Should the Identification Guidelines for Siamese Crocodiles Be Revised? Differing Post-Occipital Scute Scale Numbers Show Phenotypic Variation Does Not Result from Hybridization with Saltwater Crocodiles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Collection and DNA Extraction
2.2. Microsatellite Genotyping and Microsatellite Data Analysis
2.3. Mitochondrial DNA D-Loop Sequencing and Data Analysis
3. Results
Genetic Variability of Captive Crocodile Population Based on Microsatellite Data
4. Discussion
4.1. Are Different Numbers of Post-Occipital Scutes Due to Phenotypic Variation within Siamese Crocodiles or the Consequence of Hybridization with Saltwater Crocodiles?
4.2. Large Gene Pool Variation Reflects Different Historical Origins in the Wild Population
4.3. Siamese Crocodile Identification Protocol Based on Morphology and DNA Fingerprinting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, J.G. Crocodylus siamensis. 1801. Available online: https://www.gbif.org/species/185108439 (accessed on 16 January 2023).
- Smith, M.A. The Fauna of British India including Ceylon and Burma; Reptilia and Amphibia V. 1. Loricata, Testudines; Taylor and Francis: London, UK, 1931. [Google Scholar]
- Daltry, J.C.; Chheang, D.; Em, P.; Poeung, M.; Sam, H.; Tan, T.; Simpson, B.K. Status of the Siamese crocodile in the central cardamom mountains, Cambodia. In Fauna & Flora International: Cambodia Programme and Department of Forestry and Wildlife: Phnom Penh; Fauna & Flora International: Phnom Penh, Cambodia, 2003. [Google Scholar]
- Platt, S.G.; Lynam, A.J.; Temsiripong, Y.; Kampanakngarn, M. Occurrence of the Siamese crocodile (Crocodylus siamensis) in Kaeng Krachan National Park, Thailand. Nat. Hist. Bull. Siam Soc. 2002, 50, 7–14. [Google Scholar]
- Platt, S.G.; Rainwater, T.R.; Finger, A.G.; Thorbjarnarson, J.B.; Anderson, T.A.; McMurry, S.T. Food habits, ontogenetic dietary partitioning and observations of foraging behaviour of Morelet’s crocodile (Crocodylus moreletii) in northern Belize. Herpetol. J. 2006, 16, 281–290. [Google Scholar]
- Simpson, B.K.; Bezuijen, M.R. Siamese crocodile Crocodylus siamensis. In Crocodiles Status Survey and Conservation Action Plan, 2nd ed.; Manolis, S.C., Stevenson, C., Eds.; Crocodile Specialist Group: Darwin, NT, Australia, 2010; pp. 120–126. [Google Scholar]
- Smith, M.A. Crocodylus siamensis. J. Nat. Hist. Soc. Siam 1919, 3, 217–222. [Google Scholar]
- Ilhow, F.; Bonke, R.; Hartman, T.; Geissler, P.; Behler, N.; Rödder, D. Habitat suitability, coverage by protected areas and population connectivity for the Siamese crocodile Crocodylus siamensis Schnider, 1801. Aquatic. Conserv. Mar. Fresh. Ecosyst. 2015, 25, 544–554. [Google Scholar] [CrossRef]
- Platt, S.G.; Rainwater, T.R.; Nichols, S. A recent population assessment of the American crocodile (Crocodylus acutus) in Turneffe Atoll, Belize. Herpetol. Bull. 2004, 89, 26–32. [Google Scholar]
- Thorbjarnarson, J.B.; Messel, H.; King, F.W.; Ross, J.P. Crocodiles: An Action Plan for their Conservation; IUCN: Gland, Switzerland, 1992. [Google Scholar]
- Lapbenjakul, S.; Thanapa, W.; Twilprawat, P.; Muangmai, N.; Khancanaketu, T.; Temsiripong, Y.; Unajak, S.; Peyachoknagul, S.; Srikulnath, K. High genetic diversity and demographic history of captive Siamese and saltwater crocodiles suggest the first step toward the establishment of a breeding and reintroduction program in Thailand. PLoS ONE 2017, 12, e0184526. [Google Scholar] [CrossRef] [Green Version]
- Suttimeechaikul, N.; Pakdeekong, M.; Tankitjanukit, S.; Keawjantavee, P.; Temsiripong, Y.; Phuangcharoen, W.; Kittiwanich, J.; Aiamsaart, P. Croccodile aquaculture. Available online: https://online.fliphtml5.com/vqklc/ljrd/?fbclid=IwAR0ZDRISD47Gh8t3#p=1 (accessed on 16 January 2023).
- Schneider. Crocodylus porosus. 1801. Available online: https://www.gbif.org/species/144104483 (accessed on 16 January 2023).
- Suvanakorn, P.; Youngprapakorn, C. Crocodile farming in Thailand. In Wildlife Management: Crocodiles and Alligators; Webb, G.J.W., Manolis, S.C., Whitehead, P.J., Eds.; Surrey Beatty and Sons, Pty. Ltd.: Chipping Norton, NSW, Australia, 1987; pp. 341–343. [Google Scholar]
- Srikulnath, K.; Thongpan, A.; Suputtitada, S.; Apisitwanich, S. New haplotype of the complete mitochondrial genome of Crocodylus siamensis and its species-specific DNA markers: Distinguishing C. siamensis from C. porosus in Thailand. Mol. Biol. Rep. 2012, 39, 4709–4717. [Google Scholar] [CrossRef]
- Charette, R. CITES Identification Guide: Crocodilians; Environment Canada: Ottawa, ON, Canada, 1995.
- Ross, F.D.; Mayer, G.C. On the dorsal armor of the Crocodilia. In Advances in Herpetology and Evolutionary Biology; Museum of Comparative Zoology: Cambridge, MA, USA, 1983; pp. 305–331. [Google Scholar]
- Dinets, V. Long-distance signaling in Crocodylia. Copeia 2013, 2013, 517–526. [Google Scholar] [CrossRef]
- Supikamolseni, A.; Ngaoburanawit, N.; Sumontha, M.; Chanhome, L.; Suntrarachun, S.; Peyachoknagul, S.; Srikulnath, K. Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand. Genet. Mol. Res. 2015, 14, 13981–13997. [Google Scholar] [CrossRef]
- Miles, L.G.; Isberg, S.R.; Glenn, T.C.; Lance, S.L.; Dalzell, P.; Thomson, P.C.; Moran, C. A genetic linkage map for the saltwater crocodile (Crocodylus porosus). BMC Genom. 2009, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Miles, L.G.; Isberg, S.R.; Moran, C.; Hagen, C.; Glenn, T.C. 253 Novel polymorphic microsatellites for the saltwater crocodile (Crocodylus porosus). Conserv. Genet. 2009, 10, 963–980. [Google Scholar] [CrossRef]
- Ariyaraphong, N.; Pansrikaew, T.; Jangtarwan, K.; Thintip, J.; Singchat, W.; Laopichienpong, N.; Pongsanarm, T.; Panthum, T.; Suntronpong, A.; Ahmad, S.F.; et al. Introduction of wild Chinese gorals into a captive population requires careful genetic breeding plan monitoring for successful long-term conservation. Glob. Ecol. Conserv. 2021, 28, e01675. [Google Scholar] [CrossRef]
- Chailertrit, V.; Swatdipong, A.; Peyachoknagul, S.; Salaenoi, J.; Srikulnath, K. Isolation and characterization of novel microsatellite markers from Siamese fighting fish (Betta splendens, Osphronemidae, Anabantoidei) and their transferability to related species, B. smaragdina and B. imbellis. Genet. Mol. Res. 2014, 13, 7157–7162. [Google Scholar] [CrossRef]
- Jangtarwan, K.; Koomgun, T.; Prasongmaneerut, T.; Thongchum, R.; Singchat, W.; Tawichasri, P.; Fukayama, T.; Sillapaprayoon, S.; Kraichak, E.; Muangmai, N.; et al. Take one step backward to move forward: Assessment of genetic diversity and population structure of captive Asian woolly-necked storks (Ciconia episcopus). PLoS ONE 2019, 14, e0223726. [Google Scholar] [CrossRef] [Green Version]
- Jangtarwan, K.; Kamsongkram, P.; Subpayakom, N.; Sillapaprayoon, S.; Muangmai, N.; Kongphoemph, A.; Wongsodchuen, A.; Intapan, S.; Chamchumroon, W.; Safoowong, M.; et al. Predictive genetic plan for a captive population of the Chinese goral (Naemorhedus griseus) and prescriptive action for ex situ and in situ conservation management in Thailand. PLoS ONE 2020, 15, e0234064. [Google Scholar] [CrossRef]
- Thintip, J.; Singchat, W.; Ahmad, S.F.; Ariyaraphong, N.; Muangmai, N.; Chamchumroon, W.; Pitiwong, K.; Suksavate, W.; Duangjai, S.; Duengkae, P.; et al. Reduced genetic variability in a captive-bred population of the endangered Hume’s pheasant (Syrmaticus humiae, Hume 1881) revealed by microsatellite genotyping and D-loop sequencing. PLoS ONE 2021, 16, e0256573. [Google Scholar] [CrossRef]
- Wongtienchai, P.; Lapbenjakul, S.; Jangtarwan, K.; Areesirisuk, P.; Mahaprom, R.; Subpayakom, N.; Singchat, W.; Sillapaprayoon, S.; Muangmai, N.; Songchan, R.; et al. Genetic management of a water monitor lizard (Varanus salvator macromaculatus) population at Bang Kachao Peninsula as a consequence of urbanization with Varanus Farm Kamphaeng Saen as the first captive research establishment. J. Zool. Syst. Evol. Res. 2021, 59, 484–497. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillett, B.J.; Ovenden, J.R. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 2014, 14, 209–214. [Google Scholar] [CrossRef]
- Wang, J. Coancestry: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 2011, 11, 141–145. [Google Scholar] [CrossRef]
- Temsiripong, Y.; Ratanakorn, P.; Kullavanijaya, B. Management of the Siamese crocodile in Thailand. In Proceedings of the 17th Working Meeting of the IUCN-SSC Crocodile Specialist Group, Darwin, NT, Australia, 24–29 May 2004; pp. 141–142. [Google Scholar]
- Jelden, D.C.; Manolis, C.; Giam, H.; Thomson, J.; Lopez, A. Crocodile Conservation and Management in Cambodia: A Review with Recommendations; IUCN Crocodile Specialist Group: Darwin, NT, Australia, 2005. [Google Scholar]
- Jelden, D.C.; Manolis, C.; Tsubouchi, T.; Nguyen Dao, N.V. Crocodile Conservation and Farming in the Socialist Republic of Viet Nam: A Review with Recommendations; Crocodile Specialist Group: Darwin, NT, Australia, 2008. [Google Scholar]
- Manolis, C. 2nd Siamese crocodile meeting on husbandry and conservation and Siamese crocodile task force meeting (1–2 June 2017). Crocodile Spec. Group Newsl. 2017, 36, 5–9. [Google Scholar]
- Caldwell, J. World Trade in Crocodilian Skins 2008–2010; UNEP-WCMC: Cambridge, CA, USA, 2010. [Google Scholar]
- Getpech, Y. Crocodile conservation and captive breeding in Thailand. In Proceedings of the 1st Regional Species Meeting of the IUCN-SSC Crocodile Specialist Group, Bangkok, Thailand, 4–6 April 2011; pp. 27–28. [Google Scholar]
- Caldwell, J. World Trade in Crocodilian Skins 2018–2020; UNEP-WCMC: Cambridge, CA, USA, 2022. [Google Scholar]
- Chavananikul, V.; Wattanodorn, S.; Youngprapakorn, P. Karyotypes of 5 species of crocodile kept in Samutprakan Crocodile Farm and Zoo. In Proceedings of the 12th Working Meeting of the IUCN-SSC Crocodile Specialist Group, Pattaya, Thailand, 2–6 May 1994; pp. 58–62. [Google Scholar]
- Thang, N.Q. The status of Crocodylus rhombifer in the Socialist Republic of Vietnam. In Proceedings of the 12th Working Meeting of the IUCN-SSC Crocodile Specialist Group, Pattaya, Thailand, 2–6 May 1994; pp. 141–142. [Google Scholar]
- Fitzsimmons, N.N.; Buchan, J.C.; Lam, P.V.; Polet, G.; Hung, T.T.; Thang, N.Q.; Gratten, J. Identification of purebred Crocodylus siamensis for reintroduction in Vietnam. J. Exp. Zool. A Ecol. Genet. Physiol. 2002, 294, 373–381. [Google Scholar] [CrossRef]
- Truyen, T. Country—Vietnam. In Proceedings of the 1st Regional Meeting of the IUCN-SSC Crocodile Specialist Group, Bangkok, Thailand, 4–6 April 2011; pp. 33–35. [Google Scholar]
- Phothitay, C.; Phommachanh, B.; Bezuijen, M.R. Siamese crocodiles at Ban Kuen Zoo, Lao PDR. Crocodile Spec. Group Newsl. 2005, 24, 11–12. [Google Scholar]
- Cox, J.H., Jr.; Phothitay, C. Surveys of the Siamese Crocodile Crocodylus Siamensis in Savannakhet Province, Lao PDR, 6 May–4 June 2008; OZ Minerals Ltd. & Wildlife Conservation Society: Vientiane, Laos, 2008. [Google Scholar]
- Cohen, M.M.; Gans, C. The chromosomes of the order Crocodilia. Cytogenet. Genome Res. 1970, 9, 81–105. [Google Scholar] [CrossRef]
- Chavananikul, V.; Suwattana, D.; Koykul, W.; Wattanodorn, S.; Sukkai, J. A Research Report on Karyotypes of Freshwater Crocodiles (Crocodylus siamensis), Saltwater Crocodiles (Crocodylus porosus) and the Inter-Specific Hybrids by Conventional and Banding Techniques; Chulalongkorn University: Bangkok, Thailand, 1998. [Google Scholar]
- Doc, C. Convention on international trade in endangered species of wild fauna and flora. In Proceedings of the Nineteenth meeting of the Conference of the Parties, Panama City, Panama, 14–25 November 2022. [Google Scholar]
- Wildlife Conservation Society. Recommendations for CITES CoP19; Wildlife Conservation Society: New York, NY, USA, 2022. [Google Scholar]
- Kowasupat, C.; Panijpan, B.; Ruenwongsa, P.; Sriwattanarothai, N. Betta mahachaiensis, a new species of bubble-nesting fighting fish (Teleostei: Osphronemidae) from Samut Sakhon Province, Thailand. Zootaxa 2012, 3522, 49–60. [Google Scholar] [CrossRef]
- Kowasupat, C.; Panijpan, B.; Ruenwongsa, P. Betta siamorientalis, a new species of bubble-nest building fighting fish (Teleostei: Osphronemidae) from eastern Thailand. Vertebr. Zool. 2012, 62, 387–397. [Google Scholar] [CrossRef]
- Abdelkrim, J.; Robertson, B.C.; Stanton, J.A.L.; Gemmell, N.J. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. BioTechniques 2009, 46, 185–192. [Google Scholar] [CrossRef]
- Fischer, M.C.; Rellstab, C.; Leuzinger, M.; Roumet, M.; Gugerli, F.; Shimizu, K.K.; Holderegger, R.; Widmer, A. Estimating genomic diversity and population differentiation–an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom. 2017, 18, 69. [Google Scholar] [CrossRef] [Green Version]
- Fola, A.A.; Kattenberg, E.; Razook, Z.; Lautu-Gumal, D.; Lee, S.; Mehra, S.; Bahlo, M.; Kazura, J.; Robinson, L.J.; Laman, M.; et al. SNP barcodes provide higher resolution than microsatellite markers to measure Plasmodium vivax population genetics. Malar. J. 2020, 19, 375. [Google Scholar] [CrossRef]
- Egito, A.A.; Paiva, S.R.; Albuquerque, M.D.S.M.; Mariante, A.S.; Almeida, L.D.; Castro, S.R.; Grattapaglia, D. Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil. BMC Genet. 2007, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Cortes, O.; Cañon, J.; Gama, L.T. Applications of microsatellites and single nucleotide polymorphisms for the genetic characterization of cattle and small ruminants: An overview. Ruminants 2022, 2, 456–470. [Google Scholar] [CrossRef]
- Department of Fisheries. Meeting to Discuss Action Guidelines for Crocodiles in Thailand. Available online: https://www4.fisheries.go.th/dof/news_local/131/138388 (accessed on 16 January 2023).
- Kanwatanakid-Savini, C.; Pliosungnoen, M.; Pattanavibool, A.; Thorbjarnarson, J.B.; Limlikhitaksorn, C.; Platt, S.G. A survey to determine the conservation status of Siamese crocodiles in Kaeng Krachan National Park, Thailand. Herpetol. Conserv. Biol. 2012, 7, 157–168. [Google Scholar]
- Platt, S.G. Community-Based Crocodile Conservation in Lao PDR; Wildlife Conservation Society: Bronx, NY, USA, 2012. [Google Scholar]
- Starr, J.C.D.A. Development of a re-introduction and re-enforcement program for Siamese crocodiles in Cambodia. In Global Re-Introduction Perspectives: Additional Case Studies from Around the Globe; IUCN: Gland, Switzerland, 2010; p. 118. [Google Scholar]
- Hata, A.; Nunome, M.; Suwanasopee, T.; Duengkae, P.; Chaiwatana, S.; Chamchumroon, W.; Suzuki, T.; Koonawootrittriron, S.; Matsuda, Y.; Srikulnath, K. Origin and evolutionary history of domestic chickens inferred from a large population study of Thai red junglefowl and indigenous chickens. Sci. Rep. 2021, 11, 2035. [Google Scholar] [CrossRef]
- Singchat, W.; Chaiyes, A.; Wongloet, W.; Ariyaraphong, N.; Jaisamut, K.; Panthum, T.; Ahmed, S.F.; Chaleekarn, W.; Suksavate, W.; Inpota, M.; et al. Red junglefowl resource management guide: Bioresource reintroduction for sustainable food security in Thailand. Sustainability 2022, 14, 7895. [Google Scholar] [CrossRef]
- Adams, R.H.; Blackmon, H.; Reyes-Velasco, J.; Schield, D.R.; Card, D.C.; Andrew, A.L.; Waynewood, N.; Castoe, T.A. Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 2016, 59, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Wattanadilokchatkun, P.; Panthum, T.; Jaisamut, K.; Ahmad, S.F.; Dokkaew, S.; Muangmai, N.; Duengkae, P.; Singchat, W.; Srikulnath, K. Characterization of microsatellite distribution in Siamese fighting fish genome to promote conservation and genetic diversity. Fishes 2022, 7, 251. [Google Scholar] [CrossRef]
- Srikulnath, K.; Thapana, W.; Muangmai, N. Role of chromosome changes in Crocodylus evolution and diversity. Genom. Inform. 2015, 13, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Kawagoshi, T.; Nishida, C.; Ota, H.; Kumazawa, Y.; Endo, H.; Matsuda, Y. Molecular structures of centromeric heterochromatin and karyotypic evolution in the Siamese crocodile (Crocodylus siamensis) (Crocodylidae, Crocodylia). Chromosome Res. 2008, 16, 1119–1132. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ziegler, T.; Rauhaus, A.; Nguyen, T.Q.; Tran, D.T.A.; Wayakone, S.; Luu, V.Q.; Vences, M.; Le, M.D. Genetic screening of Siamese crocodiles (Crocodylus siamensis) in Laos and Vietnam: Identifying purebred individuals for conservation and release programs. Crocodile Spec. Group Newsl. 2018, 37, 8–14. [Google Scholar]
- Goudet, J.F. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 1995, 86, 485–486. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.W.; Thompson, E.A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 1992, 48, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Raymond, M.; Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Welch, B.L. The generalization of student’s’ problem when several different population variances are involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef]
- Van, O.C.; Hutchinson, W.F.; Wills, D.P.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Park, S.D.E. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection. Ph.D. Thesis, University of Dublin, Dublin, Ireland, 2001. [Google Scholar]
- Præstgaard, J.T. Permutation and bootstrap Kolmogorov-Smirnov tests for the equality of two distributions. Scand. J. Stat. 1995, 22, 305–322. [Google Scholar]
- Lynch, M.; Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 1999, 152, 1753–1766. [Google Scholar] [CrossRef]
- Chapuis, M.P.; Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007, 24, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Nei, M. Genetic distance between populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Earl, D.A. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Weir, B.; Cockerham, C. Estimating F-Statistics for the analysis of population-structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef]
- Clement, M.; Snell, Q.; Walker, P.; Posada, D.; Crandall, K. TCS: Estimating gene genealogies. Parallel Distrib. Process. Symp. Int. Proc. 2002, 2, 184. [Google Scholar]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
Population | N | Na | AR | Nea | I | Ho | He | PIC | F | |
---|---|---|---|---|---|---|---|---|---|---|
CB 1 | Mean | 30 | 7.409 | 7.409 | 3.847 | 1.329 | 0.653 | 0.612 | 0.570 | −0.092 |
S.E. | 0 | 0.993 | 0.993 | 0.713 | 0.140 | 0.044 | 0.044 | 0.214 | 0.045 | |
NR 2 | Mean | 30 | 8.727 | 8.727 | 3.847 | 1.382 | 0.602 | 0.609 | 0.572 | −0.031 |
S.E. | 0 | 1.405 | 1.405 | 0.728 | 0.149 | 0.043 | 0.043 | 0.213 | 0.066 | |
CN 3 | Mean | 34 | 9.500 | 9.500 | 4.603 | 1.396 | 0.545 | 0.582 | 0.553 | 0.033 |
S.E. | 0 | 1.364 | 1.364 | 1.000 | 0.180 | 0.057 | 0.058 | 0.268 | 0.055 | |
NP 4 | Mean | 42 | 11.182 | 11.182 | 4.880 | 1.658 | 0.642 | 0.693 | 0.658 | 0.057 |
S.E. | 0 | 1.307 | 1.307 | 0.730 | 0.147 | 0.044 | 0.040 | 0.204 | 0.068 | |
CP 5 | Mean | 29 | 9.818 | 9.798 | 4.951 | 1.716 | 0.696 | 0.733 | 0.705 | 0.039 |
S.E. | 0 | 1.169 | 1.150 | 0.530 | 0.125 | 0.041 | 0.036 | 0.173 | 0.046 | |
All Population | Mean | 165 | 20.864 | 20.787 | 6.745 | 1.921 | 0.629 | 0.718 | 0.695 | 0.110 |
S.E. | 0 | 2.351 | 2.332 | 1.604 | 0.164 | 0.033 | 0.037 | 0.180 | 0.038 |
Population | Ho | He | df | t-Test | p-Value |
---|---|---|---|---|---|
CB 1 | 0.641 ± 0.044 | 0.612 ± 0.044 | 0.041 | 0.466 | 0.643 |
NR 2 | 0.602 ± 0.043 | 0.609 ± 0.043 | −0.037 | −0.115 | 0.909 |
CN 3 | 0.545 ± 0.057 | 0.582 ± 0.058 | 0.007 | −0.455 | 0.651 |
NP 4 | 0.642 ± 0.044 | 0.693 ± 0.040 | −0.051 | −0.858 | 0.394 |
CP 5 | 0.696 ± 0.041 | 0.733 ± 0.036 | −0.037 | −0.678 | 0.501 |
Population 1 | Population 2 | df | SE | t-Test | p-Value | |
---|---|---|---|---|---|---|
Heterozygosity (Ho) | CB 1 | NR 2 | 0.051 | 0.011 | 4.540 | <0.05 |
CB | CN 3 | 0.108 | 0.013 | 8.536 | <0.05 | |
CB | NP 4 | 0.011 | 0.099 | 0.111 | 0.912 | |
CB | CP 5 | −0.051 | 0.010 | −4.914 | <0.05 | |
NR | CN | 0.057 | 0.013 | 4.546 | <0.05 | |
NR | NP | −0.040 | 0.099 | −0.403 | 0.689 | |
NR | CP | −0.102 | 0.010 | −9.962 | <0.05 | |
CN | NP | −0.097 | 0.100 | −0.974 | 0.335 | |
CN | CP | −0.159 | 0.012 | −13.498 | <0.05 | |
NP | CP | −0.062 | 0.099 | −0.624 | 0.536 | |
Heterozygosity (He) | CB | NR | 0.003 | 0.011 | 0.267 | 0.790 |
CB | CN | 0.030 | 0.013 | 2.346 | <0.05 | |
CB | NP | −0.081 | 0.107 | −0.755 | 0.454 | |
CB | CP | −0.135 | 0.010 | −12.862 | <0.05 | |
NR | CN | 0.027 | 0.013 | 2.131 | <0.05 | |
NR | NP | −0.084 | 0.107 | −0.783 | 0.438 | |
NR | CP | −0.138 | 0.010 | −13.324 | <0.05 | |
CN | NP | −0.111 | 0.107 | −1.034 | 0.307 | |
CN | CP | −0.165 | 0.012 | −13.723 | <0.05 | |
NP | CP | −0.054 | 0.107 | −0.504 | 0.617 |
Population | N | FIS | Relatedness (r) | Estimated Ne | 95% CIs for Ne | Ne/N |
---|---|---|---|---|---|---|
CB 1 | 30 | −0.113 ± 0.201 | −0.018 ± 0.042 | 41.300 | 32.200–46.500 | 1.377 |
NR 2 | 30 | −0.086 ± 0.039 | −0.019 ± 0.029 | 202.200 | 87.700–113.300 | 6.740 |
CN 3 | 34 | −0.063 ± 0.039 | −0.017 ± 0.030 | 115.500 | 69.500–88.100 | 3.397 |
NP 4 | 42 | −0.045 ± 0.046 | −0.019 ± 0.032 | 45.200 | 37.100–136.100 | 1.076 |
CP 5 | 29 | −0.065 ± 0.055 | −0.020 ± 0.032 | 103.700 | 66.700–74.800 | 3.576 |
Population | N | Number of Haplotypes (H) | Theta (per Site) from S | Average Number of Nucleotide Differences (k) | Overall Haplotype | Nucleotide Diversities (π) |
---|---|---|---|---|---|---|
CB 1 | 30 | 20 | 0.016 | 6.786 | 0.959 ± 0.022 | 0.013 ± 0.006 |
NR 2 | 30 | 18 | 0.007 | 3.471 | 0.940 ± 0.027 | 0.015 ± 0.008 |
CN 3 | 34 | 20 | 0.010 | 4.783 | 0.934 ± 0.027 | 0.022 ± 0.011 |
NP 4 | 42 | 24 | 0.036 | 40.539 | 0.922 ± 0.032 | 0.072 ± 0.035 |
CP 5 | 29 | 28 | 0.052 | 56.924 | 0.998 ± 0.010 | 0.069 ± 0.025 |
All populations | 165 | 54 | 0.043 | 18.024 | 0.725 ± 0.039 | 0.040 ± 0.020 |
Population 1 | Population 2 | GST | ΦST | FST | Dxy | Da | Nm |
---|---|---|---|---|---|---|---|
CB 1 | NR 2 | −0.008 | 0.013 | 0.045 * | 0.002 | 0.000 | 10.620 |
CB | CN 3 | 0.000 | 0.017 | 0.027 ns | 0.002 | 0.000 | 18.224 |
CB | NP 4 | 0.005 | 0.083 | 0.127 ** | 0.021 | 0.003 | 3.432 |
CB | CP 5 | 0.071 | 0.320 | 0.347 ** | 0.055 | 0.025 | 0.941 |
NR | CN | 0.006 | 0.025 | −0.015 ns | 0.003 | 0.000 | Infinite |
NR | NP | 0.009 | 0.081 | 0.094 ** | 0.021 | 0.003 | 4.840 |
NR | CP | 0.066 | 0.318 | 0.345 ** | 0.055 | 0.025 | 0.949 |
CN | NP | 0.000 | 0.087 | 0.090 * | 0.021 | 0.003 | 5.064 |
CN | CP | 0.067 | 0.330 | 0.345 ** | 0.055 | 0.026 | 0.950 |
NP | CP | 0.050 | 0.198 | 0.261 * | 0.065 | 0.020 | 1.418 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariyaraphong, N.; Wongloet, W.; Wattanadilokchatkun, P.; Panthum, T.; Singchat, W.; Thong, T.; Lisachov, A.; Ahmad, S.F.; Muangmai, N.; Han, K.; et al. Should the Identification Guidelines for Siamese Crocodiles Be Revised? Differing Post-Occipital Scute Scale Numbers Show Phenotypic Variation Does Not Result from Hybridization with Saltwater Crocodiles. Biology 2023, 12, 535. https://doi.org/10.3390/biology12040535
Ariyaraphong N, Wongloet W, Wattanadilokchatkun P, Panthum T, Singchat W, Thong T, Lisachov A, Ahmad SF, Muangmai N, Han K, et al. Should the Identification Guidelines for Siamese Crocodiles Be Revised? Differing Post-Occipital Scute Scale Numbers Show Phenotypic Variation Does Not Result from Hybridization with Saltwater Crocodiles. Biology. 2023; 12(4):535. https://doi.org/10.3390/biology12040535
Chicago/Turabian StyleAriyaraphong, Nattakan, Wongsathit Wongloet, Pish Wattanadilokchatkun, Thitipong Panthum, Worapong Singchat, Thanyapat Thong, Artem Lisachov, Syed Farhan Ahmad, Narongrit Muangmai, Kyudong Han, and et al. 2023. "Should the Identification Guidelines for Siamese Crocodiles Be Revised? Differing Post-Occipital Scute Scale Numbers Show Phenotypic Variation Does Not Result from Hybridization with Saltwater Crocodiles" Biology 12, no. 4: 535. https://doi.org/10.3390/biology12040535
APA StyleAriyaraphong, N., Wongloet, W., Wattanadilokchatkun, P., Panthum, T., Singchat, W., Thong, T., Lisachov, A., Ahmad, S. F., Muangmai, N., Han, K., Duengkae, P., Temsiripong, Y., & Srikulnath, K. (2023). Should the Identification Guidelines for Siamese Crocodiles Be Revised? Differing Post-Occipital Scute Scale Numbers Show Phenotypic Variation Does Not Result from Hybridization with Saltwater Crocodiles. Biology, 12(4), 535. https://doi.org/10.3390/biology12040535