Complete Mitochondrial Genomes of Four Pelodiscus sinensis Strains and Comparison with Other Trionychidae Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Information
2.2. DNA Extraction, Sequencing, and Assembly
2.3. Mitogenome Annotation and Sequence Analysis
2.4. Structural Analyses of Mitogenome and Prediction of Repeat Element
2.5. Construction of Phylogenetic Tree
3. Results and Discussion
3.1. Analysis of Mitogenome Features
3.2. Nucleotide Composition and Variation Detection
3.3. Nucleotide Diversity and Selection Pressures
3.4. Comparative Analysis of tRNA Secondary Structure
3.5. Comparative Analysis of Control Region
3.6. Phylogenetic Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Qi, Z.; Yang, Z. Evaluation of the protein requirement of juvenile Chinese soft-shelled turtle (Pelodiscus sinensis, Wiegmann) fed with practical diets. Aquaculture 2014, 433, 252–255. [Google Scholar] [CrossRef]
- Wu, B.; Huang, L.; Chen, J.; Zhang, Y.; Wang, J.; He, J. Gut microbiota of homologous Chinese soft-shell turtles (Pelodiscus sinensis) in different habitats. BMC Microbiol. 2021, 21, 142. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Li, W.; Guo, N.; Tong, C.; Zhou, Y.; Fang, W.; Li, X. Identification and functional analysis of interleukin-1β in the Chinese Soft-Shelled Turtle Pelodiscus sinensis . Genes 2016, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, R.; Zhang, Z.; Guan, Y. Physiological and transcriptional analysis of Chinese soft-shelled turtle (Pelodiscus sinensis) in response to acute nitrite stress. Aquat. Toxicol. 2021, 237, 105899. [Google Scholar] [CrossRef]
- Fritz, U.; Gong, S.; Auer, M.; Kuchling, G.; Schneeweiß, N.; Hundsdörfer, A.K. The world’s economically most important chelonians represent a diverse species complex (Testudines: Trionychidae: Pelodiscus). Org. Divers. Evol. 2010, 10, 227–242. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, X.J.; Zhang, H.Q.; Mu, C.K.; He, Z.Y.; Wang, C.L. PCR-RFLP identification of four Chinese soft-shelled turtle Pelodiscus sinensis strains using mitochondrial genes. Mitochondr. DNA 2014, 26, 538–543. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhang, H.Q.; Lv, S.J.; Lin, F.; Liu, L.; Yuan, X.M.; Su, S.Q. Isolation and identification of pathogen causing “head-shaking syndrome” of Pelodiscus sinensis nigrum and drug susceptibility analysis. Ocean. Limn. Sinica 2020, 51, 405–414. (In Chinese) [Google Scholar]
- FAO. Fisheries and Aquaculture; FAO Yearbook Fishery and Aquaculture Statistics 2022; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Zhang, J.; Zhou, Q.; Yang, X.; Yu, P.; Zhou, W.; Gui, Y.; Ouyang, X.; Wan, Q. Characterization of the complete mitochondrial genome and phylogenetic analysis of Pelodiscus sinensis, a mutant Chinese soft-shell turtle. Conserv. Genet. Resour. 2019, 11, 279–282. [Google Scholar] [CrossRef]
- Zeng, D.; Li, X.; Wang, X.Q.; Xiong, G. Development of SNP markers associated with growth-related genes of Pelodiscus sinensis . Conserv. Genet. Resour. 2020, 12, 87–92. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.; Jiang, Y.L.; Hou, G.J.; Cheng, Y.S.; Chen, H.L.; Li, X. Modern greenhouse culture of juvenile soft-shelled turtle, Pelodiscus sinensis . Aquacult. Int. 2017, 25, 1607–1624. [Google Scholar] [CrossRef]
- Dong, C.; Jia, Y.; Han, M.; Chen, W.; Mou, D.; Feng, C.; Jia, J.; Liu, X. Phylogenetic analysis of eight species of Anomopoda based on transcriptomic and mitochondrial DNA sequences. Gene 2021, 787, 145639. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.; Raj, K.K.; Murali, T.S.; Satyamoorthy, K. Species-specific genomic sequences for classification of bacteria. Comput. Biol. Med. 2020, 123, 103874. [Google Scholar] [CrossRef] [PubMed]
- Severn-Ellis, A.A.; Scheben, A.; Neik, T.X.; Saad, N.S.M.; Pradhan, A.; Batley, J. Genotyping for Species Identification and Diversity Assessment Using Double-Digest Restriction Site-Associated DNA Sequencing (ddRAD-Seq). Methods Mol. Biol. 2020, 2107, 159–187. [Google Scholar] [PubMed]
- Ling, F.; Yoshida, M. Rolling-Circle Replication in Mitochondrial DNA Inheritance: Scientific Evidence and Significance from Yeast to Human Cells. Genes 2020, 11, 514. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Li, Q.; Zhang, T.; Dong, B.; Liang, X.; Fu, S.; Yu, J. Genetic Diversity Analysis of the Chinese Daur Ethnic Group in Heilongjiang Province by Complete Mitochondrial Genome Sequencing. Front. Genet. 2022, 13, 919063. [Google Scholar] [CrossRef]
- Wang, H.; Chen, M.; Chen, C.; Fang, Y.; Cui, W.; Lei, F.; Zhu, B. Genetic Background of Kirgiz Ethnic Group from Northwest China Revealed by Mitochondrial DNA Control Region Sequences on Massively Parallel Sequencing. Front. Genet. 2022, 13, 729514. [Google Scholar] [CrossRef]
- Changbunjong, T.; Bhusri, B.; Sedwisai, P.; Weluwanarak, T.; Nitiyamatawat, E.; Chareonviriyaphap, T.; Ruangsittichai, J. Species identification of horse flies (Diptera: Tabanidae) in Thailand using DNA barcoding. Vet. Parasitol. 2018, 259, 35–43. [Google Scholar] [CrossRef]
- Yang, X.; Wen, H.; Luo, T.; Zhou, J. Complete mitochondrial genome of Triplophysa nasobarbatula . Mitochondrial DNA B Resour. 2020, 5, 3771–3772. [Google Scholar] [CrossRef]
- Zhou, S.B.; Zhang, Z.B.; Zhang, Z.H.; Liu, X.Y.; Guan, P.; Qu, B. The complete mitochondrial genome sequence of Sinomicrurus peinani (Serpentes: Elapidae). Mitochondrial DNA B Resour. 2022, 7, 964–966. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Li, G.; Tang, Y.; Wen, Y.; Li, X.; Wang, M.; Liu, J.; Peng, L.; Xiao, Y.; et al. Cloning and genetic diversity analysis of mitochondrial cytochrome b in Hanshou Trionyx sinensis . Acta Laser Biol. Sinica 2018, 27, 359–366. (In Chinese) [Google Scholar]
- Liang, H.; Cao, L.; Luo, X.; Zhu, C.; Cui, F.; Zou, G. Genetic diversity of three Pelodiscus sinensis strains based on COI gene sequence. Genom. Appl. Biol. 2021, 40, 2908–2915. (In Chinese) [Google Scholar]
- Li, L.; Tan, S.; Wang, B.; Xu, J.; Han, X. Genetic Diversity of Three different populations of soft-shelled turtle Trionyx sinensis using mitochondrial D-loop gene. Chin. J. Fish. 2020, 33, 7–11. (In Chinese) [Google Scholar]
- Chen, H.G.; Liu, W.B.; Zhang, X.J. Comparative analysis of mitochondrial DNA 12S rRNA region between Pelodiscus sinensis and Pelodiscus axenaria and their molecular marker for identification. Chin. J. Fish. 2005, 29, 318–322. (In Chinese) [Google Scholar]
- Cao, J.; Guo, X.; Guo, C.; Wang, X.; Wang, Y.; Yan, F. Complete mitochondrial genome of Malenka flexura (Plecoptera: Nemouridae) and phylogenetic analysis. Genes 2022, 13, 911. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, R.; Ma, P.; Li, C. Complete mitochondrial genome of Cultellus attenuatus and its phylogenetic implications. Mol. Biol. Rep. 2022, 49, 8163–8168. [Google Scholar] [CrossRef]
- Singh, V.K.; Mangalam, A.K.; Dwivedi, S.; Naik, S. Primer premier: Program for design of degenerate primers from a protein sequence. Biotechniques 1998, 24, 318–319. [Google Scholar] [CrossRef] [Green Version]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Sym. Ser. 1999, 41, 95–98. [Google Scholar]
- Burland, T.G. DNASTAR’s Lasergene sequence analysis software. Methods Mol. Biol. 2000, 132, 71–91. [Google Scholar]
- Laslett, D.; Canbäck, B. ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 2008, 24, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Drechsel, O.; Bock, R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 2007, 52, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.H. Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res. 1986, 14, 7737–7749. [Google Scholar] [CrossRef] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Zheng, H.; Zhong, Z.; Shi, M.; Zhang, L.; Lin, L.; Hong, Y.; Fang, T.; Zhu, Y.; Guo, J.; Zhang, L.; et al. Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass. BMC Genom. 2018, 19, 927. [Google Scholar] [CrossRef] [Green Version]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef]
- Reuter, J.S.; Mathews, D.H. RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinform. 2010, 11, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Teslenko, M.; Van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.; Von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [Green Version]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Wang, M.; Li, D.; Tang, S.; Zhang, T.; Bian, W.; Chen, X. Complete mitochondrial genome of freshwater goby Rhinogobius cliffordpopei (Perciformes, Gobiidae): Genome characterization and phylogenetic analysis. Genes Genom. 2018, 40, 1137–1148. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, P.D.; Zhang, D.Z.; Zhang, H.B.; Tang, B.P.; Liu, Q.N.; Dai, L.S. Mitochondrial genome of the yellow catfish Pelteobagrus fulvidraco and insights into Bagridae phylogenetics. Genomics 2019, 111, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Kumar, V.; Tyagi, K.; Chakraborty, R.; Singha, D.; Rahaman, I.; Pakrashi, A.; Chandra, K. Complete mitochondrial genome of Black Soft-shell Turtle (Nilssonia nigricans) and comparative analysis with other Trionychidae. Sci. Rep. 2018, 8, 17378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jungt, S.O.; Lee, Y.M.; Kartavtsev, Y.; Park, I.S.; Kim, D.S.; Lee, J.S. The complete mitochondrial genome of the Korean soft-shelled turtle Pelodiscus sinensis (Testudines, Trionychidae). DNA Seq. 2006, 17, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Parham, J.F.; Macey, J.R.; Papenfuss, T.J.; Feldman, C.R.; Türkozan, O.; Polymeni, R.; Boore, J. The phylogeny of Mediterranean tortoises and their close relatives based on complete mitochondrial genome sequences from museum specimens. Mol. Phylogenet. Evol. 2006, 38, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.L.; Pu, Y.G.; Wang, Z.F.; Nie, L.W. Complete Mitochondrial Genome Sequence Analysis of Chinese Softshell Turtle (Pelodiscus sinensis). Chin. J. Biochem. Mol. Biol. 2005, 21, 591–596. (In Chinese) [Google Scholar]
- Osawa, S.; Ohama, T.; Jukes, T.H.; Watanabe, K. Evolution of the mitochondrial genetic code. I. Origin of AGR serine and stop codons in metazoan mitochondria. J. Mol. Evol. 1989, 29, 202–207. [Google Scholar] [CrossRef]
- Turanov, S.V.; Lee, Y.H.; Kartavtsev, Y.P. Structure, evolution and phylogenetic informativeness of eelpouts (Cottoidei: Zoarcales) mitochondrial control region sequences. Mitochondrial DNA A DNA Mapp. Seq. Anal. 2019, 30, 264–272. [Google Scholar] [CrossRef]
- Gupta, M.K.; Vadde, R. Genetic Basis of Adaptation and Maladaptation via Balancing Selection. Zoology 2019, 136, 125693. [Google Scholar] [CrossRef]
- Maruki, T.; Kumar, S.; Kim, Y. Purifying selection modulates the estimates of population differentiation and confounds genome-wide comparisons across single-nucleotide polymorphisms. Mol. Biol. Evol. 2012, 29, 3617–3623. [Google Scholar] [CrossRef] [Green Version]
- Cvijović, I.; Good, B.H.; Desai, M.M. The Effect of Strong Purifying Selection on Genetic Diversity. Genetics 2018, 209, 1235–1278. [Google Scholar] [CrossRef] [Green Version]
- Zardoya, R.; Meyer, A. Complete mitochondrial genome suggests diapsid affinities of turtles. Proc. Natl. Acad. Sci. USA 1998, 95, 14226–14231. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y.; Chang, Y.W.; Zheng, S.Z.; Lu, M.X.; Du, Y.Z. Comparative analysis of the Liriomyza chinensis mitochondrial genome with other Agromyzids reveals conserved genome features. Sci. Rep. 2018, 8, 8850. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.H.; Tu, F.Y. Characterization and evolution of the mitochondrial DNA control region in Ranidae and their phylogenetic relationship. Genet. Mol. Res. 2016, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Crochet, P.A.; Desmarais, E. Slow rate of evolution in the mitochondrial control region of gulls (Aves: Laridae). Mol. Biol. Evol. 2000, 17, 1797–1806. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.J.; Zhang, H.Q.; He, Z.Y. Sequence Composition of mitochondrial 12S rRNA genes between two varieties of Pelodiscus sinensis . J. Econ. Anim. 2012, 16, 163–167. (In Chinese) [Google Scholar]
- Wang, L.; Zhou, X.; Nie, L.; Xia, X.; Liu, L.; Jiang, Y.; Huang, Z.; Jing, W. The complete mitochondrial genome sequences of Chelodina rugosa and Chelus fimbriata (Pleurodira: Chelidae): Implications of a common absence of initiation sites (O(L)) in pleurodiran turtles. Mol. Biol. Rep. 2012, 39, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Escalona, T.; Weadick, C.J.; Antunes, A. Adaptive patterns of mitogenome evolution are associated with the loss of shell scutes in Turtles. Mol. Biol. Evol. 2017, 34, 2522–2536. [Google Scholar] [CrossRef] [Green Version]
Forward | Primer Sequence (5′ to 3′) | Reverse | Primer Sequence (5′ to 3′) | Product Length |
---|---|---|---|---|
Mt-1F | AGTGAAAATGCCCTAAAAGTCACATC | Mt-1R | ATACTTATTGTTGCTAGGGGCTATGT | 2000 bp |
Mt-2F | AATAACAGATGGGGTAAGTCGTAACA | Mt-2R | GTGAAGAAGGCTACAGCAATTAAGAT | 2000 bp |
Mt-3F | GAGTTCAGACCGGAGC AATCCA | Mt-3R | CAGTTCCTGCGCCTGTTTCAAT | 3500 bp |
Mt-4F | CTACATGGTTTGATAAGAAGGGGAGT | Mt-4R | ATTGGTGATATTGCGTCTTGAAATCC | 2000 bp |
Mt-5F | CACTACACCAAACCTGAACCAAAGTA | Mt-5R | GATTGTGAATGGTGCTTCGTAGTATTC | 2500 bp |
Mt-6F | CACACAACTATCAATGAACATAGCAC | Mt-6R | TGAACTGAAATTGAATGATTGGAAGT | 1500 bp |
Mt-7F | AGTCTATGGCTCCACATTCTTCGT | Mt-7R | TAGGTTCCAGCATTTAGTCGTTCT | 1500 bp |
Mt-8F | AGAACCCCTATCACGAAAACGAAC | Mt-8R | GCTATTTTTACGGCGGTTTTTGGT | 1500 bp |
Mt-9F | AATCTCCTTATAAACCGAGAAGGT | Mt-9R | AGATTTAGTTCGTGGTTTGGCT | 1500 bp |
Mt-10F | ATCATTGCAGGACTACTAATCTCATCA | Mt-10R | ATTTCATCAGATGGAGATGTTAGATGGA | 2000 bp |
Mt-11F | GTCAACGCCACAGAATAAGC | Mt-11R | ATTCCGGTTTTGGGGATCGG | 1000 bp |
Mt-12F | GCCCTATCACCCAAACACTATTCT | Mt-12R | CAGTTTCATTGAGTTGGCAGACAT | 1500 bp |
Mt-13F | AACCCTTGTTAGTAAGATAC | Mt-13R | CGTTGTTATTGTTGCTTTGG | 1500 bp |
Mt-14F | TCCATTGACAGTTGGCGTAC | Mt-14R | CTATAACTAAGTCAAGCTTATGC | 1500 bp |
Mt-15F | ACCAATCTCAAACATAATTG | Mt-15R | GAGATTTACCAACCCTGAATG | 2200 bp |
Mt-16F | CAGAGCCAGGTAATCAATGC | Mt-16R | CAACTATACCTGCTCAGGCAC | 2700 bp |
Mt-17F | TCTGAGAAGCATTCTCATCA | Mt-17R | GTAAACTAATAGTTTCGATG | 1500 bp |
Mt-18F | GAACCACAACCTCTTGGTGC | Mt-18R | GGTAAGAAGGAGTATGGTGATTG | 1800 bp |
Mt-19F | ACCAATCTCAAACATAATCG | Mt-19R | CTGGCACGAGATTTACCAAC | 1500 bp |
Mitochondrial Elements | Qingxi Huabie (HB) Strain | Jiangxi (JB) Strain | Japanese (RB) Strain | Qingxi Wubie (WB) Strain | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length (bp) | Intergenic Nucleotides (bp) * | Start Codon | Stop Codon | Length (bp) | Intergenic Nucleotides (bp) * | Start Codon | Stop Codon | Length (bp) | Intergenic Nucleotides (bp) * | Start Codon | Stop Codon | Length (bp) | Intergenic Nucleotides (bp) * | Start Codon | Stop Codon | |
tRNAPhe | 69 | 0 | 70 | 0 | 70 | 0 | 69 | 0 | ||||||||
12SrRNA | 979 | 0 | 979 | 0 | 980 | 0 | 979 | 0 | ||||||||
tRNAVal | 70 | 0 | 70 | 0 | 70 | 0 | 70 | 0 | ||||||||
16SrRNA | 1602 | 0 | 1604 | 0 | 1605 | 0 | 1603 | 0 | ||||||||
tRNALeu | 77 | 0 | 77 | 0 | 77 | 0 | 77 | 0 | ||||||||
NAD1 | 971 | 0 | ATG | TAG | 971 | 0 | ATG | TAG | 971 | 0 | ATG | TAG | 971 | 0 | ATG | TAG |
tRNAIle | 70 | −1 | 70 | −1 | 70 | −1 | 70 | −1 | ||||||||
tRNAGln | 71 | 9 | 71 | 9 | 71 | 9 | 71 | 9 | ||||||||
tRNAMet | 69 | 0 | 69 | 0 | 69 | 0 | 69 | 0 | ||||||||
NAD2 | 1039 | 0 | ATG | TAG | 1039 | 0 | ATG | TAG | 1039 | 0 | ATG | TAG | 1039 | 0 | ATG | TAG |
tRNATrp | 73 | 11 | 73 | 11 | 73 | 11 | 73 | 11 | ||||||||
tRNAAla | 69 | 1 | 69 | 1 | 69 | 1 | 69 | 1 | ||||||||
tRNAAsn | 74 | −1 | 74 | −1 | 74 | −1 | 74 | −1 | ||||||||
OL | 34 | −2 | 34 | −2 | 34 | −2 | 34 | −2 | ||||||||
tRNACys | 65 | 0 | 65 | 0 | 65 | 0 | 65 | 0 | ||||||||
tRNATyr | 66 | 1 | 66 | 1 | 66 | 1 | 66 | 1 | ||||||||
COX1 | 1545 | −5 | GTG | AGA | 1545 | −5 | GTG | AGA | 1545 | −5 | GTG | AGA | 1545 | −5 | GTG | AGA |
tRNASer | 71 | 1 | 71 | 1 | 71 | 1 | 71 | 1 | ||||||||
tRNAAsp | 69 | 0 | 69 | 0 | 69 | 0 | 69 | 0 | ||||||||
COX2 | 687 | 1 | ATG | TAA | 687 | 1 | ATG | TAA | 687 | 1 | ATG | TAA | 687 | 1 | ATG | TAA |
tRNALys | 73 | 1 | 73 | 1 | 73 | 1 | 73 | 1 | ||||||||
ATP8 | 165 | −10 | ATG | TAA | 165 | −10 | ATG | TAA | 165 | −10 | ATG | TAA | 165 | −10 | ATG | TAA |
ATP6 | 683 | 0 | ATG | TAA | 683 | 0 | ATG | TAA | 683 | 0 | ATG | TAA | 683 | 0 | ATG | TAA |
COX3 | 784 | 0 | ATG | T | 784 | 0 | ATG | T | 784 | 0 | ATG | T | 784 | 0 | ATG | T |
tRNAGly | 70 | 0 | 70 | 0 | 70 | 0 | 70 | 0 | ||||||||
NAD3 | 352 | −2 | ATG | TAG | 350 | 0 | ATG | T | 350 | 0 | ATG | T | 350 | 0 | ATG | TAG |
tRNAArg | 70 | 0 | 70 | 0 | 71 | 0 | 70 | 0 | ||||||||
NAD4L | 297 | −7 | ATG | TAA | 297 | −7 | ATG | TAA | 297 | −7 | ATG | TAA | 297 | −7 | ATG | TAA |
NAD4 | 1381 | 0 | ATG | T | 1381 | 0 | ATG | T | 1381 | 0 | ATG | T | 1381 | 0 | ATG | T |
tRNAHis | 70 | 0 | 70 | 0 | 70 | 0 | 70 | 0 | ||||||||
tRNASer | 62 | −1 | 62 | −1 | 62 | −1 | 62 | −1 | ||||||||
tRNALeu | 74 | 0 | 74 | 0 | 74 | 0 | 74 | 0 | ||||||||
NAD5 | 1779 | −5 | ATG | TAA | 1779 | −5 | ATG | TAA | 1779 | −5 | ATG | TAA | 1779 | −5 | ATG | TAA |
NAD6 | 525 | 0 | ATG | AGG | 525 | 0 | ATG | AGG | 525 | 0 | ATG | AGG | 525 | 0 | ATG | AGG |
tRNAGlu | 68 | 3 | 68 | 3 | 68 | 3 | 68 | 3 | ||||||||
Cytb | 1140 | 3 | ATG | TAA | 1140 | 3 | ATG | TAA | 1140 | 3 | ATG | TAA | 1140 | 3 | ATG | TAA |
tRNAThr | 74 | 14 | 74 | 14 | 74 | 13 | 74 | 14 | ||||||||
tRNAPro | 71 | 0 | 71 | 0 | 71 | 0 | 71 | 0 | ||||||||
D-loop | 1597 | 1660 | 1711 | 1699 |
Mitochondrial Elements | Average Base Composition (%) | Average AT-Skew | Average GC-Skew | |||||
---|---|---|---|---|---|---|---|---|
T (U) | C | A | G | A + T | G + C | |||
tRNAs | 28.21 | 21.67 | 34.90 | 15.22 | 63.11 | 36.89 | 0.11 | −0.17 |
rRNAs | 22.16 | 22.45 | 39.24 | 16.16 | 61.40 | 38.61 | 0.28 | −0.16 |
D-loop | 31.78 | 25.70 | 32.54 | 9.99 | 64.32 | 35.69 | 0.01 | −0.44 |
ATP6 | 30.34 | 24.71 | 36.37 | 8.59 | 66.71 | 33.30 | 0.09 | −0.48 |
ATP8 | 29.55 | 25.00 | 40.76 | 4.70 | 70.31 | 29.7 | 0.16 | −0.68 |
COX1 | 30.91 | 23.53 | 29.92 | 15.65 | 60.83 | 39.18 | −0.02 | −0.20 |
COX2 | 27.62 | 23.94 | 36.64 | 11.79 | 64.26 | 35.73 | 0.14 | −0.34 |
COX3 | 27.01 | 26.05 | 32.27 | 14.67 | 59.28 | 40.72 | 0.09 | −0.28 |
Cytb | 27.43 | 28.57 | 33.22 | 10.77 | 60.65 | 39.34 | 0.10 | −0.45 |
NAD1 | 31.48 | 25.62 | 31.97 | 10.93 | 63.45 | 36.55 | 0.01 | −0.40 |
NAD2 | 25.07 | 26.51 | 40.71 | 7.71 | 65.78 | 34.22 | 0.24 | −0.55 |
NAD3 | 31.79 | 25.71 | 33.21 | 9.29 | 65.00 | 35.00 | 0.02 | −0.47 |
NAD4 | 27.75 | 26.90 | 36.44 | 8.91 | 64.19 | 35.81 | 0.14 | −0.50 |
NAD4L | 30.89 | 26.43 | 34.01 | 8.67 | 64.90 | 35.10 | 0.05 | −0.51 |
NAD5 | 26.25 | 29.06 | 35.26 | 9.43 | 61.51 | 38.49 | 0.15 | −0.51 |
NAD6 | 13.29 | 31.28 | 48.50 | 6.95 | 61.79 | 38.23 | 0.57 | −0.64 |
PCGs | 27.64 | 26.41 | 36.10 | 9.85 | 63.74 | 36.26 | 0.13 | −0.46 |
Complete genome | 27.23 | 25.45 | 35.56 | 11.75 | 62.79 | 37.20 | 0.13 | −0.37 |
Mitochondrial Elements | Total Number of Sites | Invariable Sites | Variable Sites | Singleton Variable Sites | Parsimony Informative Sites | Percentage of Variable Sites |
---|---|---|---|---|---|---|
Complete genome | 17,064 | 16,581 | 483 | 436 | 47 | 2.83% |
tRNAs | 1541 | 1516 | 25 | 22 | 3 | 1.62% |
rRNAs | 2580 | 2536 | 44 | 44 | 0 | 1.71% |
D-loop | 1546 | 1433 | 113 | 74 | 39 | 7.31% |
ATP6 | 684 | 668 | 16 | 16 | 0 | 2.34% |
ATP8 | 165 | 159 | 6 | 6 | 0 | 3.64% |
COX1 | 1545 | 1512 | 33 | 32 | 1 | 2.14% |
COX2 | 687 | 675 | 12 | 12 | 0 | 1.75% |
COX3 | 784 | 766 | 18 | 17 | 1 | 2.30% |
Cytb | 1140 | 1113 | 27 | 25 | 2 | 2.37% |
NAD1 | 972 | 947 | 25 | 25 | 0 | 2.57% |
NAD2 | 1041 | 1013 | 28 | 26 | 2 | 2.69% |
NAD3 | 350 | 339 | 11 | 11 | 0 | 3.14% |
NAD4 | 1381 | 1340 | 41 | 41 | 0 | 2.97% |
NAD4L | 297 | 286 | 11 | 11 | 0 | 3.70% |
NAD5 | 1779 | 1734 | 45 | 45 | 0 | 2.53% |
NAD6 | 525 | 507 | 18 | 18 | 0 | 3.43% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Jiao, J.; Yuan, X.; Huang, X.; Huang, L.; Lin, L.; Yin, W.; Yao, J.; Zhang, H. Complete Mitochondrial Genomes of Four Pelodiscus sinensis Strains and Comparison with Other Trionychidae Species. Biology 2023, 12, 406. https://doi.org/10.3390/biology12030406
Chen J, Jiao J, Yuan X, Huang X, Huang L, Lin L, Yin W, Yao J, Zhang H. Complete Mitochondrial Genomes of Four Pelodiscus sinensis Strains and Comparison with Other Trionychidae Species. Biology. 2023; 12(3):406. https://doi.org/10.3390/biology12030406
Chicago/Turabian StyleChen, Jing, Jinbiao Jiao, Xuemei Yuan, Xiaohong Huang, Lei Huang, Lingyun Lin, Wenlin Yin, Jiayun Yao, and Haiqi Zhang. 2023. "Complete Mitochondrial Genomes of Four Pelodiscus sinensis Strains and Comparison with Other Trionychidae Species" Biology 12, no. 3: 406. https://doi.org/10.3390/biology12030406
APA StyleChen, J., Jiao, J., Yuan, X., Huang, X., Huang, L., Lin, L., Yin, W., Yao, J., & Zhang, H. (2023). Complete Mitochondrial Genomes of Four Pelodiscus sinensis Strains and Comparison with Other Trionychidae Species. Biology, 12(3), 406. https://doi.org/10.3390/biology12030406