Robinia pseudoacacia L. (Black Locust) Leaflets as Biomonitors of Airborne Microplastics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Microplastic Analysis
2.4. Quality Control
2.5. Estimation of MP Deposition Rates
2.6. Characterization of Microplastics
2.7. Metal Content and Magnetic Analysis
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, L.; Wang, J.; Peng, J.; Tan, Z.; Zhan, Z.; Tan, X.; Chen, Q. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environ. Sci. Pollut. Res. 2017, 24, 24928–24935. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. Biological degradation of plastics and microplastics: A recent perspective on associated mechanisms and influencing factors. Microorganisms 2023, 11, 1661. [Google Scholar] [CrossRef]
- Maddison, C.; Sathish, C.I.; Lakshmi, D.; Wayne, O.C.; Palanisami, T. An advanced analytical approach to assess the long-term degradation of microplastics in the marine environment. NPJ Mater. Degrad. 2023, 7, 59. [Google Scholar] [CrossRef]
- Cao, Y.; Sathish, C.I.; Guan, X.; Wang, S.; Palanisami, T.; Vinu, A.; Yi, J. Advances in magnetic materials for microplastic separation and degradation. J. Hazard. Mater. 2023, 461, 132537. [Google Scholar] [CrossRef] [PubMed]
- Thakur, B.; Singh, J.; Singh, J.; Angmo, D.; Vig, A.P. Biodegradation of different types of microplastics: Molecular mechanism and degradation efficiency. Sci. Total Environ. 2023, 877, 162912. [Google Scholar] [CrossRef]
- Renzi, M.; Blašković, A. Litter & microplastics features in table salts from marine origin: Italian versus Croatian brands. Mar. Pollut. Bull. 2018, 135, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Nerland, I.L.; Halsband, C.; Allan, I.; Thomas, K.V. Microplastics in Marine Environments: Occurrence, Distribution and Effects; Norwegian Institute for Water Research: Oslo, Norway, 2014. [Google Scholar]
- Yang, H.; Chen, G.; Wang, J. Microplastics in the marine environment: Sources, fates, impacts and microbial degradation. Toxics 2021, 9, 41. [Google Scholar] [CrossRef]
- Tang, L.; Feng, J.C.; Li, C.; Liang, J.; Zhang, S.; Yang, Z. Global occurrence, drivers, and environmental risks of microplastics in marine environments. J. Environ. Manag. 2023, 329, 116961. [Google Scholar] [CrossRef]
- Mubin, A.N.; Arefin, S.; Mia, M.S.; Islam, A.R.M.T.; Bari, A.M.; Islam, M.S.; Ali, M.M.; Siddique, M.A.B.; Rahman, M.S.; Senapathi, V.; et al. Managing the invisible threat of microplastics in marine ecosystems: Lessons from coast of the Bay of Bengal. Sci. Total Environ. 2023, 889, 164224. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef] [PubMed]
- de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Luo, Y. Microplastics in terrestrial environments. In Emerging Contaminants and Major Challenges; Springer: Cham, Switzerland, 2020; pp. 87–130. [Google Scholar] [CrossRef]
- Surendran, U.; Jayakumar, M.; Raja, P.; Gopinath, G.; Chellam, P.V. Microplastics in terrestrial ecosystem: Sources and migration in soil environment. Chemosphere 2023, 318, 137946. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Hee, Y.Y.; Hanif, N.M.; Weston, K.; Latif, M.T.; Suratman, S.; Rusli, M.U.; Mayes, A.G. Atmospheric microplastic transport and deposition to urban and pristine tropical locations in Southeast Asia. Sci. Total Environ. 2023, 902, 166153. [Google Scholar] [CrossRef]
- Klein, M.; Bechtel, B.; Brecht, T.; Fischer, E.K. Spatial distribution of atmospheric microplastics in bulk-deposition of urban and rural environments—A one-year follow-up study in northern Germany. Sci. Total Environ. 2023, 901, 165923. [Google Scholar] [CrossRef]
- Romarate, R.A.; Ancla, S.M.B.; Patilan, D.M.M.; Inocente, S.A.T.; Pacilan, C.J.M.; Sinco, A.L.; Guihawan, J.Q.; Capangpangan, R.Y.; Lubguban, A.A.; Bacosa, H.P. Breathing plastics in Metro Manila, Philippines: Presence of suspended atmospheric microplastics in ambient air. Environ. Sci. Pollut. Res. 2023, 30, 53662–53673. [Google Scholar] [CrossRef]
- Renzi, M.; Guerranti, C.; Blašković, A. Microplastic contents from maricultured and natural mussels. Mar. Pollut. Bull. 2018, 131, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Nelms, S.E.; Barnett, J.; Brownlow, A.; Davison, N.J.; Deaville, R.; Galloway, T.S.; Lindeque, P.K.; Santillo, D.; Godley, B.J. Microplastics in marine mammals stranded around the British coast: Ubiquitous but transitory? Sci. Rep. 2019, 9, 1075. [Google Scholar] [CrossRef] [PubMed]
- Carlin, J.; Craig, C.; Little, S.; Donnelly, M.; Fox, D.; Zhai, L.; Walters, L. Microplastic accumulation in the gastrointestinal tracts in birds of prey in central Florida, USA. Environ. Pollut. 2020, 264, 114633. [Google Scholar] [CrossRef]
- Prata, J.C.; Dias-Pereira, P. Microplastics in terrestrial domestic animals and human health: Implications for food security and food safety and their role as sentinels. Animals 2023, 13, 661. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, C.M.; Vladimirova, V. Preliminary study and first evidence of presence of microplastics in terrestrial herpetofauna from Southwestern Paraguay. Stud. Neotrop. Fauna Environ. 2023, 58, 16–24. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Lwanga, E.H.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro-and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Li, L.; Luo, Y.; Peijnenburg, W.J.; Li, R.; Yang, J.; Zhou, Q. Confocal measurement of microplastics uptake by plants. MethodsX 2020, 7, 100750. [Google Scholar] [CrossRef]
- Hwang, J.; Choi, D.; Han, S.; Choi, J.; Hong, J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ. 2019, 684, 657–669. [Google Scholar] [CrossRef]
- Çobanoğlu, H.; Belivermiş, M.; Sıkdokur, E.; Kılıç, Ö.; Çayır, A. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere 2021, 272, 129805. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, E.; Du, Z.; Peng, Z.; Han, Z.; Li, L.; Zhao, R.; Qin, Y.; Xue, M.; Li, F.; et al. Detection of Various Microplastics in Patients Undergoing Cardiac Surgery. Environ. Sci. Technol. 2023, 57, 10911–10918. [Google Scholar] [CrossRef]
- Akanyange, S.N.; Lyu, X.; Zhao, X.; Li, X.; Zhang, Y.; Crittenden, J.C.; Anning, C.; Chen, T.; Jiang, T.; Zhao, H. Does microplastic really represent a threat? A review of the atmospheric contamination sources and potential impacts. Sci. Total Environ. 2021, 777, 146020. [Google Scholar] [CrossRef]
- Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ. 2020, 703, 135504. [Google Scholar] [CrossRef]
- Knight, L.J.; Parker-Jurd, F.N.; Al-Sid-Cheikh, M.; Thompson, R.C. Tyre wear particles: An abundant yet widely unreported microplastic? Environ. Sci. Pollut. Res. 2020, 27, 18345–18354. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 2020, 11, 3381. [Google Scholar] [CrossRef]
- Rai, P.K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, X.; Song, Z.; Wei, N.; Li, D. Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Sci. Total Environ. 2020, 742, 140523. [Google Scholar] [CrossRef]
- Liu, X.; Lu, J.; He, S.; Tong, Y.; Liu, Z.; Li, W.; Xiayihazi, N. Evaluation of microplastic pollution in Shihezi city, China, using pine needles as a biological passive sampler. Sci. Total Environ. 2022, 821, 153181. [Google Scholar] [CrossRef]
- Leonard, J.; Borthakur, A.; Koutnik, V.S.; Brar, J.; Glasman, J.; Cowger, W.; Dittrich, T.M.; Mohanty, S.K. Challenges of using leaves as a biomonitoring system to assess airborne microplastic deposition on urban tree canopies. Atmos. Pollut. Res. 2023, 14, 101651. [Google Scholar] [CrossRef]
- Canha, N.; Jafarova, M.; Grifoni, L.; Gamelas, C.A.; Alves, L.C.; Almeida, S.M.; Loppi, S. Microplastic contamination of lettuces grown in urban vegetable gardens in Lisbon (Portugal). Sci. Rep. 2023, 13, 14278. [Google Scholar] [CrossRef]
- Roblin, B.; Aherne, J. Moss as a biomonitor for the atmospheric deposition of anthropogenic microfibres. Sci. Total Environ. 2020, 715, 136973. [Google Scholar] [CrossRef] [PubMed]
- Loppi, S.; Roblin, B.; Paoli, L.; Aherne, J. Accumulation of airborne microplastics in lichens from a landfill dumping site (Italy). Sci. Rep. 2021, 11, 4564. [Google Scholar] [CrossRef]
- Jafarova, M.; Contardo, T.; Aherne, J.; Loppi, S. Lichen biomonitoring of airborne microplastics in Milan (N Italy). Biology 2022, 11, 1815. [Google Scholar] [CrossRef]
- Jafarova, M.; Grifoni, L.; Aherne, J.; Loppi, S. Comparison of Lichens and Mosses as Biomonitors of Airborne Microplastics. Atmosphere 2023, 14, 1007. [Google Scholar] [CrossRef]
- Bertrim, C.; Aherne, J. Moss Bags as Biomonitors of Atmospheric Microplastic Deposition in Urban Environments. Biology 2023, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, F.; Sorrentino, M.C.; Cascone, E.; Iuliano, M.; De Tommaso, G.; Granata, A.; Giordano, S.; Spagnuolo, V. Biomonitoring of Airborne Microplastic Deposition in Semi-Natural and Rural Sites Using the Moss Hypnum cupressiforme. Plants 2023, 12, 977. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, M.; Schoettl, J.; Pruin, L.; Fischer, B.; Wolf, C.; Kube, C.; Renner, G.; Schram, J.; Schmidt, T.C.; Tuerk, J. Determination of atmospherically deposited microplastics in moss: Method development and performance evaluation. Green Chem. 2023, 7, 100078. [Google Scholar] [CrossRef]
- Nadgórska-Socha, A.; Kandziora-Ciupa, M.; Ciepał, R.; Barczyk, G. Robinia pseudoacacia and Melandrium album in trace elements biomonitoring and air pollution tolerance index study. Int. J. Environ. Sci. Technol. 2016, 13, 1741–1752. [Google Scholar] [CrossRef]
- Capozzi, F.; Di Palma, A.; Sorrentino, M.C.; Adamo, P.; Giordano, S.; Spagnuolo, V. Morphological traits influence the uptake ability of priority pollutant elements by Hypnum cupressiforme and Robinia pseudoacacia Leaves. Atmosphere 2020, 11, 148. [Google Scholar] [CrossRef]
- Crosti, R.; Agrillo, E.; Ciccarese, L.; Guarino, R.; Paris, P.; Testi, A. Assessing escapes from short rotation plantations of the invasive tree species Robinia pseudoacacia L. in Mediterranean ecosystems: A study in central Italy. iFor.-Biogeosci. For. 2016, 9, 822. [Google Scholar] [CrossRef]
- Sitzia, T.; Cierjacks, A.; de Rigo, D.; Caudullo, G. Robinia pseudoacacia in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; European Commission: Brussels, Belgium, 2016; pp. 166–167. [Google Scholar]
- Martin, G.D. Addressing geographical bias: A review of Robinia pseudoacacia (black locust) in the Southern Hemisphere. S. Afr. J. Bot. 2019, 125, 481–492. [Google Scholar] [CrossRef]
- Windsor, F.M.; Tilley, R.M.; Tyler, C.R.; Ormerod, S.J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 2019, 646, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Norén, F. Small plastic particles in coastal Swedish waters. Kimo Sweden 2007, 11, 1–11. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Leads, R.R.; Weinstein, J.E. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar. Pollut. Bull. 2019, 145, 569–582. [Google Scholar] [CrossRef]
- Parker, B.W.; Beckingham, B.A.; Ingram, B.C.; Ballenger, J.D.; Weinstein, J.E.; Sancho, G. Microplastic and tire wear particle occurrence in fishes from an urban estuary: Influence of feeding characteristics on exposure risk. Mar. Pollut. Bull. 2020, 160, 111539. [Google Scholar] [CrossRef]
- Anderson, Carlos J. R. Leafscan (Version 2.1.1). [Mobile Application Software]. 2020. Available online: https://play.google.com/store/apps/details?id=com.carlosjanderson.leafscan (accessed on 25 October 2023).
- Weather Spark. Available online: https://weatherspark.com/ (accessed on 25 October 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 25 October 2023).
- Järlskog, I.; Jaramillo-Vogel, D.; Rausch, J.; Gustafsson, M.; Strömvall, A.M.; Andersson-Sköld, Y. Concentrations of tire wear microplastics and other traffic-derived non-exhaust particles in the road environment. Environ. Int. 2022, 170, 107618. [Google Scholar] [CrossRef]
- Lopez, B.; Wang, X.; Chen, L.W.A.; Ma, T.; Mendez-Jimenez, D.; Cobb, L.C.; Frederickson, C.; Fang, T.; Hwang, B.; Shiraiwa, M.; et al. Metal contents and size distributions of brake and tire wear particles dispersed in the near-road environment. Sci. Total Environ. 2023, 883, 163561. [Google Scholar] [CrossRef]
- Winkler, A.; Contardo, T.; Vannini, A.; Sorbo, S.; Basile, A.; Loppi, S. Magnetic emissions from brake wear are the major source of airborne particulate matter bioaccumulated by lichens exposed in Milan (Italy). Appl. Sci. 2020, 10, 2073. [Google Scholar] [CrossRef]
- Winkler, A.; Contardo, T.; Lapenta, V.; Sgamellotti, A.; Loppi, S. Assessing the impact of vehicular particulate matter on cultural heritage by magnetic biomonitoring at Villa Farnesina in Rome, Italy. Sci. Total Environ. 2022, 823, 153729. [Google Scholar] [CrossRef] [PubMed]
- Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual. Res. 2018, 18, 2014–2028. [Google Scholar] [CrossRef]
Site | Total MPs (n) | Fibre (n) | Fragment (n) | TWP (n) | Mean Fibre Length (µm) | Mean TWP Length (µm) | Daily MP Deposition (MPs m–2 d–1) |
---|---|---|---|---|---|---|---|
RO 1 | 51.8 ± 1.64 | 3.80 ± 1.64 | 0.00 ± 0.00 | 48 ± 0.15 | 612 ± 370 | 50.03 ± 7.50 | 29.86 ± 0.95 |
RO 2 | 543.2 ± 2.17 | 4.80 ± 1.29 | 0.40 ± 0.55 | 538 ± 80.70 | 1073 ± 500 | 115.37 ± 36.14 | 313.14 ± 1.25 |
RO 3 | 741.4 ± 2.41 | 3.00 ± 2.00 | 0.40 ± 0.55 | 738 ± 110.70 | 1037 ± 501 | 176.40 ± 15.00 | 427.39 ± 1.39 |
RO 4 | 793.8 ± 0.45 | 1.80 ± 045 | 0.00 ± 0.00 | 792 ± 118.80 | 512 ± 337 | 222.75 ± 19.85 | 457.60 ± 0.26 |
RO 5 | 759.8 ± 2.59 | 3.80 ± 2.59 | 0.00 ± 0.00 | 756 ± 113.40 | 647 ± 414 | 368.05 ± 169.63 | 438.00 ± 1.49 |
UP 1 | 7.20 ± 3.49 | 7.00 ± 3.54 | 0.20 ± 0.45 | ̶ | 881 ± 767 | ̶ | 4.15 ± 2.01 |
UP 2 | 7.20 ± 3.03 | 6.80 ± 2.68 | 0.40 ± 0.89 | ̶ | 1080 ± 922 | ̶ | 4.15 ± 1.75 |
UP 3 | 8.00 ± 2.12 | 7.80 ± 1.79 | 0.20 ± 0.45 | ̶ | 930 ± 555 | ̶ | 4.61 ± 1.22 |
UP 4 | 8.80 ± 4.71 | 8.60 ± 4.70 | 0.20 ± 0.45 | ̶ | 892 ± 468 | ̶ | 5.07 ± 2.72 |
UP 5 | 7.40 ± 2.88 | 6.80 ± 3.42 | 0.60 ± 0.55 | ̶ | 994 ± 743 | ̶ | 4.27 ± 1.66 |
Site | Fe | Al | Cu | Zn | Cr | Sb | Ba | χ, kg |
---|---|---|---|---|---|---|---|---|
RO 1 | 103 ± 1 | 102 ± 1 | 8.2 ± 0.1 | 25.8 ± 0.6 | 0.6 ± 0.3 | 0.71 ± 0.02 | 17.8 ± 0.2 | −0.548 ± 0.0136 |
RO 2 | 168 ± 4 | 117 ± 2 | 7.5 ± 0.3 | 28.2 ± 0.9 | 0.8 ± 0.1 | 0.20 ± 0.01 | 17.8 ± 0.1 | 0.670 ± 0.009 |
RO 3 | 152 ± 4 | 88 ± 0.4 | 7.6 ± 0.1 | 22.2 ± 1.0 | 0.5 ± 0.1 | 0.24 ± 0.002 | 20 ± 0.1 | 0.021 ± 0.0099 |
RO 4 | 181 ± 2 | 146 ± 3 | 8.1 ± 0.1 | 22.9 ± 0.1 | 0.5 ± 0.1 | 0.30 ± 0.01 | 17.7 ± 0.1 | 2.80 ± 0.01 |
RO 5 | 209 ± 2 | 162 ± 2 | 6.9 ± 0.1 | 18.8 ± 0.6 | 0.7 ± 0.1 | 0.10 ± 0.01 | 16.2 ± 0.1 | 0.155 ± 0.0096 |
UP 1 | 170 ± 3 | 181 ± 6 | 6.3 ± 0.1 | 14.2 ± 0.4 | 0.6 ± 0.1 | 0.10 ± 0.01 | 12.9 ± 0.2 | −0.233 ± 0.0202 |
UP 2 | 97 ± 1 | 136 ± 1 | 9.2 ± 0.1 | 24.8 ± 0.5 | 0.3 ± 0.1 | 0.04 ± 0.01 | 7.4 ± 0.04 | −0.643 ± 0.0156 |
UP 3 | 134 ± 2 | 92 ± 1 | 6.0 ± 0.2 | 20.6 ± 0.6 | 0.6 ± 0.1 | 0.10 ± 0.01 | 11.3 ± 0.1 | −0.543 ± 0.0298 |
UP 4 | 87 ± 2 | 87 ± 1 | 8.0 ± 0.1 | 22.1 ± 0.5 | 0.3 ± 0.1 | 0.10 ± 0.01 | 6.4 ± 0.1 | −0.555 ± 0.046 |
UP 5 | 160 ± 8 | 76 ± 1 | 7.7 ± 0.1 | 16.0 ± 0.5 | 0.4 ± 0.1 | 0.10 ± 0.01 | 33.6 ± 0.1 | −0.508 ± 0.0341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafarova, M.; Grifoni, L.; Renzi, M.; Bentivoglio, T.; Anselmi, S.; Winkler, A.; Di Lella, L.A.; Spagnuolo, L.; Aherne, J.; Loppi, S. Robinia pseudoacacia L. (Black Locust) Leaflets as Biomonitors of Airborne Microplastics. Biology 2023, 12, 1456. https://doi.org/10.3390/biology12121456
Jafarova M, Grifoni L, Renzi M, Bentivoglio T, Anselmi S, Winkler A, Di Lella LA, Spagnuolo L, Aherne J, Loppi S. Robinia pseudoacacia L. (Black Locust) Leaflets as Biomonitors of Airborne Microplastics. Biology. 2023; 12(12):1456. https://doi.org/10.3390/biology12121456
Chicago/Turabian StyleJafarova, Mehriban, Lisa Grifoni, Monia Renzi, Tecla Bentivoglio, Serena Anselmi, Aldo Winkler, Luigi Antonello Di Lella, Lilla Spagnuolo, Julian Aherne, and Stefano Loppi. 2023. "Robinia pseudoacacia L. (Black Locust) Leaflets as Biomonitors of Airborne Microplastics" Biology 12, no. 12: 1456. https://doi.org/10.3390/biology12121456
APA StyleJafarova, M., Grifoni, L., Renzi, M., Bentivoglio, T., Anselmi, S., Winkler, A., Di Lella, L. A., Spagnuolo, L., Aherne, J., & Loppi, S. (2023). Robinia pseudoacacia L. (Black Locust) Leaflets as Biomonitors of Airborne Microplastics. Biology, 12(12), 1456. https://doi.org/10.3390/biology12121456