Geographic Genetic Structure of Alectoris chukar in Türkiye: Post-LGM-Induced Hybridization and Human-Mediated Contaminations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. Analysis of mtDNA
2.2.1. Sequence Alignment and Data Preparation
2.2.2. Phylogenetic Analyses
2.3. Geographic Genetic Structure
2.4. Population Genetics and Demographic Analysis
2.5. Microsatellite Genotyping and Analysis
2.6. Estimating Divergence Time and Gene Flow: ABC
2.7. Ecological Niche Modelling and Past Distribution Change
3. Results
3.1. Phylogenetic Relationships
3.2. Geographic Genetic Structure of Haplotypes
3.3. Genetic Diversity, Historical Demography, and Migration Rates
3.4. Microsatellite Genotyping
3.5. Population Structure
3.6. ABC Method
3.7. Ecological Niche Modelling: Changing Geographic Distributions
4. Discussion
4.1. Marmara Waterway and Its Barrier Effect on A. chukar
4.2. East and West Differentiation of A. chukar Populations in Türkiye
4.3. Conservation Genetics and Genetic Diversity
4.4. Partridges in Türkiye and Congeneric Contaminations
4.5. Human-Mediated Artificial Hybridization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, M.B.; Shaw, R.G. Range Shifts and Adaptive Responses to Quaternary Climate Change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddison, W.P.; Knowles, L.L. Inferring Phylogeny Despite Incomplete Lineage Sorting. Syst. Biol 2006, 55, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carstens, B.C.; Knowles, L.L. Shifting distributions and speciation: Species divergence during rapid climate change. Mol. Ecol. 2007, 16, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Lenormand, T.; Roze, D.; Rousset, F. Stochasticity in evolution. Trends Ecol. Evol. 2009, 24, 157–165. [Google Scholar] [CrossRef]
- Berger, A. Milankovitch Theory and climate. Rev. Geophys. 1988, 26, 624–657. [Google Scholar] [CrossRef] [Green Version]
- Dynesius, M.; Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci. USA 2000, 97, 9115–9120. [Google Scholar] [CrossRef] [Green Version]
- Seersholm, F.V.; Werndly, D.J.; Grealy, A.; Johnson, T.; Keenan Early, E.M.; Lundelius, E.L.; Winsborough, B.; Farr, G.E.; Toomey, R.; Hansen, A.J.; et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 2020, 11, 2770. [Google Scholar] [CrossRef]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef]
- Hewitt, G.M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 1996, 58, 247–276. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Antonelli, A.; Colwell, R.K.; Holt, B.G.; Nogues-Bravo, D.; Rasmussen, C.M.Ø.; Richardson, K.; Rosing, M.T.; Whittaker, R.J.; et al. Building mountain biodiversity: Geological and evolutionary processes. Science 2019, 365, 1114–1119. [Google Scholar] [CrossRef]
- Theodoridis, S.; Fordham, D.A.; Brown, S.C.; Li, S.; Rahbek, C.; Nogues-Bravo, D. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 2020, 11, 2557. [Google Scholar] [CrossRef] [PubMed]
- Ivy-Ochs, S.; Kerschner, H.; Reuther, A.; Preusser, F.; Heine, K.; Maisch, M.; Kubik, P.W.; Schlüchter, C. Chronology of the last glacial cycle in the European Alps. J. Quat. Sci. 2008, 23, 559–573. [Google Scholar] [CrossRef]
- Sarıkaya, M.A.; Çiner, A. Late Pleistocene glaciations and paleoclimate of Turkey. Bull. Miner. Res. Explor. 2015, 151, 107–127. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, G.M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 1999, 68, 87–112. [Google Scholar] [CrossRef]
- Hewitt, G.M. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B 2004, 359, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Marchese, C. Biodiversity hotspots: A shortcut for a more complicated concept. Glob. Ecol. Conserv. 2015, 3, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Taberlet, P.; Fumagalli, L.; Wust-Saucy, A.-G.; Cosson, J.-F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 1998, 7, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Dépraz, A.; Cordellier, M.; Hausser, J.; Pfenninger, M. Postglacial recolonization at a snail’s pace (Trochulus villosus): Confronting competing refugia hypotheses using model selection. Mol. Ecol. 2008, 17, 2449–2462. [Google Scholar] [CrossRef]
- Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 2007, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, T. Biogeographical and evolutionary importance of the European high mountain systems. Front. Zool. 2009, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.R.; Lister, A.M.; Barnes, I.; Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. B 2010, 277, 661–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewitt, G.M. Quaternary phylogeography: The roots of hybrid zones. Genetica 2011, 139, 617–638. [Google Scholar] [CrossRef] [PubMed]
- Randi, E. A Mitochondrial Cytochrome B Phylogeny of the Alectoris Partridges. Mol. Phylogenet. Evol. 1996, 6, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Randi, E. Detecting hybridization between wild species and their domesticated relatives. Mol. Ecol. 2008, 17, 285–293. [Google Scholar] [CrossRef]
- Randi, E.; Bernard-Laurent, A. Population Genetics of a Hybrid Zone between the Red-Legged Partridge and Rock Partridge. Auk 1999, 116, 324–337. [Google Scholar] [CrossRef]
- Habel, J.C.; Vila, R.; Vodă, R.; Husemann, M.; Schmitt, T.; Dapporto, L. Differentiation in the marbled white butterfly species complex driven by multiple evolutionary forces. J. Biogeogr. 2017, 44, 433–445. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, T.; Krauss, J. Reconstruction of the colonization route from glacial refugium to the northern distribution range of the European butterfly Polyommatus coridon (Lepidoptera: Lycaenidae). Divers. Distrib. 2004, 10, 271–274. [Google Scholar] [CrossRef]
- Kyrkjeeide, M.O.; Stenøien, H.K.; Flatberg, K.I.; Hassel, K. Glacial refugia and post-glacial colonization patterns in European bryophytes. Lindbergia 2014, 37, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Pöschel, J.; Heltai, B.; Graciá, E.; Quintana, M.F.; Velo-Antón, G.; Arribas, O.; Valdeón, A.; Wink, M.; Fritz, U.; Vamberger, M. Complex hybridization patterns in European pond turtles (Emys orbicularis) in the Pyrenean Region. Sci. Rep. 2018, 8, 15925. [Google Scholar] [CrossRef] [Green Version]
- Barilani, M.; Bernard-Laurent, A.; Mucci, N.; Tabarroni, C.; Kark, S.; Perez Garrido, J.A.; Randi, E. Hybridisation with introduced chukars (Alectoris chukar) threatens the gene pool integrity of native rock (A. graeca) and red-legged (A. rufa) partridge populations. Biol. Conserv. 2007, 137, 57–69. [Google Scholar] [CrossRef]
- Barilani, M.; Sfougaris, A.; Giannakopoulos, A.; Mucci, N.; Tabarroni, C.; Randi, E. Detecting introgressive hybridisation in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conserv. Genet. 2007, 8, 343–354. [Google Scholar] [CrossRef]
- Hewitt, G.M. Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol. Ecol. 2001, 10, 537–549. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Biltekin, D.; Popescu, S.-M.; Suc, J.-P.; Quézel, P.; Jiménez-Moreno, G.; Yavuz, N.; Çağatay, M.N. Anatolia: A long-time plant refuge area documented by pollen records over the last 23 million years. Rev. Palaeobot. Palynol. 2015, 215, 1–22. [Google Scholar] [CrossRef]
- Boston, E.S.M.; Puechmaille, S.J.; Clissmann, F.; Teeling, E.C. Further evidence for cryptic north-western refugia in Europe? Mitochondrial phylogeography of the sibling species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Acta Chiropt. 2014, 16, 263–277. [Google Scholar] [CrossRef]
- Çıplak, B.; Kaya, S.; Boztepe, Z.; Gündüz, İ. Mountainous genus Anterastes (Orthoptera, Tettigoniidae): Autochthonous survival across several glacial ages via vertical range shifts. Zool. Scr. 2015, 44, 534–549. [Google Scholar] [CrossRef]
- Çoraman, E.; Furman, A.; Karataş, A.; Bilgin, R. Phylogeographic analysis of Anatolian bats highlights the importance of the region for preserving the Chiropteran mitochondrial genetic diversity in the Western Palaearctic. Conserv. Genet. 2013, 14, 1205–1216. [Google Scholar] [CrossRef]
- Kaya, S.; Boztepe, Z.; Çiplak, B. Phylogeography of Troglophilus (Orthoptera: Troglophilinae) based on Anatolian members of the genus: Radiation of an old lineage following the Messinian. Biol. J. Linn. Soc. 2013, 108, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Kaya, S.; Boztepe, Z.; Çiplak, B. Phylogeography of the Poecilimon luschani species group (Orthoptera, Tettigoniidae): A radiation strictly correlated with climatic transitions in the Pleistocene. Zool. J. Linn. Soc. 2015, 173, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, E.M.; Lunt, D.H.; Çıplak, B.; Değerli, N.; Başıbüyük, H.H. The contribution of Anatolia to European phylogeography: The centre of origin of the meadow grasshopper, Chorthippus parallelus. J. Biogeogr. 2014, 41, 1793–1805. [Google Scholar] [CrossRef]
- Volkova, P.; Laczkó, L.; Demina, O.; Schanzer, I.; Sramkó, G. Out of Colchis: The colonization of Europe by Primula vulgaris Huds.(Primulaceae). Acta Soc. Bot. Pol. 2020, 89, 89313. [Google Scholar] [CrossRef]
- Kapli, P.; Botoni, D.; Ilgaz, Ç.; Kumlutaş, Y.; Avcı, A.; Rastegar-Pouyani, N.; Fathinia, B.; Lymberakis, P.; Ahmadzadeh, F.; Poulakakis, N. Molecular phylogeny and historical biogeography of the Anatolian lizard Apathya (Squamata, Lacertidae). Mol. Phylogenet. Evol. 2013, 66, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Boztepe, Z.; Kaya, S.; Ciplak, B. Phylogeography of the Poecilimon luschani group (Orthoptera, Tettigoniidae): Local ring speciation in south-western Anatolia? (In Turkish). In Proceedings of the 21. Ulusal Biyoloji Kongresi, Ege University, İzmir, Turkiye, 3–7 September 2012; p. 335. (In Turkish). [Google Scholar]
- Suggitt, A.J.; Wilson, R.J.; Isaac, N.J.B.; Beale, C.M.; Auffret, A.G.; August, T.; Bennie, J.J.; Crick, H.Q.P.; Duffield, S.; Fox, R.; et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 2018, 8, 713–717. [Google Scholar] [CrossRef] [Green Version]
- Atalay, I.; Efe, R.; Öztürk, M. Effects of Topography and Climate on the Ecology of Taurus Mountains in the Mediterranean Region of Turkey. Procedia Soc. 2014, 120, 142–156. [Google Scholar] [CrossRef] [Green Version]
- Şekercioğlu, Ç.H.; Anderson, S.; Akçay, E.; Bilgin, R.; Can, Ö.E.; Semiz, G.; Tavşanoğlu, Ç.; Yokeş, M.B.; Soyumert, A.; İpekdal, K.; et al. Turkey’s globally important biodiversity in crisis. Biol. Conserv. 2011, 144, 2752–2769. [Google Scholar] [CrossRef]
- Bilgin, R. Back to the Suture: The Distribution of Intraspecific Genetic Diversity in and Around Anatolia. Int. J. Mol. Sci 2011, 12, 4080–4103. [Google Scholar] [CrossRef] [Green Version]
- Gündüz, İ.; Jaarola, M.; Tez, C.; Yeniyurt, C.; Polly, P.D.; Searle, J.B. Multigenic and morphometric differentiation of ground squirrels (Spermophilus, Scuiridae, Rodentia) in Turkey, with a description of a new species. Mol. Phylogenet. Evol. 2007, 43, 916–935. [Google Scholar] [CrossRef]
- Ahmadzadeh, F.; Flecks, M.; Rödder, D.; Böhme, W.; Ilgaz, Ç.; Harris, D.J.; Engler, J.O.; Üzüm, N.; Carretero, M.A. Multiple dispersal out of Anatolia: Biogeography and evolution of oriental green lizards. Biol. J. Linn. Soc. 2013, 110, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.W.; Stenøien, H.K.; Grundmann, M.; Russell, S.J.; Koch, M.A.; Schneider, H.; Vogel, J.C. The importance of Anatolian mountains as the cradle of global diversity in Arabis alpina, a key arctic–alpine species. Ann. Bot. 2011, 108, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Demirbaş, Y.; Albayrak, İ.; Koca, A.Ö.; Stefanović, M.; Knauer, F.; Suchentrunk, F. Spatial genetics of brown hares (Lepus europaeus Pallas, 1778) from Turkey: Different gene pool architecture on either side of the Bosphorus? Mamm. Biol. 2019, 94, 77–85. [Google Scholar] [CrossRef]
- Kaya, S.; Chobanov, D.; Heller, K.-G.; Yahyaoğlu, Ö.; Uluar, O.; Çıplak, B. Review of Poecilimon species with inflated pronotum: Description of four new taxa within an acoustically diverse group. Zootaxa 2018, 4462, 451–482. [Google Scholar] [CrossRef] [PubMed]
- Skourtanioti, E.; Kapli, P.; Ilgaz, Ç.; Kumlutaş, Y.; Avcı, A.; Ahmadzadeh, F.; Crnobrnja-Isailović, J.; Gherghel, I.; Lymberakis, P.; Poulakakis, N. A reinvestigation of phylogeny and divergence times of the Ablepharus kitaibelii species complex (Sauria, Scincidae) based on mtDNA and nuDNA genes. Mol. Phylogenet. Evol. 2016, 103, 199–214. [Google Scholar] [CrossRef]
- Cowman, P.F.; Bellwood, D.R. Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proc. R. Soc. B 2013, 280, 20131541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyron, R.A.; Burbrink, F.T. Hard and soft allopatry: Physically and ecologically mediated modes of geographic speciation. J. Biogeogr. 2010, 37, 2005–2015. [Google Scholar] [CrossRef]
- Cox, C.B.; Moore, P.D.; Ladle, R.J. Biogeography: An Ecological and Evolutionary Approach; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Provost, K.L.; Myers, E.A.; Smith, B.T. Community phylogeographic patterns reveal how a barrier filters and structures taxa in North American warm deserts. J. Biogeogr. 2021, 48, 1267–1283. [Google Scholar] [CrossRef]
- Coyne, J.A.; Orr, H.A. Speciation; Sinauer Associates: Sunderland, MA, USA, 2004; Volume 37. [Google Scholar]
- Knowles, L.L. Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshopprers. Mol. Ecol. 2001, 10, 691–701. [Google Scholar] [CrossRef]
- Avise, J.C. Phylogeography: The History and Formation of Species; Harvard University Press: London, UK, 2000. [Google Scholar]
- Elibüyük, M.; Yılmaz, E. Altitude steps and slope groups of Turkey in comparison with geographical regions and sub-regions. Turkish J. Geogr. Sci. 2010, 8, 27–55. [Google Scholar]
- Sarıkaya, M.A.; Çiner, A.; Zreda, M. Chapter 30—Quaternary Glaciations of Turkey. In Developments in Quaternary Sciences; Ehlers, J., Gibbard, P.L., Hughes, P.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15, pp. 393–403. [Google Scholar]
- Erinç, S. Doğu Anadolu Coğrafyası (Geography of Eastern Anatolia). In Publications of the Istanbul University, No 572; İstanbul University: İstanbul, Türkiye, 1953; pp. 46–60. [Google Scholar]
- Özdoğan, M. Anatolia from the last glacial maximum to the Holocene climatic optimum: Cultural formations and the impact of the environmental setting. Paléorient 1997, 23, 25–38. [Google Scholar] [CrossRef]
- Kaya, S.; Çiplak, B. Budding speciation via peripheral isolation: The Psorodonotus venosus (Orthoptera, Tettigoniidae) species group example. Zool. Scr. 2016, 45, 521–537. [Google Scholar] [CrossRef]
- Davis, P. Distribution patterns in Anatolia with particular reference to endemism. In Plant Life of South West ASIA; Davis, P.H., Harper, P.C., Hedge, I.C., Eds.; Bot. Soc. Edinburgh: Edinburgh, UK, 1971; pp. 15–28. [Google Scholar]
- Ekim, T.; Güner, A. The Anatolian Diagonal: Fact or fiction? Proc. R. Soc. B Biol. Sci. 1986, 89, 69–77. [Google Scholar] [CrossRef]
- Gür, H. The Anatolian diagonal revisited: Testing the ecological basis of a biogeographic boundary. Zool. Middle East 2016, 62, 189–199. [Google Scholar] [CrossRef]
- Mutun, S. Review of oak gall wasps phylogeographic patterns in Turkey suggests a main role of the Anatolian diagonal. Turkish J. Forestry 2016, 17, 1–6. [Google Scholar] [CrossRef]
- Chen, Q.; Chang, C.; Liu, N.; Randi, E.; Lucchini, V. Mitochondrial DNA introgression between two parapatric species of Alectoris. Acta Zool. Sin 1999, 45, 456–463. [Google Scholar]
- Huang, Z.; Liu, N.; Chen, Y.; Xiao, Y. Genetic diversity in peripheral and central populations of rusty-necklaced partridge (Alectoris magna) based on mitochondrial and microsatellite DNA. Acta Zool. Acad. Sci. Hung 2009, 55, 187–197. [Google Scholar]
- Huang, Z.; Yang, Z.; Zhang, J.; Liu, N. Introgressive hybridization and population genetic diversity between rusty-necklaced partridge and chukar partridge in northwestern China. Belg. J. Zool. 2009, 139, 15–21. [Google Scholar]
- Liu, N.; Wen, L.; Huang, Z.; Hou, P. Introgressive hybridization between Alectoris magna and A. chukar in the Liupan Mountain Region. Acta Zool. Sin 2006, 52, 153–159. [Google Scholar]
- Bernard-Laurent, A. Hybridation naturelle entre Perdrix bartavelle (Alectoris graeca saxatilis) et Perdrix rouge (Alectoris rufa rufa) dans les Alpes-Maritimes. Gibier Faune Sauvag. 1984, 2, 79–96. [Google Scholar]
- Bernard-Laurent, A. Breeding biology of a natural population of hybrid partridges (Alectoris graeca saxatilis x Alectoris rufa rufa) in southern French Alps. Rev. Decologie 1990, 45, 321–344. [Google Scholar]
- Dragoev, P. On the population of the rock partridge (Alectoris graeca Meisner) in Bulgaria and methods of census. Acta Ornithol. 1974, 14, 251–255. [Google Scholar]
- Baratti, M.; Ammannati, M.; Magnelli, C.; Dessì-Fulgheri, F. Introgression of chukar genes into a reintroduced red-legged partridge (Alectoris rufa) population in central Italy. Biol. Conserv. 2005, 36, 29–35. [Google Scholar] [CrossRef]
- Barbanera, F.; Guerrini, M.; Hadjigerou, P.; Panayides, P.; Sokos, C.; Wilkinson, P.; Khan, A.A.; Khan, B.Y.; Cappelli, F.; Dini, F. Genetic insight into Mediterranean chukar (Alectoris chukar, Galliformes) populations inferred from mitochondrial DNA and RAPD markers. Genetica 2007, 131, 287–298. [Google Scholar] [CrossRef]
- Barbanera, F.; Guerrini, M.; Khan, A.A.; Panayides, P.; Hadjigerou, P.; Sokos, C.; Gombobaatar, S.; Samadi, S.; Khan, B.Y.; Tofanelli, S.; et al. Human-mediated introgression of exotic chukar (Alectoris chukar, Galliformes) genes from East Asia into native Mediterranean partridges. Biol. Invasions 2009, 11, 333–348. [Google Scholar] [CrossRef]
- Barbanera, F.; Negro, J.J.; Di Giuseppe, G.; Bertoncini, F.; Cappelli, F.; Dini, F. Analysis of the genetic structure of red-legged partridge (Alectoris rufa, Galliformes) populations by means of mitochondrial DNA and RAPD markers: A study from central Italy. Biol. Conserv. 2005, 122, 275–287. [Google Scholar] [CrossRef]
- McGowan, P.; Madge, S. Pheasants, Partridges & Grouse: Including Buttonquails, Sandgrouse and Allies; Bloomsbury Publishing: London, UK, 2010. [Google Scholar]
- Mullarney, K.; Grant, P.J.; Christie, D. Collins Bird Guide; Harper Collins: London, UK, 2010. [Google Scholar]
- Schmitz, J.; Piskurek, O.; Zischler, H. Forty Million Years of Independent Evolution: A Mitochondrial Gene and Its Corresponding Nuclear Pseudogene in Primates. J. Mol. Evol. 2005, 61, 1–11. [Google Scholar] [CrossRef]
- Williams, S.T.; Knowlton, N. Mitochondrial Pseudogenes Are Pervasive and Often Insidious in the Snapping Shrimp Genus Alpheus. Mol. Biol. Evol. 2001, 18, 1484–1493. [Google Scholar] [CrossRef] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A. Tracer v 1.5. Available online: http://beast.bio.ed.ac.uk/Tracer (accessed on 22 April 2021).
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [Green Version]
- Swofford, D. PAUP and other methods. In Phylogenetic Analysis Using Parsimony, Version 4; Sinauer Associates: Sunderland, MA, USA, 1998. [Google Scholar]
- Felsenstein, J. Phylogenies and the Comparative Method. Am. Nat. 1985, 125, 1–15. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v 1.4.4. Available online: http://tree.bio.ed.ac.uk/software/Figuretree (accessed on 3 December 2021).
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Frey, B.J.; Dueck, D. Clustering by Passing Messages Between Data Points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Smouse, R.P.P.; Peakall, R. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar]
- Manni, F.; Guerard, E.; Rard, E.; Heyer, E. Geographic Patterns of (Genetic, Morphologic, Linguistic) Variation: How Barriers Can Be Detected by Using Monmonier’s Algorithm. Hum. Biol. 2004, 76, 173–190. [Google Scholar] [CrossRef]
- Cornuet, J.-M.; Santos, F.; Beaumont, M.A.; Robert, C.P.; Marin, J.-M.; Balding, D.J.; Guillemaud, T.; Estoup, A. Inferring population history with DIYABC: A user-friendly approach to approximate Bayesian computation. Bioinformatics 2008, 24, 2713–2719. [Google Scholar] [CrossRef] [Green Version]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.-X. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Harpending, H.C. Signature of Ancient Population Growth in a Low-Resolution Mitochondrial DNA Mismatch Distribution. Hum. Biol. 1994, 66, 591–600. [Google Scholar]
- Durka, W.; Bossdorf, O.; Prati, D.; Auge, H. Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol. Ecol. 2005, 14, 1697–1706. [Google Scholar] [CrossRef]
- Kuhner, M.K. LAMARC 2.0: Maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 2006, 22, 768–770. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Rambaut, A.; Shapiro, B.; Pybus, O.G. Bayesian Coalescent Inference of Past Population Dynamics from Molecular Sequences. Mol. Biol. Evol. 2005, 22, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Minin, V.N.; Bloomquist, E.W.; Suchard, M.A. Smooth Skyride through a Rough Skyline: Bayesian Coalescent-Based Inference of Population Dynamics. Mol. Biol. Evol. 2008, 25, 1459–1471. [Google Scholar] [CrossRef] [Green Version]
- Glaubitz, J.C. Convert: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes 2004, 4, 309–310. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [Green Version]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. 2009, 9, 1322–1332. [Google Scholar] [CrossRef] [Green Version]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, N.A. Distruct: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Nei, M. Genetic Distance between Populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- Csilléry, K.; Blum, M.G.B.; Gaggiotti, O.E.; François, O. Approximate Bayesian Computation (ABC) in practice. Trends Ecol. Evol. 2010, 25, 410–418. [Google Scholar] [CrossRef]
- Bertorelle, G.; Benazzo, A.; Mona, S. ABC as a flexible framework to estimate demography over space and time: Some cons, many pros. Mol. Ecol. 2010, 19, 2609–2625. [Google Scholar] [CrossRef]
- Beaumont, M.A. Approximate Bayesian Computation in Evolution and Ecology. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 379–406. [Google Scholar] [CrossRef]
- BirdLife International. Alectoris chukar (Amended Version of 2018 Assessment). The IUCN Red List of Threatened Species 2019: e.T22678691A155454429. 2019. Available online: https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22678691A155454429.en (accessed on 1 March 2023).
- Cornuet, J.-M.; Pudlo, P.; Veyssier, J.; Dehne-Garcia, A.; Gautier, M.; Leblois, R.; Marin, J.-M.; Estoup, A. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 2014, 30, 1187–1189. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, M.C.; Austerlitz, F.; Giraud, T.; Labbé, F.; Papura, D.; Richard-Cervera, S.; Delmotte, F. Genetic signature of a range expansion and leap-frog event after the recent invasion of Europe by the grapevine downy mildew pathogen Plasmopara viticola. Mol. Ecol. Resour. 2013, 22, 2771–2786. [Google Scholar] [CrossRef]
- Robert, C.P.; Cornuet, J.-M.; Marin, J.-M.; Pillai, N.S. Lack of confidence in approximate Bayesian computation model choice. Proc. Natl. Acad. Sci. USA 2011, 108, 15112–15117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaumont, M.A.; Zhang, W.; Balding, D.J. Approximate Bayesian Computation in Population Genetics. Genetics 2002, 162, 2025–2035. [Google Scholar] [CrossRef] [PubMed]
- Cornuet, J.-M.; Ravigné, V.; Estoup, A. Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinform. 2010, 11, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Marshall, S.J.; Overpeck, J.T.; Miller, G.H.; Hu, A. Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation. Science 2006, 311, 1751–1753. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.D.; Bitz, C.M.; Blackmon, M.L.; Bonan, G.B.; Bretherton, C.S.; Carton, J.A.; Chang, P.; Doney, S.C.; Hack, J.J.; Henderson, T.B.; et al. The Community Climate System Model Version 3 (CCSM3). J. Clim. 2006, 19, 2122–2143. [Google Scholar] [CrossRef] [Green Version]
- Hasumi, H.; Emori, S. K-1 Coupled GCM (MIROC) Description; Center for Climate System Research, University of Tokyo: Tokyo, Japan, 2007. [Google Scholar]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Chobanov, D.P.; Kaya, S.; Grzywacz, B.; Warchałowska-Śliwa, E.; Çıplak, B. The Anatolio-Balkan phylogeographic fault: A snapshot from the genus Isophya (Orthoptera, Tettigoniidae). Zool. Scr. 2017, 46, 165–179. [Google Scholar] [CrossRef]
- İpekdal, K.; Burban, C.; Sauné, L.; Battisti, A.; Kerdelhué, C. From refugia to contact: Pine processionary moth hybrid zone in a complex biogeographic setting. Ecol. Evol. 2020, 10, 1623–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya, S.; Çiplak, B. Phylogeography and taxonomy of the Psorodonotus caucasicus (Orthoptera, Tettigoniidae) group: Independent double invasion of the Balkans from the Caucasus. Syst. Entomol. 2017, 42, 118–133. [Google Scholar] [CrossRef]
- Gökaşan, E.; Tur, H.; Ergin, M.; Görüm, T.; Batuk, F.G.; Sağcı, N.; Ustaömer, T.; Emem, O.; Alp, H. Late Quaternary evolution of the Çanakkale Strait region (Dardanelles, NW Turkey): Implications of a major erosional event for the postglacial Mediterranean-Marmara Sea connection. Geo Mar. Lett. 2010, 30, 113–131. [Google Scholar] [CrossRef]
- Yaltırak, C.; Alpar, B.; Sakınç, M.; Yüce, H. Origin of the Strait of Çanakkale (Dardanelles): Regional tectonics and the Mediterranean–Marmara incursion. Mar. Geol. 2000, 164, 139–156. [Google Scholar] [CrossRef]
- Oktay, F.Y.; Gökaşan, E.; Sakınç, M.; Yaltırak, C.; İmren, C.; Demirbağ, E. The effects of the North Anatolian Fault Zone on the latest connection between Black Sea and Sea of Marmara. Mar. Geol. 2002, 190, 367–382. [Google Scholar] [CrossRef]
- Çağatay, M.N.; Görür, N.; Polonia, A.; Demirbağ, E.; Sakınç, M.; Cormier, M.H.; Capotondi, L.; McHugh, C.; Emre, Ö.; Eriş, K. Sea-level changes and depositional environments in the İzmit Gulf, eastern Marmara Sea, during the late glacial–Holocene period. Mar. Geol. 2003, 202, 159–173. [Google Scholar] [CrossRef]
- Gürbüz, A.; Leroy, S.A.G. Science versus myth: Was there a connection between the Marmara Sea and Lake Sapanca? J. Quat. Sci. 2010, 25, 103–114. [Google Scholar] [CrossRef]
- Fritz, U.; Ayaz, D.; Buschbom, J.; Kami, H.G.; Mazanaeva, L.F.; Aloufi, A.A.; Auer, M.; Rifai, L.; Šilic, T.; Hundsdörfer, A.K. Go east: Phylogeographies of Mauremys caspica and M. rivulata– discordance of morphology, mitochondrial and nuclear genomic markers and rare hybridization. J. Evol. Biol. 2008, 21, 527–540. [Google Scholar] [CrossRef]
- Wielstra, B.; Themudo, G.E.; Güçlü, Ö.; Olgun, K.; Poyarkov, N.A.; Arntzen, J.W. Cryptic crested newt diversity at the Eurasian transition: The mitochondrial DNA phylogeography of Near Eastern Triturus newts. Mol. Phylogenet. Evol. 2010, 56, 888–896. [Google Scholar] [CrossRef]
- Algan, O.; Çağatay, N.; Tchepalyga, A.; Ongan, D.; Eastoe, C.; Gökaşan, E. Stratigraphy of the sediment infill in Bosphorus Strait: Water exchange between the Black and Mediterranean Seas during the last glacial Holocene. Geo Mar. Lett. 2001, 20, 209–218. [Google Scholar] [CrossRef]
- Lericolais, G.; Algan, O.; Morigi, C.; Okay, S.; Kirci-Elmas, E.; Cifci, G. Overview of the bosphorus depositional fan from data sets recovered on the Black Sea shelf off the strait of Istanbul. Int. J. Environ. Sci. Nat. Resour. 2019, 17, 1–19. [Google Scholar] [CrossRef]
- Ediger, V.; DEMİRBAĞ, E.; Ergintav, S.; Sedat, İ.; Saatcilar, R. Post-Glacial Terraces of The Marmara Sea and Water Exchange Periods. Bull. Miner. Res. Explor. 2018, 157, 39–57. [Google Scholar] [CrossRef] [Green Version]
- Aksu, A.E.; Hiscott, R.N. Persistent Holocene outflow from the Black Sea to the eastern Mediterranean Sea still contradicts the Noah’s Flood Hypothesis: A review of 1997–2021 evidence and a regional paleoceanographic synthesis for the latest Pleistocene–Holocene. Earth Sci. Rev. 2022, 227, 103960. [Google Scholar] [CrossRef]
- Batchelor, C.L.; Margold, M.; Krapp, M.; Murton, D.K.; Dalton, A.S.; Gibbard, P.L.; Stokes, C.R.; Murton, J.B.; Manica, A. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Commun. 2019, 10, 3713. [Google Scholar] [CrossRef] [Green Version]
- Gowan, E.J.; Zhang, X.; Khosravi, S.; Rovere, A.; Stocchi, P.; Hughes, A.L.C.; Gyllencreutz, R.; Mangerud, J.; Svendsen, J.-I.; Lohmann, G. A new global ice sheet reconstruction for the past 80,000 years. Nat. Commun. 2021, 12, 1199. [Google Scholar] [CrossRef]
- Martin-Garcia, G.M. Oceanic Impact on European Climate Changes during the Quaternary. Geosciences 2019, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Ricklefs, R.; Bermingham, E. The West Indies as a laboratory of biogeography and evolution. Phil. Trans R. Soc. Lond B Biol. Sci. 2008, 363, 2393–2413. [Google Scholar] [CrossRef] [Green Version]
- Frankham, R. Do island populations have less genetic variation than mainland populations? Heredity 1997, 78, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Frankham, R. Inbreeding and Extinction: Island Populations. Conserv. Biol. 1998, 12, 665–675. [Google Scholar] [CrossRef]
- Whittaker, R.J.; Fernández-Palacios, J.M. Island Biogeography: Ecology, Evolution, and Conservation, 2nd ed.; Oxford University Press: New York, NY, USA, 2007; p. 401. [Google Scholar]
- Ozturk, M.Z.; Cetinkaya, G.; Aydin, S. Climate Types of Turkey According to Klippen-Geiger Climate Classification. J. Geogr. 2017, 35, 17–27. [Google Scholar]
- Randi, E.; Meriggi, A.; Lorenzini, R.; Fusco, G.; Alkon, P.U. Biochemical Analysis of Relationships of Mediterranean Alectoris Partridges. Auk 1992, 109, 358–367. [Google Scholar] [CrossRef]
- Mıhlı, A. Kınalı Keklik (Alectoris Chukar L.)’in biyolojisi, Türkiye’deki yayılışı ve uygulanabilecek envanter metotları. In Proceedings of the DİFSA, VI. Ulusal Ormancılık Öğrencileri Birliği Kuruluş Toplantısı, Düzce, Turkiye, 8–9 May 2008. [Google Scholar]
- Yilmaz, A.; Tepeli, C. The native partridges of Turkey. Int. J. Gall. Conserv. 2009, 1, 9–11. [Google Scholar]
- İlhami, K. The Pocket Book for Birds of Türkiye; Aula-Verlag GmbH: Wiebelsheim, Germany, 2017. [Google Scholar]
- Johnsgard, P.A.; Jones, H. Quails, Partridges, and Francolins of the World; Oxford University Press: London, UK, 1988. [Google Scholar]
- Panicos, P.; Monica, G.; Flippo, B. Conserv. Genet. and management of the Chukar partridge Alectoris chukar in Cyprus and the Middle East. Sandgrouse 2011, 33, 34–43. [Google Scholar]
- Levin, D.A. Hybridization and Extinction: In protecting rare species, conservationists should consider the dangers of interbreeding, which compound the more well-known threats to wildlife. Am. Sci. 2002, 90, 254–261. Available online: https://www.jstor.org/stable/27857661 (accessed on 12 August 2022). [CrossRef]
- Sutherland, W.J.; Armstrong-Brown, S.; Armsworth, P.R.; Tom, B.; Brickland, J.; Campbell, C.D.; Chamberlain, D.E.; Cooke, A.I.; Dulvy, N.K.; Dusic, N.R.; et al. The identification of 100 ecological questions of high policy relevance in the UK. J. Appl. Ecol. 2006, 43, 617–627. [Google Scholar] [CrossRef]
- Tiesmeyer, A.; Ramos, L.; Manuel Lucas, J.; Steyer, K.; Alves, P.C.; Astaras, C.; Brix, M.; Cragnolini, M.; Domokos, C.; Hegyeli, Z.; et al. Range-wide patterns of human-mediated hybridisation in European wildcats. Conserv. Genet. 2020, 21, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Barton, N.H. The role of hybridization in evolution. Mol. Ecol. 2001, 10, 551–568. [Google Scholar] [CrossRef]
- Edmands, S.; Timmerman, C.C. Modeling Factors Affecting the Severity of Outbreeding Depression. Conserv. Biol. 2003, 17, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Edmans, S. Between a rock and a hard place: Evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol. Ecol. 2007, 16, 463–475. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. An assessment of the published results of animal relocations. Biol. Conserv. 2000, 96, 1–11. [Google Scholar] [CrossRef]
- Hutchings, J.A.; Fraser, D.J. The nature of fisheries- and farming-induced evolution. Mol. Ecol. 2008, 17, 294–313. [Google Scholar] [CrossRef]
- Yolcu, H.I.; Aslan, A.; Serttaş, A.; Saribaşak, H.; Uysal, H.; Çobanoğlu, A. Monitoring the survival rate of released chukars: A case study inElmalı Cedar Forest, Antalya, Turkey. Turk. J. Zool. 2016, 40, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Delibes-Mateos, M.; Ramírez, E.; Ferreras, P.; Villafuerte, R. Translocations as a risk for the conservation of European wild rabbit Oryctolagus cuniculus lineages. Oryx 2008, 42, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Goodman, S.J.; Barton, N.H.; Swanson, G.; Abernethy, K.; Pemberton, J.M. Introgression Through Rare Hybridization: A Genetic Study of a Hybrid Zone Between Red and Sika Deer (Genus Cervus) in Argyll, Scotland. Genetics 1999, 152, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Todesco, M.; Pascual, M.A.; Owens, G.L.; Ostevik, K.L.; Moyers, B.T.; Hübner, S.; Heredia, S.M.; Hahn, M.A.; Caseys, C.; Bock, D.G.; et al. Hybridization and extinction. Evol. Appl. 2016, 9, 892–908. [Google Scholar] [CrossRef] [Green Version]
- Vernesi, C.; Crestanello, B.; Pecchioli, E.; Tartari, D.; Caramelli, D.; Hauffe, H.; Bertorelle, G. The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysis. Mol. Ecol. 2003, 12, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Deregnaucourti, S. Hybridization Between European Quail Coturnix. Ardea 2002, 90, 1. [Google Scholar]
- Latch, E.K.; Mock, K.E.; Rhodes, O.E., Jr. The use of molecular markers in wild turkey management. In Proceedings of the National Wild Turkey Symposium, Grand Rapids, MI, USA, 10–14 December 2005; pp. 33–44. [Google Scholar]
- Barilani, M.; Deregnaucourt, S.; Gallego, S.; Galli, L.; Mucci, N.; Piombo, R.; Puigcerver, M.; Rimondi, S.; Rodríguez-Teijeiro, J.D.; Spanò, S.; et al. Detecting hybridization in wild (Coturnix c. coturnix) and domesticated (Coturnix c. japonica) quail populations. Biol. Conserv. 2005, 126, 445–455. [Google Scholar] [CrossRef]
- Negro, J.J.; Torres, M.J.; Godoy, J.A. RAPD analysis for detection and eradication of hybrid partridges (Alectoris rufa × A. graeca) in Spain. Biol. Conserv. 2001, 98, 19–24. [Google Scholar] [CrossRef]
- Sevane, N.; Dunner, S.; Garcia-Atance, P.; Canon, J. Restocked and non-restocked populations genetic composition: A case study in red-legged partridge (Alectoris rufa). J. Biol. Res. Thessalon. 2011, 16, 266–273. Available online: http://www.jbr.gr/papers20112/11-Sevane%20et%20al.pdf (accessed on 5 May 2022).
- Potts, G. The impact of releasing hybrid partridges on wild red-legged populations. Game Conserv. Annu. Rev. 1989, 20, 81–85. [Google Scholar]
- Macaluso, G.; Manno, C.; Valvo, M.L.; Tolone, M.; Mastrangelo, S.; Puleio, R.; Loria, G.R. The Sicilian rock partridge: Latest data on genetic integrity from four different relict areas. Turk J. Zool. 2021, 45, 579–584. [Google Scholar] [CrossRef]
- Forcina, G.; Tang, Q.; Cros, E.; Guerrini, M.; Rheindt, F.E.; Barbanera, F. Genome-wide markers redeem the lost identity of a heavily managed gamebird. Proc. R. Soc. Lond B Biol. Sci. 2021, 288, 20210285. [Google Scholar] [CrossRef]
- Forcina, G.; Guerrini, M.; Barbanera, F. Non-native and hybrid in a changing environment: Conservation perspectives for the last Italian red-legged partridge (Alectoris rufa) population with long natural history. Zoology 2020, 138, 125740. [Google Scholar] [CrossRef] [PubMed]
- Fontaneto, D.; Viola, P.; Pizzirani, C.; Chiesa, S.; Rossetti, A.; Amici, A.; Lucentini, L. Mismatches between Morphology and DNA in Italian Partridges May Not Be Explained Only by Recent Artificial Release of Farm-Reared Birds. Animals 2022, 12, 541. [Google Scholar] [CrossRef] [PubMed]
- Buermann, W.; Saatchi, S.; Smith, T.B.; Zutta, B.R.; Chaves, J.A.; Milá, B.; Graham, C.H. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J. Biogeogr. 2008, 35, 1160–1176. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. Environmental Niche Equivalency Versus Conservatism: Quantitative Approaches to Niche Evolution. Evolution 2008, 62, 2868–2883. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
Pop | N | Hs | Neutrality Tests | g | Mismatch Distribution | t (kyBP) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tajima’s D | Fu’s Fs | ϴ0 | ϴ1 | τ | SSD | HRI | |||||
1 | 16 | 3 | −0.57783 | −0.50535 | 6242.766 | 0.113 | 6822.184 | 0.5 | 0.01030 *** | 0.16333 *** | - |
2 | 9 | 7 | −0.32331 | −3.22374 ** | 564.9102 | 0 | 6834.957 | 2.5 | 0.00355 | 0.05864 | 22.67 |
3 * | 20 | 11 | −1.0241 | −4.12125 ** | 755.0651 | 0.61875 | 12.08988 | 2.05469 | 0.00213 | 0.02454 | - |
3 | 18 | 9 | −0.92645 | −4.40912 *** | 981.1044 | 0 | 3464.392 | 1.875 | 0.003175 | 0.04916 | 17.00 |
4 * | 22 | 11 | −0.18624 | −3.26323 * | 847.2788 | 0 | 7.0633 | 5.87501 | 0.04654 | 0.10243 | - |
4 | 14 | 7 | −1.05986 | −3.43610 *** | 956.1929 | 0 | 3438.142 | 1.5 | 0.01871 | 0.10361 | 13.60 |
5 | 22 | 9 | −1.10051 | −4.41119 ** | 381.5137 | 0.1125 | 3426.892 | 1.5 | 0.00974 * | 0.10049 ** | 13.60 |
6 * | 20 | 7 | −0.60133 | −1.43909 | 697.0333 | 0.16524 | 5.2273 | 2.08789 | 0.02734 | 0.10665 | - |
6 | 19 | 6 | −0.97353 | −0.91567 | 499.5347 | 0.009 | 6.197 | 1.855 | 0.0398 | 0.1466 | - |
8 | 20 | 10 | −0.85245 | −3.05118 * | 888.0236 | 0.06327 | 6.73827 | 2.79689 | 0.00153 | 0.01864 | - |
9 | 20 | 10 | −1.85148 * | −6.86623 *** | 14083.83 | 0.225 | 3418.142 | 1.375 | 0.01153 | 0.11493 | 12.47 |
10 * | 20 | 10 | −1.33709 | −2.64317 | 779.5263 | 2.54538 | 33.92714 | 1.1757 | 0.00275 | 0.01327 | - |
10 | 19 | 9 | −1.07741 | −2.11108 | 1650.156 | 2.14806 | 3812.59 | 0.98435 | 0.00233 | 0.01795 | - |
11 * | 20 | 11 | −1.02907 | −4.16876 * | 1211.932 | 1.12503 | 12.45129 | 2.2695 | 0.00257 | 0.01665 | - |
11 | 18 | 9 | −1.09893 | −3.22890 * | 1893.151 | 0.0738 | 14.88743 | 2.46097 | 0.00205 | 0.02875 | |
13 * | 20 | 9 | −0.51238 | −2.198 | 1434.16 | 0 | 4.77661 | 4.60548 | 0.01691 | 0.04078 | - |
13 | 15 | 7 | −1.37083 | −3.22307 ** | 1689.166 | 0 | 3418.142 | 1.375 | 0.00231 | 0.06077 | 12.46 |
14 * | 21 | 11 | −1.24432 | −4.46319 ** | 2455.504 | 0.01406 | 9.08618 | 3.28711 | 0.00324 | 0.01823 | |
14 | 18 | 10 | −1.46447 | −5.32583 *** | 2335.765 | 0 | 28.3962 | 2.13281 | 0.00198 | 0.0355 | 19.34 |
15 | 20 | 10 | −0.91599 | −5.64103 *** | 4217.226 | 0.03692 | 11.93892 | 1.74023 | 0.00947 | 0.06194 | 15.78 |
16 | 20 | 7 | −1.77344 * | −3.29864 ** | 10306.32 | 0.73653 | 3444.476 | 0.89680 | 0.01642 | 0.10618 | 8.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, S.; Kabasakal, B.; Erdoğan, A. Geographic Genetic Structure of Alectoris chukar in Türkiye: Post-LGM-Induced Hybridization and Human-Mediated Contaminations. Biology 2023, 12, 401. https://doi.org/10.3390/biology12030401
Kaya S, Kabasakal B, Erdoğan A. Geographic Genetic Structure of Alectoris chukar in Türkiye: Post-LGM-Induced Hybridization and Human-Mediated Contaminations. Biology. 2023; 12(3):401. https://doi.org/10.3390/biology12030401
Chicago/Turabian StyleKaya, Sarp, Bekir Kabasakal, and Ali Erdoğan. 2023. "Geographic Genetic Structure of Alectoris chukar in Türkiye: Post-LGM-Induced Hybridization and Human-Mediated Contaminations" Biology 12, no. 3: 401. https://doi.org/10.3390/biology12030401
APA StyleKaya, S., Kabasakal, B., & Erdoğan, A. (2023). Geographic Genetic Structure of Alectoris chukar in Türkiye: Post-LGM-Induced Hybridization and Human-Mediated Contaminations. Biology, 12(3), 401. https://doi.org/10.3390/biology12030401