Dynamic Response of the cbbL Carbon Sequestration Microbial Community to Wetland Type in Qinghai Lake
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Soil Sample Collection
2.3. Determination of Soil Physical and Chemical Properties
2.4. DNA Extraction and Illumina MiSeq Sequencing
2.5. Statistical Analysis
3. Results
3.1. Changes in the Environmental Variables of Different Wetland Types
3.2. cbbL Sequencing and Microbial Community Diversity Characteristics of Different Wetland Types
3.3. Changes in Soil cbbL Community Structure in Different Wetland Types
3.4. cbbL Microbial Diversity in Different Types of Wetlands
3.5. Correlation between cbbL Community Characteristics and Environmental Data in the Qinghai Lake Wetland
4. Discussion
4.1. Effects of Wetland Type on cbbL Carbon Sequestration Microbial Community Diversity
4.2. Effects of Wetland Type on cbbL Carbon Sequestration Microbial Community Structure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Q.; Wang, R.; Zhang, H.; Ge, X.; Liu, J. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China. PLoS ONE 2015, 10, e0134713. [Google Scholar] [CrossRef]
- Lab, B.C. Victoria’s Teal Carbon-Blue Carbon Lab. Available online: https://www.bluecarbonlab.org/victoria-teal-carbon/ (accessed on 15 August 2023).
- Nahlik, A.M.; Fennessy, M.S. Carbon storage in US wetlands. Nat. Commun. 2016, 7, 13835. [Google Scholar] [CrossRef]
- Yang, Y.H.; Shi, Y.; Sun, W.J.; Chang, J.F.; Zhu, J.X.; Chen, L.Y.; Wang, X.; Guo, Y.P.; Zhang, H.T.; Yu, L.F.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China (Life Sci.) 2022, 65, 861–895. [Google Scholar] [CrossRef]
- Osland, M.J.; Enwright, N.M.; Day, R.H.; Gabler, C.A.; Stagg, C.L.; Grace, J.B. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Chang. Biol. 2016, 22, 1–11. [Google Scholar] [CrossRef]
- Saintilan, N.; Rogers, K.; Kelleway, J.J.; Ens, E.; Sloane, D.R. Climate Change Impacts on the Coastal Wetlands of Australia. Wetlands 2019, 39, 1145–1154. [Google Scholar] [CrossRef]
- Gentile, R.; Vanlauwe, B.; Six, J. Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions. Ecol. Appl. 2011, 21, 695–703. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.; Yang, S.; Guo, Y.; Liu, M.; Xi, M. Divergent response of blue carbon components to wetland types and hydrological effects in typical estuarine wetlands of Jiaozhou Bay, China. J. Environ. Manag. 2023, 347, 119233. [Google Scholar] [CrossRef]
- Luo, Z.; Feng, W.; Luo, Y.; Baldock, J.; Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Chang. Biol. 2017, 23, 4430–4439. [Google Scholar] [CrossRef]
- Wang, F.; Sanders, C.J.; Santos, I.R.; Tang, J.; Schuerch, M.; Kirwan, M.L.; Kopp, R.E.; Zhu, K.; Li, X.; Yuan, J.; et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl. Sci. Rev. 2021, 8, nwaa296. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Zhang, Y.; Feng, W.; Lai, Z.; Fa, K.; Qin, S. Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert. Soil Biol. Biochem. 2018, 125, 156–166. [Google Scholar] [CrossRef]
- Lynn, T.M.; Ge, T.; Yuan, H.; Wei, X.; Wu, X.; Xiao, K.; Kumaresan, D.; Yu, S.S.; Wu, J.; Whiteley, A.S. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems. Microb. Ecol. 2017, 73, 645–657. [Google Scholar] [CrossRef]
- Nowak, M.E.; Beulig, F.; von Fischer, J.; Muhr, J.; Küsel, K.; Trumbore, S.E. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette. Biogeosciences 2015, 12, 7169–7183. [Google Scholar] [CrossRef]
- Bowler, C.; Vardi, A.; Allen, A.E. Oceanographic and Biogeochemical Insights from Diatom Genomes. Annu. Rev. Mar. Sci. 2010, 2, 333–365. [Google Scholar] [CrossRef]
- Selesi, D.; Schmid, M.; Hartmann, A. Diversity of Green-Like and Red-Like Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Large-Subunit Genes (cbbL) in Differently Managed Agricultural Soils. Appl. Environ. Microbiol. 2005, 71, 175–184. [Google Scholar] [CrossRef]
- Watson, G.M.F.; Tabita, F.R. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A molecule for phylogenetic and enzymological investigation. FEMS Microbiol. Lett. 1997, 146, 13–22. [Google Scholar] [CrossRef]
- Liao, H.; Qin, F.; Wang, K.; Zhang, Y.; Hao, X.; Chen, W.; Huang, Q. Long-term chemical fertilization-driving changes in soil autotrophic microbial community depresses soil CO2 fixation in a Mollisol. Sci. Total. Environ. 2020, 748, 141317. [Google Scholar] [CrossRef]
- Jin, Z.; Zhuang, Q.; He, J.-S.; Luo, T.; Shi, Y. Phenology shift from 1989 to 2008 on the Tibetan Plateau: An analysis with a process-based soil physical model and remote sensing data. Clim. Chang. 2013, 119, 435–449. [Google Scholar] [CrossRef]
- Bai, R.; Xi, D.; He, J.-Z.; Hu, H.-W.; Fang, Y.-T.; Zhang, L.-M. Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. Soil Biol. Biochem. 2015, 91, 212–221. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Ge, J.; Nie, X. Land Use/Cover Change and Land Resources Management in the Area Around the Qinghai Lake of China in 1977–2010. J. Desert Res. 2013, 33, 1256–1266. [Google Scholar] [CrossRef]
- Tang, R.; Gao, X.; Zhang, J. The annual changes of the water level of the Lake Qinghai in the recent thirty years. Chin. Sci. Bull. 1992, 37, 524–527. [Google Scholar] [CrossRef]
- Liu, J.-F.; Mbadinga, S.M.; Sun, X.-B.; Yang, G.-C.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z. Microbial communities responsible for fixation of CO2 revealed by using mcrA, cbbM, cbbL, fthfs, fefe-hydrogenase genes as molecular biomarkers in petroleum reservoirs of different temperatures. Int. Biodeterior. Biodegrad. 2016, 114, 164–175. [Google Scholar] [CrossRef]
- Liang, S.; Deng, J.; Jiang, Y.; Wu, S.; Zhou, Y.; Zhu, W. Functional Distribution of Bacterial Community under Different Land Use Patterns Based on FaProTax Function Prediction. Pol. J. Environ. Stud. 2020, 29, 1245–1261. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Xin, Y.-Z.; Gao, D.-M.; Li, F.-M.; Morgan, J.; Xing, B.-S. Microbial Community Characteristics in a Degraded Wetland of the Yellow River Delta. Pedosphere 2010, 20, 466–478. [Google Scholar] [CrossRef]
- Yuan, H.; Ge, T.; Chen, C.; O’Donnell, A.G.; Wu, J. Significant Role for Microbial Autotrophy in the Sequestration of Soil Carbon. Appl. Environ. Microbiol. 2012, 78, 2328–2336. [Google Scholar] [CrossRef]
- Zhang, K.; Delgado-Baquerizo, M.; Zhu, Y.-G.; Chu, H. Space Is More Important than Season when Shaping Soil Microbial Communities at a Large Spatial Scale. mSystems 2020, 5, e00783-19. [Google Scholar] [CrossRef]
- Fang, J.; Yang, R.; Cao, Q.; Dong, J.; Li, C.; Quan, Q.; Huang, M.; Liu, J. Differences of the microbial community structures and predicted metabolic potentials in the lake, river, and wetland sediments in Dongping Lake Basin. Environ. Sci. Pollut. Res. 2020, 27, 19661–19677. [Google Scholar] [CrossRef]
- Liao, Q.; Liu, H.; Lu, C.; Liu, J.; Waigi, M.G.; Ling, W. Root exudates enhance the PAH degradation and degrading gene abundance in soils. Sci. Total. Environ. 2021, 764, 144436. [Google Scholar] [CrossRef]
- Xiang, X.; Gibbons, S.M.; Li, H.; Shen, H.; Fang, J.; Chu, H. Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem. Plant Soil 2018, 425, 539–551. [Google Scholar] [CrossRef]
- Leifeld, J.; Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 2018, 9, 1071. [Google Scholar] [CrossRef]
- Liao, Q.H.; Lu, C.; Yuan, F.; Fan, Q.Y.; Chen, H.Y.; Yang, L.; Qiu, P.H.; Feng, Z.Y.; Wang, C.L.; Zou, X.Q. Soil carbon-fixing bacterial communities respond to plant community change in coastal salt marsh wetlands. Appl. Soil Ecol. 2023, 189, 104918. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Cheng, A.; Shen, T.; Xiao, Y.; Zhu, M.; Pan, X.; Yu, L. Community characteristics of autotrophic CO2-fixing bacteria in karst wetland groundwaters with different nitrogen levels. Front. Microbiol. 2022, 13, 949208. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Xiao, Y.; Cheng, A.; Shen, T.; Zhu, M.; Yu, L. Abundance and diversity of carbon-fixing bacterial communities in karst wetland soil ecosystems. Catena 2021, 204, 105418. [Google Scholar] [CrossRef]
- Wang, Z. Diversity of Carbon Sequestration Microbial Communities in Meadow Soil of Qinghai-Tibet Plateau and its Influencing Factors. Master’s Thesis, China University of Geosciences, Beijing, China, 2019. [Google Scholar]
- Wang, B. Study on Carbon Sequestration Microbial Community Structure, Carbon Sequestration Function and Environmental Influencing Factors in Lake Sediments of Northern Tibetan Plateau. Master’s Thesis, China University of Geosciences, Beijing, China, 2016. [Google Scholar]
- Li, Z.; Tong, D.; Nie, X.; Xiao, H.; Jiao, P.; Jiang, J.; Li, Q.; Liao, W. New insight into soil carbon fixation rate: The intensive co-occurrence network of autotrophic bacteria increases the carbon fixation rate in depositional sites. Agric. Ecosyst. Environ. 2021, 320, 107579. [Google Scholar] [CrossRef]
- Ma, S.C.; Fang, J.H.; Liu, J.; Yang, X.F.; Lyu, T.S.; Wang, L.D.; Zhou, S.Y.; Dou, H.S.; Zhang, H.H. Differences in sediment carbon-fixation rate and associated bacterial communities in four wetland types in Hulun Lake Basin. Catena 2022, 213, 106167. [Google Scholar] [CrossRef]
- Engelhardt, I.C.; Welty, A.; Blazewicz, S.J.; Bru, D.; Rouard, N.; Breuil, M.-C.; Gessler, A.; Galiano, L.; Miranda, J.C.; Spor, A.; et al. Depth matters: Effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 2018, 12, 1061–1071. [Google Scholar] [CrossRef]
- Spain, A.M.; Krumholz, L.R.; Elshahed, M.S. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 2009, 3, 992–1000. [Google Scholar] [CrossRef]
- Cuellar-Bermudez, S.P.; Garcia-Perez, J.S.; Rittmann, B.E.; Parra-Saldivar, R. Photosynthetic bioenergy utilizing CO2: An approach on flue gases utilization for third generation biofuels. J. Clean. Prod. 2015, 98, 53–65. [Google Scholar] [CrossRef]
- Zhu, Y.; Shao, T.; Zhou, Y.; Zhang, X.; Rengel, Z. Periphyton improves soil conditions and offers a suitable environment for rice growth in coastal saline alkali soil. Land Degrad. Dev. 2021, 32, 2775–2788. [Google Scholar] [CrossRef]
- Gao, J.; Muhanmmad, S.; Yue, L.; He, Y.; Tsechoe, D.; Zhang, X.; Kong, W. Changes in CO2-fixing microbial community characteristics with elevation and season in alpine meadow soils on the northern Tibetan Plateau. Acta Ecol. Sin. 2018, 38, 3816–3824. [Google Scholar] [CrossRef]
- Wang, J.; Xie, J.; Li, L.; Luo, Z.; Zhang, R.; Jiang, Y. Nitrogen application increases soil microbial carbon fixation and maize productivity on the semiarid Loess Plateau. Plant Soil 2023, 488, 9–22. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Chen, K.; Wang, S.; Qi, D.; Zhou, Z.; Xie, C.; Liu, X. Dynamic Response of the cbbL Carbon Sequestration Microbial Community to Wetland Type in Qinghai Lake. Biology 2023, 12, 1503. https://doi.org/10.3390/biology12121503
Zhang N, Chen K, Wang S, Qi D, Zhou Z, Xie C, Liu X. Dynamic Response of the cbbL Carbon Sequestration Microbial Community to Wetland Type in Qinghai Lake. Biology. 2023; 12(12):1503. https://doi.org/10.3390/biology12121503
Chicago/Turabian StyleZhang, Ni, Kelong Chen, Siyu Wang, Desheng Qi, Zhiyun Zhou, Chuanyou Xie, and Xunjie Liu. 2023. "Dynamic Response of the cbbL Carbon Sequestration Microbial Community to Wetland Type in Qinghai Lake" Biology 12, no. 12: 1503. https://doi.org/10.3390/biology12121503
APA StyleZhang, N., Chen, K., Wang, S., Qi, D., Zhou, Z., Xie, C., & Liu, X. (2023). Dynamic Response of the cbbL Carbon Sequestration Microbial Community to Wetland Type in Qinghai Lake. Biology, 12(12), 1503. https://doi.org/10.3390/biology12121503