Pressure-Dependent Elevation of Vasoactive Intestinal Peptide Level in Chicken Choroid
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue
2.2. Preparation of Choroidal Whole Mounts
2.3. Pressurization of Choroidal Whole Mounts
2.4. Enzyme-Linked Immunosorbent Assay
2.5. Statistical Analysis
3. Results
3.1. Pressurization System
3.2. VIPchor Concentration
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guglielmone, R.; Cantino, D. Autonomic innervation of the ocular choroid membrane in the chicken: A fluorescence-histochemical and electron-microscopic study. Cell Tissue Res. 1982, 222, 417–431. [Google Scholar] [CrossRef]
- Bill, A. Effects of some neuropeptides on the uvea. Exp. Eye Res. 1991, 53, 3–11. [Google Scholar] [CrossRef]
- Cuthbertson, S.; Jackson, B.; Toledo, C.; Fitzgerald, M.E.; Shih, Y.F.; Zagvazdin, Y.; Reiner, A. Innervation of orbital and choroidal blood vessels by the pterygopalatine ganglion in pigeons. J. Comp. Neurol. 1997, 386, 422–442. [Google Scholar] [CrossRef]
- Kirby, M.L.; Diab, I.M.; Mattio, T.G. Development of adrenergic innervation of the iris and fluorescent ganglion cells in the choroid of the chick eye. Anat. Rec. 1978, 191, 311–319. [Google Scholar] [CrossRef]
- Bergua, A.; Mayer, B.; Neuhuber, W.L. Nitrergic and VIPergic neurons in the choroid and ciliary ganglion of the duck Anis carina. Anat. Embryol. 1996, 193, 239–248. [Google Scholar] [CrossRef]
- Bill, A.; Sperber, G.O. Control of retinal and choroidal blood flow. Eye 1990, 4 Pt 2, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Troger, J.; Kieselbach, G.; Teuchner, B.; Kralinger, M.; Nguyen, Q.A.; Haas, G.; Yayan, J.; Göttinger, W.; Schmid, E. Peptidergic nerves in the eye, their source and potential pathophysiological relevance. Brain Res. Rev. 2007, 53, 39–62. [Google Scholar] [CrossRef] [PubMed]
- Ten Tusscher, M.P.; Beckers, H.J.; Vrensen, G.F.; Klooster, J. Peripheral neural circuits regulating IOP? A review of its anatomical backbone. Doc. Ophthalmol. 1994, 87, 291–313. [Google Scholar] [CrossRef]
- McDougal, D.H.; Gamlin, P.D. Autonomic control of the eye. Compr. Physiol. 2015, 5, 439–473. [Google Scholar] [CrossRef] [Green Version]
- Lapalus, P.; Elena, P.P. Neurotransmitters and intraocular pressure. Fundam. Clin. Pharmacol. 1988, 2, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Stübinger, K.; Brehmer, A.; Neuhuber, W.L.; Reitsamer, H.; Nickla, D.; Schrödl, F. Intrinsic choroidal neurons in the chicken eye: Chemical coding and synaptic input. Histochem. Cell. Biol. 2010, 134, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, H. Ueber glatte Muskeln und Nervengeflechte der Choroidea im menschlichen Auge. Verh. Phys.-Med. Ges. Würzburg 1859, 10, 179–192. [Google Scholar]
- Miller, A.S.; Coster, D.J.; Costa, M.; Furness, J.B. Vasoactive intestinal polypeptide immunoreactive nerve fibres in the human eye. Aust. J. Ophthalmol. 1983, 11, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Flügel, C.; Tamm, E.R.; Mayer, B.; Lütjen-Drecoll, E. Species differences in choroidal vasodilative innervation: Evidence for specific intrinsic nitrergic and VIP-positive neurons in the human eye. Investig. Ophthalmol. Vis. Sci. 1994, 35, 592–599. [Google Scholar]
- Bergua, A.; Junemann, A.; Naumann, G.O. NADPH-D reactive choroid ganglion cells in the human. Klin. Monbl. Augenheilkd. 1993, 203, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Hohberger, B.; Jessberger, C.; Hermann, F.; Zenkel, M.; Kaser-Eichberger, A.; Bergua, A.; Junemann, A.G.; Schrodl, F.; Neuhuber, W. VIP changes during daytime in chicken intrinsic choroidal neurons. Exp. Eye Res. 2018, 170, 8–12. [Google Scholar] [CrossRef]
- Schrödl, F.; Brehmer, A.; Neuhuber, W.L. Intrinsic choroidal neurons in the duck eye express galanin. J. Comp. Neurol. 2000, 425, 24–33. [Google Scholar] [CrossRef]
- Triviño, A.; De Hoz, R.; Salazar, J.J.; Ramírez, A.I.; Rojas, B.; Ramírez, J.M. Distribution and organization of the nerve fiber and ganglion cells of the human choroid. Anat. Embryol. 2002, 205, 417–430. [Google Scholar] [CrossRef]
- Kolmer, W.; Lauber, H. Die Aderhaut (Chorioidea). In Haut Und Sinnesorgane: Auge; Kolmer, W., Lauber, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1936; pp. 91–134. [Google Scholar] [CrossRef]
- Schroedl, F. Neuropeptides in the Eye; Research Signpost: Thiruvananthapuram, India, 2009. [Google Scholar]
- Schroedl, F.; Egle De Stefano, M.; Reese, S.; Brehmer, A.; Neuhuber, W.L. Comparative anatomy of nitrergic intrinsic choroidal neurons (ICN) in various avian species. Exp. Eye Res. 2004, 78, 187–196. [Google Scholar] [CrossRef]
- Beatie, J.C.; Stilwell, D.L., Jr. Innervation of the eye. Anat. Rec. 1961, 141, 45–61. [Google Scholar] [CrossRef]
- Flügel-Koch, C.; Kaufman, P.; Lütjen-Drecoll, E. Association of a choroidal ganglion cell plexus with the fovea centralis. Investig. Ophthalmol. Vis. Sci. 1994, 35, 4268–4272. [Google Scholar]
- Schrödl, F.; Schweigert, M.; Brehmer, A.; Neuhuber, W.L. Intrinsic Neurons in the Duck Choroid are Contacted by CGRP-Immunoreactive Nerve Fibres: Evidence for a Local Pre-central Reflex Arc in the Eye. Exp. Eye Res. 2001, 72, 137–146. [Google Scholar] [CrossRef]
- May, C.A.; Neuhuber, W.; Lütjen-Drecoll, E. Immunohistochemical classification and functional morphology of human choroidal ganglion cells. Investig. Ophthalmol. Vis. Sci. 2004, 45, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Matsusaka, T. Cytoarchitecture of choroidal melanocytes. Exp. Eye Res. 1982, 35, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.A. Vasoactive intestinal polypeptide and the ocular innervation. Investig. Ophthalmol. Vis. Sci. 1986, 27, 951–957. [Google Scholar]
- Lütjen-Drecoll, E. Choroidal innervation in primate eyes. Exp. Eye Res. 2006, 82, 357–361. [Google Scholar] [CrossRef]
- Flügel-Koch, C.; May, C.A.; Lütjen-Drecoll, E. Presence of a contractile cell network in the human choroid. Ophthalmologica 1996, 210, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Nickla, D.L.; Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 2010, 29, 144–168. [Google Scholar] [CrossRef] [Green Version]
- Nickla, D.L.; Wildsoet, C.; Wallman, J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp. Eye Res. 1998, 66, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Nickla, D.L.; Wildsoet, C.; Wallman, J. A The circadian rhythm in intraocular pressure and its relation to diurnal ocular growth changes in chicks. Exp. Eye Res. 1998, 66, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.H.; Sit, A.J.; Weinreb, R.N. Variation of 24-hour intraocular pressure in healthy individuals: Right eye versus left eye. Ophthalmology 2005, 112, 1670–1675. [Google Scholar] [CrossRef]
- Henkind, P.; Leitman, M.; Weitzman, E. The diurnal curve in man: New observations. Investig. Ophthalmol. 1973, 12, 705–707. [Google Scholar]
- Frampton, P.; Da Rin, D.; Brown, B. Diurnal variation of intraocular pressure and the overriding effects of sleep. Am. J. Optom. Physiol. Opt. 1987, 64, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.G.; Johnson, E.C.; Morrison, J.C. Circadian rhythm of intraocular pressure in the rat. Curr. Eye Res. 1996, 15, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Del Sole, M.J.; Sande, P.H.; Bernades, J.M.; Aba, M.A.; Rosenstein, R.E. Circadian rhythm of intraocular pressure in cats. Vet. Ophthalmol. 2007, 10, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Hohberger, B. Inraocular Pressure Variations; A Risk Factor for Glaucoma. In Advances in Medicine and Biology; Berhardt, L.V., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2017; Volume 105. [Google Scholar]
- Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Depner, K.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar Schmidt, C.; Miranda Chueca, M.; et al. Slaughter of animals: Poultry. Efsa J. 2019, 17, e05849. [Google Scholar] [CrossRef] [Green Version]
- Federal Ministry of Food, Agriculture and Consumer Protection. Animal Welfare Act (Germany). 1972. Available online: https://www.animallaw.info/statute/germany-cruelty-german-animal-welfare-act (accessed on 20 March 2022).
- Terauchi, R.; Ogawa, S.; Noro, T.; Ito, K.; Kato, T.; Tatemichi, M.; Nakano, T. Seasonal Fluctuation in intraocular pressure and retinal nerve fiber layer thinning in primary open-angle glaucoma. Ophthalmol. Glaucoma 2021, 4, 373–381. [Google Scholar] [CrossRef]
- Acott, T.S.; Kelley, M.J.; Keller, K.E.; Vranka, J.A.; Abu-Hassan, D.W.; Li, X.; Aga, M.; Bradley, J.M. Intraocular pressure homeostasis: Maintaining balance in a high-pressure environment. J. Ocul. Pharmacol. Ther. 2014, 30, 94–101. [Google Scholar] [CrossRef]
- Wahl, C.; Li, T.; Howland, H.C. Intraocular pressure fluctuations of growing chick eyes are suppressed in constant light conditions. Exp. Eye Res. 2016, 148, 52–54. [Google Scholar] [CrossRef]
- Brown, J.S.; Flitcroft, D.I.; Ying, G.S.; Francis, E.L.; Schmid, G.F.; Quinn, G.E.; Stone, R.A. In vivo human choroidal thickness measurements: Evidence for diurnal fluctuations. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5–12. [Google Scholar] [CrossRef]
- Henning, R.J.; Sawmiller, D.R. Vasoactive intestinal peptide: Cardiovascular effects. Cardiovasc. Res. 2001, 49, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Akiba, Y.; Kaunitz, J.D. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: Focus on the gastrointestinal system. F1000Research 2019, 8, 1629. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, S.F.; Bill, A. Vasoactive intestinal polypeptide (VIP): Effects in the eye and on regional blood flows. Acta Physiol. Scand. 1984, 121, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.A.; Zambrano, S.; Anumolu, P.; Allen, A.C.; Sonoqui, L.; Moreno, M.R. Device-based in vitro techniques for mechanical stimulation of vascular cells: A review. J. Biomech. Eng. 2015, 137, 040801. [Google Scholar] [CrossRef]
- Brown, T.D. Techniques for mechanical stimulation of cells in vitro: A review. J. Biomech. 2000, 33, 3–14. [Google Scholar] [CrossRef]
- Hasel, C.; Dürr, S.; Brüderlein, S.; Melzner, I.; Möller, P. A cell-culture system for long-term maintenance of elevated hydrostatic pressure with the option of additional tension. J. Biomech. 2002, 35, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Wisely, C.E.; Sayed, J.A.; Tamez, H.; Zelinka, C.; Abdel-Rahman, M.H.; Fischer, A.J.; Cebulla, C.M. The chick eye in vision research: An excellent model for the study of ocular disease. Prog. Retin. Eye Res. 2017, 61, 72–97. [Google Scholar] [CrossRef]
- Bouhenni, R.A.; Dunmire, J.; Sewell, A.; Edward, D.P. Animal models of glaucoma. J. Biomed. Biotechnol. 2012, 2012, 692609. [Google Scholar] [CrossRef] [Green Version]
- Jensen, L.S.; Matson, W.E. Enlargement of avian eye by subjecting chicks to continuous incandescent illumination. Science 1957, 125, 741. [Google Scholar] [CrossRef]
- Lauber, J.K.; Shutze Jv Mcginnis, J. Effects of exposure to continuous light on the eye of the growing chick. Proc. Soc. Exp. Biol. Med. 1961, 106, 871–872. [Google Scholar] [CrossRef]
- Smith, M.E.; Becker, B.; Podos, S. Light-induced angle-closure glaucoma in the domestic fowl. Investig. Ophthalmol. 1969, 8, 213–221. [Google Scholar]
- Kinnear, A.; Lauber, J.K.; Boyd, T.A. Genesis of light-induced avian glaucoma. Investig. Ophthalmol. 1974, 13, 872–875. [Google Scholar]
- Schrödl, F.; Tines, R.; Brehmer, A.; Neuhuber, W.L. Intrinsic choroidal neurons in the duck eye receive sympathetic input: Anatomical evidence for adrenergic modulation of nitrergic functions in the choroid. Cell Tissue Res. 2001, 304, 175–184. [Google Scholar] [CrossRef]
- Neuhuber, W.; Schrödl, F. Autonomic control of the eye and the iris. Auton. Neurosci. 2011, 165, 67–79. [Google Scholar] [CrossRef]
- Furness, J.B. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 2000, 81, 87–96. [Google Scholar] [CrossRef]
- Schrödl, F.; De Laet, A.; Tassignon, M.J.; Van Bogaert, P.P.; Brehmer, A.; Neuhuber, W.L.; Timmermans, J.P. Intrinsic choroidal neurons in the human eye: Projections, targets, and basic electrophysiological data. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3705–3712. [Google Scholar] [CrossRef] [Green Version]
- Papastergiou, G.I.; Schmid, G.F.; Riva, C.E.; Mendel, M.J.; Stone, R.A.; Laties, A.M. Ocular axial length and choroidal thickness in newly hatched chicks and one-year-old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes. Exp. Eye Res. 1998, 66, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Said, S.I.; Mutt, V. Polypeptide with broad biological activity: Isolation from small intestine. Science 1970, 169, 1217–1218. [Google Scholar] [CrossRef]
- Takei, Y. Chapter 18—Secretin (Pituitary Adenylate Cyclase-Activating Polypeptide) Family. In Handbook of Hormones; Takei, Y., Ando, H., Tsutsui, K., Eds.; Academic Press: San Diego, Chile, 2016; pp. 140–141, e18-1–e18-2. [Google Scholar] [CrossRef]
- Tsukada, T.; Horovitch, S.J.; Montminy, M.R.; Mandel, G.; Goodman, R.H. Structure of the human vasoactive intestinal polypeptide gene. DNA 1985, 4, 293–300. [Google Scholar] [CrossRef]
- Itoh, N.; Obata, K.; Yanaihara, N.; Okamoto, H. Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 1983, 304, 547–549. [Google Scholar] [CrossRef]
- Fahrenkrug, J. VIP and PACAP. Results Probl. Cell. Differ. 2010, 50, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, H.; Fujimori, N.; Ito, T.; Nakamura, T.; Oono, T.; Nakamura, K.; Suzuki, K.; Jensen, R.; Takayanagi, R. Vasoactive Intestinal Peptide (VIP) and VIP Receptors-Elucidation of Structure and Function for Therapeutic Applications. Int. J. Clin. Med. 2011, 2, 500–508. [Google Scholar] [CrossRef] [Green Version]
- Tatemoto, K.; Mutt, V. Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the glucagon--secretin family. Proc. Natl. Acad. Sci. USA 1981, 78, 6603–6607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bataille, D.; Gespach, C.; Laburthe, M.; Amiranoff, B.; Tatemoto, K.; Vauclin, N.; Mutt, V.; Rosselin, G. Porcine peptide having N-terminal histidine and C-terminal isoleucine amide (PHI). FEBS Lett. 1980, 114, 240–242. [Google Scholar] [CrossRef] [Green Version]
- Langer, I.; Jeandriens, J.; Couvineau, A.; Sanmukh, S.; Latek, D. Signal Transduction by VIP and PACAP Receptors. Biomedicines 2022, 10, 406. [Google Scholar] [CrossRef]
- Fahrenkrug, J. Transmitter role of vasoactive intestinal peptide. Pharm. Toxicol. 1993, 72, 354–363. [Google Scholar] [CrossRef]
- Gozes, I.; Brenneman, D.E. VIP: Molecular biology and neurobiological function. Mol. Neurobiol. 1989, 3, 201–236. [Google Scholar] [CrossRef]
- Weick, R.F.; Stobie, K.M. Role of VIP in the regulation of LH secretion in the female rat. Neurosci. Biobehav. Rev. 1995, 19, 251–259. [Google Scholar] [CrossRef]
- Gozes, I.; Shani, Y.; Rostène, W.H. Developmental expression of the VIP-gene in brain and intestine. Brain Res. 1987, 388, 137–148. [Google Scholar] [CrossRef]
- Talbot, J.; Hahn, P.; Kroehling, L.; Nguyen, H.; Li, D.; Littman, D.R. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature 2020, 579, 575–580. [Google Scholar] [CrossRef]
- Asano, S.; Yamasaka, M.; Ozasa, K.; Sakamoto, K.; Hayata-Takano, A.; Nakazawa, T.; Hashimoto, H.; Waschek, J.A.; Ago, Y. Vasoactive intestinal peptide-VIPR2 signaling regulates tumor cell migration. Front. Oncol. 2022, 12, 852358. [Google Scholar] [CrossRef]
- Siddappa, P.K.; Vege, S.S. Vasoactive Intestinal Peptide-Secreting Tumors: A Review. Pancreas 2019, 48, 1119–1125. [Google Scholar] [CrossRef]
- Ravindranathan, S.; Passang, T.; Li, J.M.; Wang, S.; Dhamsania, R.; Ware, M.B.; Zaidi, M.Y.; Zhu, J.; Cardenas, M.; Liu, Y.; et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat. Commun. 2022, 13, 6418. [Google Scholar] [CrossRef]
- Gurusamy, M.; Tischner, D.; Shao, J.; Klatt, S.; Zukunft, S.; Bonnavion, R.; Günther, S.; Siebenbrodt, K.; Kestner, R.I.; Kuhlmann, T.; et al. G-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4 T cell migration through autocrine/paracrine mediators. Nat. Commun. 2021, 12, 6798. [Google Scholar] [CrossRef]
- Sun, C.; Wang, B.; Hao, S. Adenosine-A2A Receptor Pathway in Cancer Immunotherapy. Front. Immunol. 2022, 13, 837230. [Google Scholar] [CrossRef]
- Boularan, C.; Kehrl, J.H. Implications of non-canonical G-protein signaling for the immune system. Cell Signal. 2014, 26, 1269–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodman, E.C.; Read, S.A.; Collins, M.J. Axial length and choroidal thickness changes accompanying prolonged accommodation in myopes and emmetropes. Vis. Res. 2012, 72, 34–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodman-Pieterse, E.C.; Read, S.A.; Collins, M.J.; Alonso-Caneiro, D. Regional Changes in Choroidal Thickness Associated With Accommodation. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6414–6422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisht, K.; Okojie, K.A.; Sharma, K.; Lentferink, D.H.; Sun, Y.Y.; Chen, H.R.; Uweru, J.O.; Amancherla, S.; Calcuttawala, Z.; Campos-Salazar, A.B.; et al. Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice. Nat. Commun. 2021, 12, 5289. [Google Scholar] [CrossRef]
- Reiner, A.; Fitzgerald, M.E.C.; Del Mar, N.; Li, C. Neural control of choroidal blood flow. Prog. Retin. Eye Res. 2018, 64, 96–130. [Google Scholar] [CrossRef] [PubMed]
- Goharian, I.; Sehi, M. Is There Any Role for the Choroid in Glaucoma? J. Glaucoma 2016, 25, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, H.A.; Friedman, D.S.; Congdon, N.G. Possible mechanisms of primary angle-closure and malignant glaucoma. J. Glaucoma 2003, 12, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Jiang, R.; Ren, X.L.; Chen, J.D.; Shi, H.L.; Xu, L.; Wei, W.B.; Jonas, J.B. Intraocular pressure elevation and choroidal thinning. Br. J. Ophthalmol. 2016, 100, 1676–1681. [Google Scholar] [CrossRef]
- Zhang, X.; Cole, E.; Pillar, A.; Lane, M.; Waheed, N.; Adhi, M.; Magder, L.; Quigley, H.; Saeedi, O. The Effect of Change in Intraocular Pressure on Choroidal Structure in Glaucomatous Eyes. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3278–3285. [Google Scholar] [CrossRef] [Green Version]
- Usui, S.; Ikuno, Y.; Uematsu, S.; Morimoto, Y.; Yasuno, Y.; Otori, Y. Changes in axial length and choroidal thickness after intraocular pressure reduction resulting from trabeculectomy. Clin. Ophthalmol. 2013, 7, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Bayraktar, S.; İpek, A.; Takmaz, T.; Yildiz Tasci, Y.; Gezer, M.C. Ocular blood flow and choroidal thickness in ocular hypertension. Int. Ophthalmol. 2022, 42, 1357–1368. [Google Scholar] [CrossRef]
- Hata, M.; Hirose, F.; Oishi, A.; Hirami, Y.; Kurimoto, Y. Changes in choroidal thickness and optical axial length accompanying intraocular pressure increase. Jpn. J. Ophthalmol. 2012, 56, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, W.; Gao, X.; Li, Z.; Huang, W.; Li, X.; Zhou, M.; Zhang, X. Changes in Choroidal Thickness After Trabeculectomy in Primary Angle Closure Glaucoma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2608–2613. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, O.; Pillar, A.; Jefferys, J.; Arora, K.; Friedman, D.; Quigley, H. Change in choroidal thickness and axial length with change in intraocular pressure after trabeculectomy. Br. J. Ophthalmol. 2014, 98, 976–979. [Google Scholar] [CrossRef]
- Kadziauskiene, A.; Kuoliene, K.; Asoklis, R.; Lesinskas, E.; Schmetterer, L. Changes in choroidal thickness after intraocular pressure reduction following trabeculectomy. Acta Ophthalmol. 2016, 94, 586–591. [Google Scholar] [CrossRef] [Green Version]
- Kara, N.; Baz, O.; Altan, C.; Satana, B.; Kurt, T.; Demirok, A. Changes in choroidal thickness, axial length, and ocular perfusion pressure accompanying successful glaucoma filtration surgery. Eye 2013, 27, 940–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group (n) | Time (Hour) | Pressure (mmHg) | VIP (Mean ± SD) | Fold Change | p-Value |
---|---|---|---|---|---|
Control (20) | compounded | ambient | 20.69 ± 3.24 | ||
Pressure (20) | 40 | 30.09 ± 7.18 | 1.45 | <0.0001 | |
Control (10) | 24 | ambient | 20.76 ± 4.06 | ||
Pressure (10) | 24 | 40 | 28.42 ± 6.03 | 1.37 | 0.005 |
Control (10) | 72 | ambient | 20.61 ± 2.12 | ||
Pressure (10) | 72 | 40 | 31.77 ± 7.82 | 1.54 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Privalov, E.; Zenkel, M.; Schloetzer-Schrehardt, U.; Kuerten, S.; Bergua, A.; Hohberger, B. Pressure-Dependent Elevation of Vasoactive Intestinal Peptide Level in Chicken Choroid. Biology 2023, 12, 495. https://doi.org/10.3390/biology12040495
Privalov E, Zenkel M, Schloetzer-Schrehardt U, Kuerten S, Bergua A, Hohberger B. Pressure-Dependent Elevation of Vasoactive Intestinal Peptide Level in Chicken Choroid. Biology. 2023; 12(4):495. https://doi.org/10.3390/biology12040495
Chicago/Turabian StylePrivalov, Evgeny, Matthias Zenkel, Ursula Schloetzer-Schrehardt, Stefanie Kuerten, Antonio Bergua, and Bettina Hohberger. 2023. "Pressure-Dependent Elevation of Vasoactive Intestinal Peptide Level in Chicken Choroid" Biology 12, no. 4: 495. https://doi.org/10.3390/biology12040495
APA StylePrivalov, E., Zenkel, M., Schloetzer-Schrehardt, U., Kuerten, S., Bergua, A., & Hohberger, B. (2023). Pressure-Dependent Elevation of Vasoactive Intestinal Peptide Level in Chicken Choroid. Biology, 12(4), 495. https://doi.org/10.3390/biology12040495