The Influence of the Long-Term Outdoor Storage of Rockrose (Cistus laurifolius L.) Shrub Biomass on Biofuel’s Quality, Pre-Treatment and Combustion Processes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Biomass Storage
2.3. Biofuels Production
- (a)
- Communition equipment. A 90 kW pre-shredder was used to reduce rockrose bales in size in order to ensure a proper boiler feed and optimum efficiency of the combustion system. In this equipment, the material was pressed against a monorotor via a hydraulic feeder with a pusher stroke of 1100 mm. This rotor (ϕ 450 mm, 1400 mm length) was provided with 102 embedded blades (40 × 40 mm) that milled the biomass by passing it through a 30 mm mesh. The biofuels produced were used to power an industrial combustion boiler without previous sieving and drying processes (Figure A3-left).
- (b)
- Pelletisation plant
- Pre-shredder tests: Three batches of 80 bales (35 tWM per lot) were crushed to 30 mm for the industrial boiler. Part of the obtained material (4.3%) was post-grinded for pelletisation tests.
- Post-grinder tests: Three batches of 30 mm shredded biomass (1500 kgWM per batch) were processed in the hammer mill to 4 mm for pelletisation tests.
- Pelletisation tests: Three batches of 4 mm biomass (1500 kgWM per batch) were pelletised to obtain Ø 8 mm pellets.
2.4. Biomass Combustion
2.5. Analytical Procedures
3. Results
3.1. Biomass Storage
3.2. Biofuels Production
3.2.1. Communition Tests
3.2.2. Pelletisation Tests
3.3. Biofuels Characterisation
3.4. Biomass Combustion
4. Discussion
4.1. Biomass Storage
4.2. Biofuels Production
4.3. Biofuels Characterisation
4.4. Biomass Combustion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Viana, H.; Vega-Nieva, D.J.; Ortiz Torres, L.; Lousada, J.; Aranha, J. Fuel characterization and biomass combustion properties of selected native woody shrub species from central Portugal and NW Spain. Fuel 2012, 102, 737–745. [Google Scholar] [CrossRef]
- Lainez, M.; González, J.M.; Aguilar, A.; Vela, C. Spanish strategy on bioeconomy: Towards a knowledge based sustainable innovation. New Biotechnol. 2018, 40, 87–95. [Google Scholar] [CrossRef] [PubMed]
- MITECO (Ministerio de Transición Ecológica). Plan Nacional Integrado de Energía y Clima 2021–2030. Available online: https://www.miteco.gob.es/content/dam/miteco/es/ministerio/planes-estrategias/plan-nacional-integrado-energia-clima/plannacionalintegradodeenergiayclima2021-2030_tcm30-546623.pdf (accessed on 7 November 2023).
- Esteban, L.S.; Bados, R.; Mediavilla, I. Sustainable Management of Shrub Formations for Energy Purposes; Legal Deposite: M-36990-2019; CEDER-CIEMAT: Lubia, Spain, 2019; ISBN 978-84-7834-824-4. [Google Scholar]
- Baeza, M.J.; De Luis, M.; Raventos, J.; Escarre, A. Factor influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. J. Environ. Manag. 2002, 65, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Regueira, L.; Proupín-Castineiras, J.; Rodríguez-Anon, J.A. Energy evaluation of forest originated from shrub species in Galicia. Bioresour. Technol. 2004, 91, 215–221. [Google Scholar] [CrossRef] [PubMed]
- García-Hurtado, E.; Pey, J.; Baeza, M.J.; Carrara, A.; Llovet, J.; Querol, X.; Alastuey, A.; Ramon Vallejo, V. Carbon emissions in Mediterranean shrubland wildfires: An experimental approach. Atmos. Environ. 2013, 69, 86–93. [Google Scholar] [CrossRef]
- Mediavilla, I.; Borjabad, E.; Fernández, M.J.; Ramos, R.; Pérez, P.; Bados, R.; Carrasco, J.E.; Esteban, L.S. Biofuels from broom clearings: Production and combustion in commercial boilers. Energy 2017, 141, 1845–1856. [Google Scholar] [CrossRef]
- MAPAMA (Ministerio de Agricultura, Pesca y Alimentación). Los Incendios Forestales en España. Decenio 2006–2015. 2019. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/incendios-forestales/incendios-decenio-2006-2015_tcm30-521617.pdf (accessed on 28 June 2023).
- Montero, G.; López-Leiva, C.; Ruiz-Peinado, R.; López-Senespleda, E.; Onrubia, R.; Pasalodos, M. Producción de Biomasa y Fijación de Carbono por los Matorrales Españoles y por el Horizonte Orgánico Superficial de los Suelos Forestales; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2020; 225p. Available online: https://www.mapa.gob.es/es/desarrollo-rural/publicaciones/publicaciones-de-desarrollo-rural/librobiomasadigital_tcm30-538563.pdf (accessed on 28 June 2023).
- San Miguel, A.; Roig, S.; Cañellas, I. Fruticeticultura. Gestión de arbustedos y matorrales. In Compendio de Selvicultura aplicada en España; Serrada, R., Montero, G., Reque, J.A., Eds.; Fundación Conde del Valle Salazar: Madrid, Spain, 2004; 40p, Available online: https://oa.upm.es/4809/2/INVE_MEM_2008_58247.pdf (accessed on 27 June 2023).
- Bados, R.; Tolosana, E.; Esteban, L.S. Evaluation of a harvester-baler system operating in a rockrose (Cistus laurifolius L.) shrubland. Croat. J. For. Eng. 2020, 41, 191–203. [Google Scholar] [CrossRef]
- González-González, B.D.; Sixto, H.; Aberdi, I.; Esteban, L.S.; Guerrero, S.; Pasalodos, M.; Vázquez, A.; Cañellas, I. Estimation of shrub biomass availability along two geographical transects in the Iberian Peninsula for energy purposes. Biomass Bioenergy 2017, 105, 211–218. [Google Scholar] [CrossRef]
- Rentizelas, A.A.; Tolis, A.J.; Tatsiopoulos, I.P. Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renew. Sustain. Energy Rev. 2009, 13, 887–894. [Google Scholar] [CrossRef]
- Mak, J.; Landry, H.; Grieger, L.; Agnew, J.; Krigstin, S.; Helmeste, C.; Wetzel, S.; Madrali, S.; Volpe, S. An Assessment of Ambient and Heated Forced Air Drying Pre-treatments for Enhancing the Quality of Various Forest Biomass Feedstocks. Front. Energy Res. 2020, 8, 11. [Google Scholar] [CrossRef]
- Richardson, J.; Bjorheden, R.; Hakkila, P.; Lowe, A.T.; Smith, C.T. Bioenergy from Sustainable Forestry: Guiding Principles and Practice; Kluwer Academic Publishers, Forestry Sciences: Dordrecht, The Netherlands, 2002; Volume 71, 344p. [Google Scholar]
- Pettersson, M.; Nordfjell, T. Fuel quality changes during seasonal storage of compacted logging residues and young trees. Biomass Bioenergy 2007, 31, 782–792. [Google Scholar] [CrossRef]
- Röser, D.; Sikanen, L.; Asikainen, A.; Parikka, H.; Vaatainen, K. Productivity and cost of mechanized energy wood harvesting in Northern Scotland. Biomass Bioenergy 2011, 35, 4570–4580. [Google Scholar] [CrossRef]
- Egger, C.; Öhlinger, C.; Auinger, B.; Brandstätter, B.; Richler, N.; Dell, G. Biomass Heating in Upper Austria. Green Energy, Green Jobs; OO Energiesparverband: Linz, Austria, 2012; 39p, Available online: https://www.energiesparverband.at/fileadmin/esv/Brochures/Biomass-heating-Upper-Austria-US.pdf (accessed on 27 June 2023).
- Alakangas, E. Biomass and agricultural residues for energy generation. In Fuel Flexible Energy Generation; Woodhead Publishing: Thorston, UK, 2016; pp. 59–96. [Google Scholar] [CrossRef]
- Labbé, R.; Carey, P.; Trincado, G.; Thiers, O. Natural drying of forest biomass: Effect of stack height and cover in the province of Valdivia, Chile. Bosque 2018, 39, 449–456. [Google Scholar] [CrossRef]
- Palmer, D.; Tubby, I.; Hogan, G.; Rolls, W. Biomass Heating: A Guide to Medium Scale Wood Chip and Wood Pellet Systems; Biomass Energy Centre, Forest Research: Farnham, UK, 2011; 20p. [Google Scholar]
- ISO 17225-9:2022; Solid Biofuels. Fuel Specifications and Classes. Part 9: Graded Hog Fuel and Wood Chips for Industrial Use. ISO: Geneva, Switzerland, 2022.
- ISO 17225-2:2021; Solid Biofuels. Fuel Specifications and Classes. Part 2: Graded wood pellets. ISO: Geneva, Switzerland, 2021.
- Yu, C.; Thy, P.; Wang, L.; Anderson, S.N.; Vander Gheynst, J.S.; Upadhyaya, S.K.; Jenkins, B.M. Influence of leaching pretreatment on fuel properties of biomass. Fuel Process. Technol. 2014, 128, 43–53. [Google Scholar] [CrossRef]
- Mediavilla, I.; Fernández, M.J.; Barro, R.; Borjabad, E.; Bados, R.; Esteban, L.S. Effect of mechanical harvesting on the chemical composition and combustion behaviour of shrub biomass. Energy 2020, 204, 117928. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classication. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- AEMET Iberian Climate Atlas. 2011. Available online: https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/Atlas-climatologico/Atlas.pdf (accessed on 27 June 2023).
- EN 13284-1:2017; Stationary Source Emissions. Determination of Low Range Mass Concentration of Dust-Manual Gravimetric Method. British Standards Institution: London, UK, 2017.
- ISO 21945:2020; Solid Biofuels. Simplified Sampling Method for Small Scale Applications. ISO: Geneva, Switzerland, 2020.
- ISO 14780:2017; Solid Biofuels. Sample Preparation. ISO: Geneva, Switzerland, 2017.
- ISO 17828:2015; Solid Biofuels. Determination of Bulk Density. ISO: Geneva, Switzerland, 2015.
- ISO 17831-1:2015; Solid Biofuels. Determination of Mechanical Durability of Pellets and Briquettes. ISO: Geneva, Switzerland, 2015.
- ISO 18846:2016; Solid Biofuels. Determination of Fines Content in Quantities of Pellets. ISO: Geneva, Switzerland, 2016.
- ISO 17827-1:2016; Solid Biofuels. Determination of Particle Size Distribution for Uncompressed Fuels—Part 1: Oscillating Screen Method Using Sieves with Apertures of 3.15 Mm and above. ISO: Geneva, Switzerland, 2016.
- ISO 17827-2:2016; Solid Biofuels. Determination of Particle Size Distribution for Uncompressed Fuels—Part 2: Vibrating Screen Method Using Sieves with Aperture of 3.15 Mm and below. ISO: Geneva, Switzerland, 2016.
- ISO 18134-2:2017; Solid Biofuels. Determination of Moisture Content. Oven Dry Method. Part 2: Total Moisture. Simplified Method. ISO: Geneva, Switzerland, 2017.
- ISO 18122:2015; Solid Biofuels. Determination of Ash Content. ISO: Geneva, Switzerland, 2015.
- ISO 18123:2015; Solid Biofuels. Determination of the Content of Volatile Matter. ISO: Geneva, Switzerland, 2015.
- ISO 16948:2015; Solid Biofuels. Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO: Geneva, Switzerland, 2015.
- ISO 16994:2016; Solid Biofuels. Determination of Total Content of Sulfur and Chlorine. ISO: Geneva, Switzerland, 2016.
- ISO 18125:2017; Solid Biofuels. Determination of Calorific Value. ISO: Geneva, Switzerland, 2017.
- ISO 16967:2015; Solid Biofuels. Determination of Major Elements—Al, Ca, Fe, Mg, P, K, Si, Na and Ti. ISO: Geneva, Switzerland, 2015.
- ISO 16968:2015; Solid Biofuels. Determination of Minor Elements. ISO: Geneva, Switzerland, 2015.
- ISO 21404:2020; Solid Biofuels. Determination of Ash Melting Behaviour. ISO: Geneva, Switzerland, 2020.
- Casal, M.D.; Gil, M.V.; Pevida, C.; Rubiera, F.; Pis, J.J. Influence of storage time on the quality and combustion behaviour of pine woodchips. Energy 2010, 35, 3066–3071. [Google Scholar] [CrossRef]
- Liu, X.; Bi, X.T. Removal of inorganic constituents from pine barks and switchgrass. Fuel Process. Technol. 2011, 92, 1273–1279. [Google Scholar] [CrossRef]
- Pradhan, U. Physical Treatments for Reducing Biomass Ash and Effect of Ash Content on Pyrolysis Products. Unpublished. Ph.D. Thesis, Graduate Faculty of Auburn University, Auburn, AL, USA, 2015. Available online: https://etd.auburn.edu/bitstream/handle/10415/4726/Master%20thesis_Ujjain.pdf?isAllowed=y&sequence=2 (accessed on 27 June 2023).
- Barroso, L.; Alcobendas, A.; Serrano, M.; Patilla, J.; González, J.; Cortés, J. Size screening and washing to improve pellet quality solid biofuel from plum tree pruning biomass. In Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021), ICoWEFS, Leiria, Portugal, 10–12 May 2021; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
Property | Technique of Analysis | Standard |
---|---|---|
Sampling | Solid biofuels sampling | ISO 21945 [30] |
Analytical sample preparation | Homogenisation, division, drying and grinding | ISO 14780 [31] |
Bulk density | Mass of a known volume | ISO 17828 [32] |
Mechanical durability | Drum rotation | ISO 17831-1 [33] |
Fines content | Manual sieving (3.15 mm mesh) | ISO 18846 [34] |
Particle size distribution | Separation into defined size fractions (sieves) | ISO 17827-1 [35] ISO 17827-2 [36] |
Moisture | Drying at 105 °C | ISO 18134-2 [37] |
Ash | Calcination at 550 °C | ISO 18122 [38] |
Volatile matter | Heating at 900 °C | ISO 18123 [39] |
C, H, N S and Cl | Elemental analysis (TruSpec, Leco) Ion chromatography (883 Basic IC Plus, Methrom) after sample combustion and lixiviation | ISO 16948 [40] ISO 16994 [41] |
Calorific value | Automatic calorimeter (C5003, Ika Verke) | ISO 18125 [42] |
Major elements | Microwave digestion (Ethos Pro, Milestone) and ICP-AES (Jarrell ash, Thermo Scientific, Madrid, Spain) | ISO 16967 [43] |
Minor elements | Microwave digestion (Ethos Pro, Milestone) and ICP-MS (iCAP Q, Thermo Scientific) Thermal decomposition/gold amalgamation/absorption spectrophotometry (DMA-80, Milestone) for Hg | ISO 16968 [44] |
Ash melting behaviour | Optical heating microscopy (Hesse instruments, Osterode am Harz, Germany) | ISO 21404 [45] |
Parameter | Unit | Storage Period | 2016 | 2009–2017 |
---|---|---|---|---|
Mean temperature | °C | 11.0 | 10.7 | 10.7 |
Absolute maximum temperature | °C | 35.6 | 35.6 | 34.7 |
Absolute minimum temperature | °C | −11.7 | −7.5 | −10.2 |
Mean maximum temperature | °C | 17.2 | 17.3 | 17.5 |
Mean minimum temperature | °C | 4.6 | 4.8 | 4.3 |
Precipitation | mm | 431.7 | 540.2 | 471.8 |
Direct solar radiation | MWh m−2 | 1.42 | 1.40 | 1.4 |
Relative humidity | % | 68.4 | 69.5 | 66.8 |
Wind speed | m s−1 | 1.9 | 2.0 | n.a. |
Wind direction | Degrees | 261.4 | 258.9 | n.a. |
Description | Value |
---|---|
Initial moisture content (%) | 38.5 |
2-month moisture content (%) | 30.3 |
4-month moisture content (%) | 22.5 |
6-month moisture content (%) | 21.4 |
8-month moisture content (%) | 19.1 |
10-month moisture content (%) | 20.6 |
Final moisture content (%) | 17.8 |
Initial stored wet biomass (kgWM) | 20,748 |
Initial stored dry biomass (kgDM) | 12,760 |
Initial wet weight per bale (kgWM per bale) | 461.1 |
Initial dry weight per bale (kgDM per bale) | 283.5 |
Final stored wet biomass (kgWM) | 13,611 |
Final stored dry biomass (kgDM) | 11,188 |
Final wet weight per bale (kgWM per bale) | 302.5 |
Final dry weight per bale (kgDM per bale) | 248.6 |
Dry matter variation (kgDM) | 1572 |
Dry matter variation (%) | 12.3 |
Pre-Treatment Process | Test 1 | Test 2 | Test 3 | A | SD | %RSD | α |
---|---|---|---|---|---|---|---|
Shredder (30 mm) | |||||||
Just-harvested biomass | |||||||
MF (kg h−1 kW−1) (d.b.) | 17.8 | 19.3 | 12.8 | 16.6 | 3.4 | 20.5 | |
E (kWh Mg−1) (d.b.) | 11.7 | 10.6 | 12.9 | 11.7 | 1.2 | 9.8 | |
M (wt.%) (w.b.) | 25.0 | 30.0 | 23.0 | 26.0 | 3.6 | 13.9 | |
Biomass after 1-year storage | |||||||
MF (kg h−1 kW−1) (d.b.) | 19.3 | 17.4 | 15.0 | 17.2 | 2.2 | 12.5 | |
E (kWh Mg−1) (d.b.) | 11.7 | 11.7 | 13.4 | 12.3 | 1.0 | 8.0 | |
M (wt.%) (w.b.) | 17.5 | 18.8 | 18.3 | 18.2 | 0.7 | 3.6 | |
p-value of the F-test (95% prob.) | |||||||
MF (kg h−1 kW−1) (d.b.) | 0.809 | ||||||
E (kWh Mg−1) (d.b.) | 0.574 | ||||||
Post-grinder (4 mm) | |||||||
Just-harvested biomass | |||||||
MF (kg h−1 kW−1) (d.b.) | 10.6 | 9.7 | 12.3 | 10.9 | 1.3 | 12.2 | |
E (kWh Mg−1) (d.b.) | 58.1 | 57.3 | 53.8 | 56.4 | 2.3 | 4.1 | |
M (wt.%) (w.b.) | 22.1 | 13.8 | 13.5 | 16.5 | 4.9 | 29.6 | |
Biomass after 1-year storage | |||||||
MF (kg h−1 kW−1) (d.b.) | 9.1 | 9.0 | 8.9 | 9.0 | 0.1 | 1.0 | |
E (kWh Mg−1) (d.b.) | 58.5 | 53.5 | 52.0 | 54.7 | 3.4 | 6.2 | |
M (wt.%) (w.b.) | 19.2 | 14.3 | 16.6 | 17.9 | 1.8 | 10.3 | |
p-value of the F-test (95% prob.) | 0.071 | ||||||
MF (kg h−1 kW−1) (d.b.) | 0.505 | ||||||
E (kWh Mg−1) (d.b.) | |||||||
Pelletisation (Ø 8 mm) | |||||||
Just-harvested biomass | |||||||
MF (kg h−1 kW−1) (d.b.) | 6.0 | 5.8 | 7.3 | 6.4 | 0.8 | 12.8 | |
E (kWh Mg−1) (d.b.) | 128.0 | 137.2 | 117.1 | 127.4 | 10.1 | 7.9 | |
M (wt.%) (w.b.) | 10.0 | 9.1 | 11.0 | 10.0 | 1.0 | 9.5 | |
Biomass after 1-year storage | |||||||
MF (kg h−1 kW−1) (d.b.) | 6.2 | 7.3 | 5.5 | 6.3 | 0.9 | 14.3 | |
E (kWh Mg−1) (d.b.) | 131.0 | 117.0 | 157.7 | 135.2 | 20.7 | 15.3 | |
M (wt.%) (w.b.) | 11.5 | 11.0 | 10.2 | 10.9 | 0.7 | 6.0 | |
p-value of the F-test (95% prob.) | |||||||
MF (kg h−1 kW−1) (d.b.) | 0.965 | ||||||
E (kWh Mg−1) (d.b.) | 0.588 |
Parameter | Unit | Milled Rockrose | Rockrose Pellets | ||
---|---|---|---|---|---|
BS | AS | BS | AS | ||
Diameter | mm | - | - | 8 | 8 |
Moisture content | wt.% (w.b.) | 16.5 | 10.9 | 7.2 | 9.4 |
Bulk density | kg m−3 (w.b.) | 280 | 250 | 700 | 670 |
Mechanical durability | % | - | - | 97.3 | 99.2 |
Fines content | % | 10.5 | 5.5 | 0.2 | 0.3 |
Calorific values: | |||||
GCV | MJ kg−1 (d.b.) | 19.61 | 19.85 | 19.9 | 19.9 |
GCV | MJ kg−1 (w.b.) | 16.38 | 17.69 | 18.5 | 18.0 |
NCV | MJ kg−1 (d.b.) | 18.33 | 18.55 | 18.9 | 18.6 |
NCV | MJ kg−1 (w.b.) | 14.9 | 16.26 | 17.4 | 16.6 |
Inmediate analysis: | |||||
Ash | wt.% (d.b.) | 4.7 | 2.8 | 4.2 | 3.0 |
Volatile matter | wt.% (d.b.) | 78.8 | 80.4 | 78.6 | 79.9 |
Ultimate analysis: | |||||
Carbon | wt.% (d.b.) | 49.3 | 49.6 | 50.2 | 50.4 |
Hydrogen | wt.% (d.b.) | 5.9 | 6.0 | 5.8 | 5.9 |
Nitrogen | wt.% (d.b.) | 0.45 | 0.42 | 0.40 | 0.40 |
Sulphur | wt.% (d.b.) | 0.04 | 0.03 | 0.04 | 0.02 |
Chlorine | wt.% (d.b.) | 0.01 | 0.01 | 0.01 | 0.01 |
Ash composition: | |||||
Al2O3 | wt.% (d.b.) | 2.2 | 1.5 | 2.9 | 1.7 |
BaO | wt.% (d.b.) | 0.13 | 0.19 | 0.16 | 0.15 |
CaO | wt.% (d.b.) | 18 | 42 | 23 | 28 |
Fe2O3 | wt.% (d.b.) | 2.0 | 0.62 | 1.6 | 1.0 |
K2O | wt.% (d.b.) | 4.4 | 6.0 | 6.7 | 6.0 |
MgO | wt.% (d.b.) | 1.8 | 3.4 | 2.7 | 2.8 |
Mn2O3 | wt.% (d.b.) | 0.52 | 0.77 | 0.64 | 0.61 |
Na2O | wt.% (d.b.) | 0.14 | 0.20 | 0.21 | 0.15 |
P2O5 | wt.% (d.b.) | 2.1 | 1.8 | 2.8 | 2.4 |
SO3 | wt.% (d.b.) | 1.8 | 1.6 | 1.5 | 1.4 |
SiO2 | wt.% (d.b.) | 51 | 19 | 35 | 31 |
SrO | wt.% (d.b.) | 0.031 | 0.059 | 0.039 | 0.047 |
TiO2 | wt.% (d.b.) | 0.18 | 0.088 | 0.23 | 0.12 |
ZnO | wt.% (d.b.) | 0.12 | 0.11 | 0.072 | 0.074 |
Sum | wt.% (d.b.) | 84.0 | 80.3 | 76.8 | 76.2 |
Trace elements on biomass | |||||
As | mg kg−1 (d.b.) | 0.21 | <0.10 | 0.19 | <0.10 |
Cd | mg kg−1 (d.b.) | 0.27 | 0.28 | 0.29 | 0.25 |
Cr | mg kg−1 (d.b.) | 8.1 | 1.6 | 3.9 | 1.8 |
Cu | mg kg−1 (d.b.) | 5.6 | 3.1 | 5.0 | 2.5 |
Pb | mg kg−1 (d.b.) | 1.6 | 1.7 | 1.7 | 1.7 |
Hg | mg kg−1 (d.b.) | 0.005 | 0.004 | 0.005 | 0.004 |
Ni | mg kg−1 (d.b.) | 18.0 | 5.0 | 11.0 | 2.9 |
Zn | mg kg−1 (d.b.) | 26 | 22 | 22 | 17 |
Ash melting behavior | |||||
SST | °C | 1220 | 1390 | 1200 | 1210 |
DT | °C | 1230 | >1450 | 1210 | 1230 |
HT | °C | 1250 | >1450 | 1250 | 1260 |
FT | °C | 1280 | >1450 | 1260 | 1260 |
Biofuel | NOx (mg/Nm3) | SO2 (mg/Nm3) | TSP (mg/Nm3) | |||
---|---|---|---|---|---|---|
A | SD | A | SD | A | SD | |
Commonly used fuel | 367 | 23 | 11 | 1.7 | 13 | 4.2 |
Milled rockrose (BS) | 367 | 23 | 13 | 2.1 | 17 | 5.5 |
Milled rockrose (AS) | 338 | 22 | 11 | 2.0 | 16 | 5.8 |
Directive (EU) 2015/2193 and RD 1042/2017 limits | 650 | 200 | 30 |
Parameter | Unit | Milled Rockrose | ISO 17225-9 | Rockrose Pellets | ISO 17225-2 | |
---|---|---|---|---|---|---|
AS | I1 Class | AS | B Class | I3 Class | ||
Diameter | mm | - | - | 8 | 8 | 8 |
Moisture content | wt.% (w.b.) | 10.9 | ≤45 | 9.4 | ≤10 | ≤10 |
Bulk density | kg m−3 (w.b.) | 250 | - | 670 | ≥600 | ≥600 |
Mech. durability | % | - | - | 99.2 | ≥96.5 | ≥96.5 |
Fine particles | % | 5.5 | 0.3 | ≤1.0 | ≤6.0 | |
Calorific value: | ||||||
NCV | MJ kg−1 (w.b.) | 16.3 | 16.6 | ≥16.5 | ≥16.5 | |
Inmediate analysis: | ||||||
Ash | wt.% (d.b.) | 2.8 | ≤3 | 3 | ≤2 | ≤3 |
Ultimate analysis: | ||||||
Nitrogen | wt.% (d.b.) | 0.42 | ≤0.5 | 0.4 | ≤1.0 | ≤0.6 |
Sulphur | wt.% (d.b.) | 0.03 | ≤0.05 | 0.02 | ≤0.05 | ≤0.05 |
Chlorine | wt.% (d.b.) | 0.01 | ≤0.05 | 0.01 | ≤0.03 | ≤0.1 |
Trace elements on biomass | ||||||
As | mg kg−1 (d.b.) | <0.10 | ≤1 | <0.10 | ≤1 | ≤2 |
Cd | mg kg−1 (d.b.) | 0.28 | ≤2.0 | 0.25 | ≤0.5 | ≤1.0 |
Cr | mg kg−1 (d.b.) | 1.6 | ≤20 | 1.8 | ≤10 | ≤15 |
Cu | mg kg−1 (d.b.) | 3.1 | ≤30 | 2.5 | ≤10 | ≤20 |
Pb | mg kg−1 (d.b.) | 1.7 | ≤10 | 1.7 | ≤10 | ≤10 |
Hg | mg kg−1 (d.b.) | 0.004 | ≤0.1 | 0.004 | ≤0.1 | ≤0.1 |
Ni | mg kg−1 (d.b.) | 5 | ≤10 | 2.9 | ≤10 | ≤10 |
Zn | mg kg−1 (d.b.) | 22 | ≤100 | 17 | ≤100 | ≤100 |
Ash fusibility | ||||||
DT | °C | ≥1100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bados, R.; Mediavilla, I.; Tolosana, E.; Borjabad, E.; Ramos, R.; Fernández, M.J.; Pérez, P.; Esteban, L.S. The Influence of the Long-Term Outdoor Storage of Rockrose (Cistus laurifolius L.) Shrub Biomass on Biofuel’s Quality, Pre-Treatment and Combustion Processes. Biology 2023, 12, 1451. https://doi.org/10.3390/biology12111451
Bados R, Mediavilla I, Tolosana E, Borjabad E, Ramos R, Fernández MJ, Pérez P, Esteban LS. The Influence of the Long-Term Outdoor Storage of Rockrose (Cistus laurifolius L.) Shrub Biomass on Biofuel’s Quality, Pre-Treatment and Combustion Processes. Biology. 2023; 12(11):1451. https://doi.org/10.3390/biology12111451
Chicago/Turabian StyleBados, Raquel, Irene Mediavilla, Eduardo Tolosana, Elena Borjabad, Raquel Ramos, Miguel José Fernández, Paloma Pérez, and Luis Saúl Esteban. 2023. "The Influence of the Long-Term Outdoor Storage of Rockrose (Cistus laurifolius L.) Shrub Biomass on Biofuel’s Quality, Pre-Treatment and Combustion Processes" Biology 12, no. 11: 1451. https://doi.org/10.3390/biology12111451
APA StyleBados, R., Mediavilla, I., Tolosana, E., Borjabad, E., Ramos, R., Fernández, M. J., Pérez, P., & Esteban, L. S. (2023). The Influence of the Long-Term Outdoor Storage of Rockrose (Cistus laurifolius L.) Shrub Biomass on Biofuel’s Quality, Pre-Treatment and Combustion Processes. Biology, 12(11), 1451. https://doi.org/10.3390/biology12111451