017, 545, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Govindarajulu, M.; Epstein, L.; Wroblewski, T.; Michelmore, R.W. Host-Induced Gene Silencing Inhibits the Biotrophic Pathogen Causing Downy Mildew of Lettuce. Plant Biotechnol. J. 2015, 13, 875–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Chen, X.; Liu, J.; Ye, J.; Guo, Z. The Rice ERF Transcription Factor OsERF922 Negatively Regulates Resistance to Magnaporthe Oryzae and Salt Tolerance. J. Exp. Bot. 2012, 63, 3899–3911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Wang, C.; Liu, P.; Lei, C.; Hao, W.; Gao, Y.; Liu, Y.-G.; Zhao, K. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS ONE 2016, 11, e0154027. [Google Scholar] [CrossRef] [Green Version]
- Kovac, E.; Blaustein-Rejto, D.; Qaim, M. Genetically Modified Crops Support Climate Change Mitigation. Clim. Change Sustain. 2022, 27, 627–629. [Google Scholar] [CrossRef]
- Samantara, K.; Bohra, A.; Mohapatra, S.R.; Prihatini, R.; Asibe, F.; Singh, L.; Reyes, V.P.; Tiwari, A.; Maurya, A.K.; Croser, J.S.; et al. Breeding More Crops in Less Time: A Perspective on Speed Breeding. Biology 2022, 11, 275. [Google Scholar] [CrossRef]
- Wheeler, R.M. A Historical Background of Plant Lighting: An Introduction to the Workshop. Hortic. Sci. 2008, 43, 1942–1943. [Google Scholar] [CrossRef] [Green Version]
- Sysoeva, M.I.; Markovskaya, E.F.; Shibaeva, T.G. Plants under Continuous Light: A Review. Plant Stress 2010, 4, 5–17. [Google Scholar]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for Energy Efficient Greenhouse Lighting. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Morinaka, Y.; Ohnishi, T.; Sunohara, H.; Fujioka, S.; Ueguchi-Tanaka, M.; Mizutani, M.; Sakata, K.; Takatsuto, S.; Yoshida, S.; et al. Erect Leaves Caused by Brassinosteroid Deficiency Increase Biomass Production and Grain Yield in Rice. Nat. Biotechnol. 2006, 24, 105–109. [Google Scholar] [CrossRef]
- Ashikari, M.; Sasaki, A.; Ueguchi-Tanaka, M.; Itoh, H.; Nishimura, A.; Datta, S.; Ishiyama, K.; Saito, T.; Kobayashi, M.; Khush, G.S. Loss-of-Function of a Rice Gibberellin Biosynthetic Gene, GA20 Oxidase (GA20ox-2), Led to the Rice “green Revolution. Breed Sci. 2002, 52, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Mayta, M.L.; Arce, R.C.; Zurbriggen, M.D.; Valle, E.M.; Hajirezaei, M.-R.; Zanor, M.; Carrillo, N. Expression of a Chloroplast-Targeted Cyanobacterial Flavodoxin in Tomato Plants Increases Harvest Index by Altering Plant Size and Productivity. Front. Plant Sci. 2019, 10, 1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Lawit, S.J.; Weers, B.; Sun, J.; Mongar, N.; Hemert, J.; Melo, R.; Meng, X.; Rupe, M.; Clapp, J.; et al. Overexpression of Zmm28 Increases Maize Grain Yield in the Field. Proc. Natl. Acad. Sci. USA 2019, 116, 23850–23858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive Analysis of MRNA Methylation Reveals Enrichment in 3′UTRs and near Stop Codons. Cell 2012, 149, 1635–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Liu, S.; Yu, L.; Xiao, Y.; Zhang, S.; Wang, X.; Xu, Y.; Yu, H.; Li, Y.; Yang, J.; et al. RNA Demethylation Increases the Yield and Biomass of Rice and Potato Plants in Field Trials. Nat. Biotechnol. 2021, 39, 1581–1588. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Chen, X.; Xu, F.; Ding, M.; Ye, W.; Kawai, Y.; Toda, Y.; Hayashi, Y.; Suzuki, T.; et al. Plasma membrane H+-ATPase expression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nat. Commun. 2021, 12, 735. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Zhou, Z.; Wu, P.; Fang, M.; Pan, X.; Lin, Q.; Luo, W.; Wu, G.; Li, H. Reassessment of the Four Yield-Related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System. Front. Plant Sci. 2016, 7, 377. [Google Scholar] [CrossRef] [Green Version]
- AlbertaFarmer Express. Available online: https://www.albertafarmexpress.ca/crops/canola/gene-editing-produces-breakthrough-canola-variety/ (accessed on 29 October 2002).
- Dong, S.; Dong, X.; Han, X.; Zhang, F.; Zhu, Y.; Xin, X.; Wang, Y.; Hu, Y.; Yuan, D.; Wang, J.; et al. OsPDCD5 Negatively Regulates Plant Architecture and Grain Yield in Rice. Proc. Natl. Acad. Sci USA 2021, 118, e2018799118. [Google Scholar] [CrossRef]
- Stegelmeir, A.A.; Rose, D.M.; Joris, B.R.; Glick, B.R. The use of PGPB to promote plant hydroponic growth. Plants 2022, 11, 2783. [Google Scholar] [CrossRef]
Monoclonal Antibody | Target Antigen (or Disease) | References |
---|---|---|
Rituximab | CD20 (Non-Hodgkin’s Lymphoma) | [49] |
Palivizumab | RSV-F (Respiratory Syncytial Virus) | [50] |
ZMapp | GP (Ebola) | [51] |
2G12 | GP120 (Human Immunodeficiency Virus) | [44] |
E16 | EDIII (West Nile Virus) | [42] |
83K7C | PA83 (Anthrax) | [52] |
CaroRx (Chimeric IgA/IgG) | Surface antigen I/II of Streptococcus mutans (dental caries) | [53] |
Engineered version of mouse GD12 | “A” subunit of the toxin ricin | [54] |
CAP256-VRC (08 and 09) | GP120 (Human Immunodeficiency Virus) | [47] |
ICAM1 | (Common cold) | [55] |
Anti-Ep-CAM | (Cancer) | [56] |
CA1 and CB6 | Spike protein (SARS-CoV-2) | [48] |
SO57 | CD64 (Anti-rabies) | [43] |
Product | Disease | Plant | Clinical Trial Status | Reference |
---|---|---|---|---|
MB66 | HIV-1 and HSV-2 | Tobacco | Phase I completed | [58] |
Zmapp™ (three chimeric monoclonal antibodies) | Ebola virus | Tobacco | Approved by US FDA in October 2020 | [51] |
VEN BETA | Gastroenteritis | Rice | Preclinical | [59] |
VEN120 | Inflammatory bowel disease | Rice | Phase II | [59] |
Optibumin | Loss of albumin | Rice | Commercialized | [60] |
Vibrio cholerae | Cholera | Potato | Phase I | [61] |
H5N1 influenza virus-like particle | Influenza | N. benthamiana (tobacco) | Phase II | [62] |
H1N1 influenza virus particle | Influenza | N. benthamiana (tobacco) | Phase II | [62] |
Cholera toxin B subunit fused to domain II of dengue virus 2 | Cholera and dengue virus | Potato | Preclinical | [63] |
Taliglucerase alfa | Gaucher disease | Carrot | Approved by US FDA in 2016, commercialized | [64] |
E. coli Heat-labile toxin B | Diarrhea caused by enterotoxic E. coli | Potato | Phase I | [65] |
Aprotinin | Reduces surgical bleeding | Corn | Preclinical | [66] |
Insulin | Diabetes | Safflower | Preclinical | [67] |
Norwalk virus capsid protein | Diarrhea | Potato, tomato | Phase I completed | [68] |
ISOkine™ | Growth factor | Barley | Commercialized | [69] |
Griffithsin, cyanovirin-N | HIV, ebola, SARS-CoV-2 | Rice | Preclinical | [57] |
Disease | Target Antigen | Plant | Reference |
---|---|---|---|
Polio | Poliovirus VP1 antigen | Tobacco | [85] |
Hemophilia A | Coagulation factor VIII, heavy chain and C2 | Tobacco | [86] |
Hemophilia A | Factor IX | Tobacco | [87] |
Pompe disease | a-Glucosidase | Tobacco | [88] |
Hemophilia B | Factor IX | Lettuce | [89] |
Viral nervous necrosis (a fish disease) | Nervous necrosis capsid protein | Tobacco | [90] |
Enterohemorrhagic E. coli | Enterohemorrhagic E. coli | Tobacco | [91] |
Norwalk virus | Surface protein | Tomato | [92] |
Hepatitis B | Hepatitis B surface antigen | Corn, algae, lettuce, tomato, rice, potato | [93] |
Avian influenza | Hemagglutinin H5 | Arabidopsis | [94] |
Anthrax | Anthrax protective agent | Indian mustard | [95] |
Rabies | G-protein | Tomato | [96] |
Dengue fever | Dengue viral protein | Tobacco | [97] |
Measles | M-antigen | Lettuce | [98] |
Type-1 diabetes | Glutamic acid decarboxylase | Red bee | [99] |
Human papillomavirus | E7 protein | Algae | [100] |
Infectious bursitis virus | VP2 protein | Quinoa | [101] |
Cholera | Vibrio cholerae toxin B subunit | Rice, potato | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narayanan, Z.; Glick, B.R. Biotechnologically Engineered Plants. Biology 2023, 12, 601. https://doi.org/10.3390/biology12040601
Narayanan Z, Glick BR. Biotechnologically Engineered Plants. Biology. 2023; 12(4):601. https://doi.org/10.3390/biology12040601
Chicago/Turabian StyleNarayanan, Zareen, and Bernard R. Glick. 2023. "Biotechnologically Engineered Plants" Biology 12, no. 4: 601. https://doi.org/10.3390/biology12040601
APA StyleNarayanan, Z., & Glick, B. R. (2023). Biotechnologically Engineered Plants. Biology, 12(4), 601. https://doi.org/10.3390/biology12040601