The Effect of Landscape Environmental Factors on Gene Flow of Red Deer (Cervus canadensis xanthopygus) in the Southern of the Greater Khingan Mountains, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. DNA Extraction and Species Identification
2.4. Individual Identification
2.5. Genetic Diversity Analysis
2.6. Genetic Differentiation Analysis
2.7. Isolation-by-Distance (IBD) Analysis
2.8. Source of Environmental Variables
2.9. The Relationship between Landscape Environmental Variables and Gene Flow
2.9.1. The Dispersal Resistance of Study Area
2.9.2. Assessment of Dispersal Probability and Correlation with Gene Flow
3. Results
3.1. Species Identification and Individual Identification
3.2. Genetic Diversity Analysis
3.3. Genetic Differentiation Analysis
3.4. Isolation by Distance Analysis
3.5. Relationship between Gene Flow and Environmental Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benton, T.G.; Bowler, D.E. Linking dispersal to spatial dynamics. In Dispersal Ecology and Evolution; Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 251–265. [Google Scholar] [CrossRef]
- Hanski, I.; Gilpin, M. Metapopulation dynamics: Brief history and conceptual domain. Biol. J. Linn. Soc. 1991, 42, 3–16. [Google Scholar] [CrossRef]
- Hansson, L. Dispersal and connectivity in metapopulations. Biol. J. Linn. Soc. 1991, 42, 89–103. [Google Scholar] [CrossRef]
- Clobert, J.; Dhont, A.A.; Nichols, J.D. Dispersal; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Slatkin, M. Gene flow and the geographic structure of natural populations. Science 1987, 236, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.; Harris, S.; Ashton, P. Ecological Genetics. Design, Analysis, and Application, 1st ed.; Blackwell Science: Oxford, UK, 2004; pp. 106–145. [Google Scholar]
- Fisher, R.A.; Ford, E.B. The spread of a gene in natural conditions in a colony of the moth Panaxia Dominula L. Heredity 1947, 1, 143–174. [Google Scholar] [CrossRef] [Green Version]
- Ćosić, N.; Říčanová, Š.; Bryja, J.; Penezić, A.; Ćirović, D. Do rivers and human-induced habitat fragmentation affect genetic diversity and population structure of the European ground squirrel at the edge of its Pannonian range? Conserv. Genet. 2013, 14, 345–354. [Google Scholar] [CrossRef]
- Marin, J.C.; González, B.A.; Poulin, E.; Casey, C.S.; Johnson, W.E. The influence of the arid Andean high plateau on the phylogeography and population genetics of guanaco (Lama guanicoe) in South America. Mol. Ecol. 2013, 22, 463–482. [Google Scholar] [CrossRef] [Green Version]
- Smissen, P.J.; Melville, J.; Sumner, J.; Jessop, T.S. Mountain barriers and river conduits: Phylogeographical structure in a large, mobile lizard (Varanidae: Varanus varius) from eastern Australia. J. Biogeogr. 2013, 40, 1729–1740. [Google Scholar] [CrossRef]
- Frantz, A.C.; Bertouille, S.; Eloy, M.C.; Licoppe, A.; Chaumont, F.; Flamand, M.C. Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol. Ecol. 2012, 22, 3445–3457. [Google Scholar] [CrossRef]
- Hepenstrick, D.; Thiel, D.; Holderegger, R.; Gugerli, F. Genetic discontinuities in roe deer (Capreolus capreolus) coincide with fenced transportation infrastructure. Basic Appl. Ecol. 2012, 13, 631–638. [Google Scholar] [CrossRef]
- Crispo, E.; Moore, J.; Lee-Yaw, J.A.; Gray, S.M.; Haller, B.C. Broken barriers: Human-induced changes to gene flow and introgression in animals. BioEssays 2011, 33, 508–518. [Google Scholar] [CrossRef]
- Holderegger, R.; Giulio, M.D. The genetic effects of roads: A review of empirical evidence. Basic Appl. Ecol. 2010, 11, 522–531. [Google Scholar] [CrossRef]
- Wang, S.; Xie, Y. China Species Red List; Higher Education Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Yang, M.; Sun, Y.; Zhang, W.Q.; Yuan, H.Y.; Zhang, M.H. Variation in winter daily range area of red deer (Cervus elaphus xanthopygus) based on DNA extracted from fecal samples. Journey For. Res. 2019, 30, 1951–1958. [Google Scholar] [CrossRef]
- Jiang, G.S.; Zhang, M.H.; Ma, J.Z. The fragmentation and impact factors of red deer habitat in Wandashan region, Heilongjiang Province, China. Acta Ecol. Sin. 2005, 7, 1691–1698. (In Chinese) [Google Scholar]
- Zhang, S.L.; Wang, Z.L.; Zhang, P.; Zhang, F.; Yang, Y.X.; He, W. Study on the status of wild red deer populations in Chifeng City, Inner Mongolia. Sichuan J. Zool. 2009, 28, 772–776. (In Chinese) [Google Scholar]
- Zhang, L.B. Winter Habitat Spatial Structure Analysis and Evaluation of Red Deer in Gaogesitai. Master’s Thesis, Northeast Forestry University, Harbin, China, 2016. (In Chinese). [Google Scholar]
- He, H. Comparison of Red Deer’s Food Components between Summer and Winter in the Gaogesitai National Nature Reserve, Inner Mongolia, China. Master’s Thesis, Northeast Forestry University, Harbin, China, 2015. (In Chinese). [Google Scholar]
- Pérez-Espona, S.; Pérez-Barbería, F.J.; McLeod, J.E.; Jiggins, C.D.; Gordon, I.J.; Pemberton, J.M. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol. Ecol. 2008, 17, 981–996. [Google Scholar] [CrossRef]
- Latch, E.K.; Boarman, W.I.; Walde, A.; Fleischer, R.C. Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises. PLoS ONE 2011, 6, e27794. [Google Scholar] [CrossRef] [Green Version]
- Kocher, T.D.; Thomas, W.K.; Meyer, A.; Edwards, S.V.; Pääbo, S.; Villablanca, F.X.; Wilsion, A.C. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 1989, 86, 6196–6200. [Google Scholar] [CrossRef] [Green Version]
- Irwin, D.M.; Kocher, T.D.; Wilson, A.C. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 1991, 32, 128–144. [Google Scholar] [CrossRef]
- Robasky, K.; Lewis, N.; Church, G. The role of replicates for error mitigation in next-generation sequencing. Nat. Rev. Genet. 2014, 15, 56–62. [Google Scholar] [CrossRef]
- Parson, W.; Pegoraro, K.; Niederstätter, H.; Föger, M.; Steinlechner, M. Species identification by means of the cytochrome b gene. Int. J. Leg. Med. 2000, 114, 23–28. [Google Scholar] [CrossRef]
- Hu, H.J.; Xing, B.; Yang, M.; Mpemba, H.; Lv, Z.H.; Zhang, M.H. Population and genetic diversity of Tibetan red deer based on fecal DNA. J. For. Res. 2018, 29, 227–232. [Google Scholar] [CrossRef]
- Tian, X.M.; Yang, M.; Zhang, M.H.; Wang, X.L. Assessing genetic diversity and demographic history of the Manchurian wapiti (Cervus canadensis xanthopygus) population in the Gaogesitai, Inner Mongolia, China. Appl. Ecol. Environ. Res. 2020, 18, 5561–5575. [Google Scholar] [CrossRef]
- Zhang, H. The Individual Identify, Parentage Analysis and Home Range Determination of Wapiti Based on Faces Molecular Biology. Master’s Thesis, Northeast Forestry University, Harbin, China, 2010. (In Chinese). [Google Scholar]
- Taberlet, P.; Griffin, S.; Goossens, B.; Questiau, S.; Manceau, V.; Escaravage, N.; Waits, L.P.; Bouvet, J. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996, 24, 3189–3194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, C.R.; Joyce, P.; Waits, L.P. Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 2002, 160, 357–366. [Google Scholar] [CrossRef]
- Park, S.D.E. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection. Ph.D. Thesis, University of Dublin, Dublin, Ireland, 2001. [Google Scholar]
- Bellemain, E.; Swenson, J.E.; Tallmon, D.; Burnberg, S. Estimating population size of elusive animals with DNA from hunter-collected feces: Four methods for brown bears. Conserv. Biol. 2005, 19, 150–161. [Google Scholar] [CrossRef]
- Valière, N. Gimlet: A computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2002, 2, 377–379. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Carvajal-Rodriguez, A. Myriads: P-value-based multiple testing correction. Bioinformatics 2018, 34, 1043–1045. [Google Scholar] [CrossRef] [Green Version]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Ryman, N.; Jorde, P.E. Statistical power when testing for genetic differentiation. Mol. Ecol. 2001, 10, 2361–2373. [Google Scholar] [CrossRef]
- Guo, S.W.; Thompson, E.A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992, 48, 361–372. [Google Scholar] [CrossRef]
- Balloux, F.; Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 2002, 11, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Earl, D.A.; vonHoldt, B.M. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. Clumpp: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [Green Version]
- Wright, S. Isolation by distance. Genetics 1943, 28, 139–156. [Google Scholar] [CrossRef]
- Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 1993, 47, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar] [PubMed]
- Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Spear, S.F.; Balkenhol, N.; Fortin, M.J.; McRae, B.H.; Scribner, K. Use of resistance surfaces for landscape genetic studies: Considerations for parameterization and analysis. Mol. Ecol. 2010, 19, 3576–3591. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, J.D.; Gu, X.D.; Wang, Y.J.; Bai, W.K.; Huang, Q.Y. Evaluating habitat suitability and potential dispersal corridors across the distribution landscape of the Chinese red panda (Ailurus styani) in Sichuan, China. Glob. Ecol. Conserv. 2021, 28, e01705. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yang, K.C.; Bridgman, C.L.; Lin, L.K. Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc. Ecol. 2008, 23, 989–1000. [Google Scholar] [CrossRef]
- McRae, B.H.; Shah, V.B.; Mohapatra, T.K. Circuitscape User Guide. Available online: http://www.circuitscape.org (accessed on 20 December 2022).
- Beier, P.; Majka, D.R.; Spencer, W.D. Forks in the road: Choices in procedures for designing wildland linkages. Conserv. Biol. 2008, 22, 836–851. [Google Scholar] [CrossRef]
- Tian, X.M. Studies on Population Genetics and Factors Driving Differentiation of Cervus Canadensis Xanthopygus. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2021. (In Chinese). [Google Scholar]
- Gao, H. Studies on Population Genetics and Factors Driving Differentiation of Alashan Red Deer. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2020. (In Chinese). [Google Scholar]
- Zhou, C.L. The Study on Population Size, Genetic Structure, Home Range and Phylogeny of Tianshan Red Deer (Cervus elaphus songaricus). Ph.D. Thesis, Xinjiang University, Urumqi, China, 2015. (In Chinese). [Google Scholar]
- Liu, Y.H.; Zhang, M.H. Population genetic diversity in Tibet red deer (Cervus elaphus wallichi) revealed by mitochondrial Cty b gene analysis. Acta Ecol. Sin. 2011, 31, 1976–1981. (In Chinese) [Google Scholar]
- Harik, M.; Tumur, A.; Ohtaishi, N. Tarim Red Deer of Xinjiang in China; Xinjiang University Press: Xinjiang, China, 2012; pp. 18–19. [Google Scholar]
- Maimaiti, T.; Turefu, T.; Ababaikeri, B.; Aili, S.; Halike, M. Influence of environment factors on genetic diversity of Tarim red deer. Chin. J. Wildl. 2018, 39, 754–760. (In Chinese) [Google Scholar]
- Hmwe, S.S.; Zachos, F.E.; Sale, J.B.; Rose, H.R.; Hartl, G.B. Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. J. Zool. 2006, 270, 479–487. [Google Scholar] [CrossRef]
- Honnay, O.; Coart, E.; Butaye, J.; Adriaens, D.; Glabeke, S.V.; Roldán-Ruiz, I. Low impact of present and historical landscape configuration on the genetics of fragmented Anthyllis vulneraria populations. Biol. Conserv. 2006, 127, 411–419. [Google Scholar] [CrossRef]
- Keyghobadi, N.; Roland, J.; Strobeck, C. Influence of landscape on the population genetic structure of the alpine butterfly Par-nassius smintheus (Papilionidae). Mol. Ecol. 1999, 8, 1481–1495. [Google Scholar] [CrossRef]
- Lugon-Moulin, N.; Hausser, J. Phylogeographical structure, postglacial recolonization and barriers to gene flow in the distinctive Valais chromosome race of the common shrew (Sorex araneus). Mol. Ecol. 2002, 11, 785–794. [Google Scholar] [CrossRef]
- Storfer, A.; Murphy, M.; Evans, J.; Goldberg, C.S.; Robinson, S.; Spear, S.F.; Dezzani, R.; Delmelle, E.; Vierling, L.; Waits, L.P. Putting the ‘landscape’ in landscape genetics. Heredity 2007, 98, 128–142. [Google Scholar] [CrossRef]
- Coulon, A.; Cosson, J.F.; Angibault, J.M.; Cargnelutti, B.; Galan, M.; Morellet, N.; Petit, E.; Aulagnier, S.; Hewison, A.J.M. Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: An individual-based approach. Mol. Ecol. 2004, 13, 2841–2850. [Google Scholar] [CrossRef]
- Zhou, L.; Yin, B.F.; Yang, S.M.; Huai, H.Y.; Li, S.P.; Zhang, Y.L.; Wei, W.H. Effects of Qinghai-Tiber Highway on genetic differentiation of planteau pilka (Ochotona curzoniae). Acta Ecol. Sin. 2006, 26, 3572–3577. (In Chinese) [Google Scholar]
- Laurence, S.; Smith, M.J.; Schulte-Hostedde, A.I. Effects of structural connectivity on fine scale population genetic structure of muskrat, Ondatra zibethicus. Ecol. Evol. 2013, 3, 3524–3535. [Google Scholar] [CrossRef]
- Miller, W.; Diefenbach, D.; Miller-Butterworth, C.; Brown, J.; Walter, W.D. Landscape barriers influence genetic connectivity among white-tailed deer in an area affected by chronic wasting disease. In Proceedings of the 65th Annual International Conference of the Wildlife Disease Association, New York, NY, USA, 31 July–5 August 2016. [Google Scholar]
- Zhou, S.C.; Zhang, M.H. An integrated analysis into the causes of ungulate mortality in the Wanda Mountains (Heilongjiang Province, China) and an evaluation of habitat quality. Biol. Conserv. 2011, 144, 2517–2523. [Google Scholar] [CrossRef]
- Baltensperger, A.P.; Joly, K. Using seasonal landscape models to predict space use and migratory patterns of an arctic ungulate. Mov. Ecol. 2019, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, Y.; Zhang, Z.; Zhang, S.L.; Yang, Y.X.; He, W.; Wang, N.; Zhang, Z.Y.; Bao, W.D. Habitat suitability analysis and ecological corridor designs for red deer (Cervus elaphus) in the southern Greater Khingan Mountains. Acta Ecol. Sin. 2022, 41, 5990–6000. (In Chinese) [Google Scholar]
Environmental Variables | Year | Type of Variables | Source | |
---|---|---|---|---|
Vegetation | NDVI | 2016 | Continuous variables | http://modis.gsfc.nasa.gov (accessed on 20 December 2022) |
Habitat types | 2021 | Categorical variables | The Third National land resource survey | |
Topography | Elevation | 2009 | Continuous variables | http://www.gscloud.cn (accessed on 20 December 2022) |
Slope | Continuous variables | http://www.gscloud.cn (accessed on 20 December 2022) | ||
Water | Rivers | 2015 | Continuous variables | Euclidean distance layer between rivers and red deer sites was obtained and calculated by ArcGIS extraction |
Disturbance | Settlements | 2020 | Continuous variables | Euclidean distance layer between settlements and red deer sites was obtained and calculated by ArcGIS extraction |
Roads | 2020 | Continuous variables | Euclidean distance layer between roads and red deer sites was obtained and calculated by ArcGIS extraction |
Sampling Site | R1 | R2 | R3 | R4 | R5 | ALL |
---|---|---|---|---|---|---|
Sample size | 29 | 57 | 55 | 61 | 29 | 231 |
Number of successful amplification sample size | 27 | 53 | 54 | 54 | 24 | 212 |
Red deer samples | 26 | 53 | 48 | 51 | 21 | 199 |
Successfully genotyping samples | 26 | 53 | 44 | 51 | 19 | 193 |
Identified red deer individuals | 22 | 45 | 39 | 47 | 19 | 172 |
Locus | k | N | Ho | He | PIC |
---|---|---|---|---|---|
ETH225 | 20 | 166 | 1.000 | 0.880 | 0.867 |
T501 | 7 | 172 | 0.657 | 0.707 | 0.657 |
T156 | 14 | 168 | 0.685 | 0.872 | 0.857 |
BM848 | 10 | 163 | 0.540 | 0.652 | 0.629 |
T530 | 10 | 166 | 0.783 | 0.783 | 0.756 |
T507 | 9 | 171 | 0.602 | 0.713 | 0.665 |
DM45 | 12 | 169 | 0.953 | 0.878 | 0.862 |
N | 3 | 156 | 0.994 | 0.589 | 0.502 |
Geographic Population | R1 | R2 | R3 | R4 | R5 |
---|---|---|---|---|---|
R1 | |||||
R2 | 0.0041 * | ||||
R3 | 0.0119 * | 0.0139 * | |||
R4 | 0.0082 * | 0.0223 * | 0.0170 * | ||
R5 | 0.0111 * | 0.0187 * | 0.0128 | 0.0056 |
Species | Region | Microsatellite | |
---|---|---|---|
Ho | He | ||
Cervuscanadensis xanthopygus | The southern part of the Greater Khingan Mountains, China | 0.767 | 0.737 |
Cervus canadensis xanthopygus [28] | The southern part of the Greater Khingan Mountains, China | 0.654 | 0.659 |
Cervus elaphus alashanicus [60] | Helan Mountains, Ningxia and Inner Mongolia, China | 0.792 | 0.596 |
Cervus elaphus wallichi [27,62] | Sangri, Tibet, China | 0.519 | 0.719 |
Cervus elaphus yarkandensis [63,64] | Tarim Basin, Xinjiang, China | 0.083 | 0.378 |
Cervus elaphus songaricus [61] | Tianshan Mountains, Xinjiang, China | 0.850 | 0.710 |
Cervus elaphus scoticus [65] | Scotland and England, Britain | 0.447 | 0.801 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Guo, J.; Hong, Y.; Zhang, N.; Zhang, M. The Effect of Landscape Environmental Factors on Gene Flow of Red Deer (Cervus canadensis xanthopygus) in the Southern of the Greater Khingan Mountains, China. Biology 2023, 12, 576. https://doi.org/10.3390/biology12040576
Li Z, Guo J, Hong Y, Zhang N, Zhang M. The Effect of Landscape Environmental Factors on Gene Flow of Red Deer (Cervus canadensis xanthopygus) in the Southern of the Greater Khingan Mountains, China. Biology. 2023; 12(4):576. https://doi.org/10.3390/biology12040576
Chicago/Turabian StyleLi, Zheng, Jinhao Guo, Yang Hong, Ning Zhang, and Minghai Zhang. 2023. "The Effect of Landscape Environmental Factors on Gene Flow of Red Deer (Cervus canadensis xanthopygus) in the Southern of the Greater Khingan Mountains, China" Biology 12, no. 4: 576. https://doi.org/10.3390/biology12040576
APA StyleLi, Z., Guo, J., Hong, Y., Zhang, N., & Zhang, M. (2023). The Effect of Landscape Environmental Factors on Gene Flow of Red Deer (Cervus canadensis xanthopygus) in the Southern of the Greater Khingan Mountains, China. Biology, 12(4), 576. https://doi.org/10.3390/biology12040576