Effect of Polystyrene Microplastics on the Antioxidant System and Immune Response in GIFT (Oreochromis niloticus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sample Collection
2.2. Antioxidant Status and Immune Response Evaluation
2.3. Data Analysis
3. Results
3.1. ROS Content
3.2. SOD Activities
3.3. IL-1β Activity
3.4. TNF-α Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Priya, K.K.; Thilagam, H.; Muthukumar, T.; Gopalakrishnan, S.; Govarthanan, M. Impact of microfiber pollution on aquatic biota: A critical analysis of effects and preventive measures. Sci. Total Environ. 2023, 887, 163984. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Microbial degradation of sulfamethoxazole in the environment. Appl. Microbiol. Biotechnol. 2018, 102, 3573–3582. [Google Scholar] [CrossRef]
- Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef]
- Vivekanand, A.C.; Mohapatra, S.; Tyagi, V.K. Microplastics in aquatic environment: Challenges and perspectives. Chemosphere 2021, 282, 131151. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WWTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, S.; Razanajatovo, R.M.; Zou, H.; Zhu, W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ. Pollut. 2018, 238, 1–9. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef]
- Murphy, F.; Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ. Pollut. 2018, 234, 487–494. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, C.; Han, Z.; Chen, K.; Wu, X.; Qiu, X. Combined exposure to microplastics and amitriptyline caused intestinal damage, oxidative stress and gut microbiota dysbiosis in zebrafish (Danio rerio). Aquat. Toxicol. 2023, 260, 106589. [Google Scholar] [CrossRef]
- Yu, Y.B.; Choi, J.H.; Choi, C.Y.; Kang, J.C.; Kim, J.H. Toxic effects of microplastic (polyethylene) exposure: Bioaccumulation, hematological parameters and antioxidant responses in crucian carp, Carassius carassius. Chemosphere 2023, 332, 138801. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, Y.; Zhang, T.; Zhang, F.; Ren, H.; Zhang, Y. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status. Environ. Sci. Technol. 2022, 56, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Rist, S.; Almroth, B.C.; Hartmann, N.B.; Karlsson, T.M. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Total Environ. 2018, 626, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Li, J.; Zhou, D.; Guo, R.; Ji, R.; Chen, J. The bioaccumulation, elimination, and trophic transfer of BDE-47 in the aquatic food chain of Chlorella pyrenoidosa-Daphnia magna. Environ. Pollut. 2020, 258, 113720. [Google Scholar] [CrossRef]
- Song, W.; Fu, C.; Fang, Y.; Wang, Z.; Li, J.; Zhang, X.; Bhatt, K.; Liu, L.; Wang, N.; Liu, F.; et al. Single and combined toxicity assessment of primary or UV-aged microplastics and adsorbed organic pollutants on microalga Chlorella pyrenoidosa. Environ. Pollut. 2023, 318, 120925. [Google Scholar] [CrossRef] [PubMed]
- Middepogu, A.; Hou, J.; Gao, X.; Lin, D. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicol. Environ. Saf. 2018, 161, 497–506. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Wang, J.; Tan, L. Toxic effects of microplastics on marine microalgae Skeletonema costatum: Interactions between microplastics and algae. Environ. Pollut. 2017, 220, 1282–1288. [Google Scholar] [CrossRef]
- Mao, Y.; Ai, H.; Chen, Y.; Zhang, Z.; Zeng, P.; Kang, L.; Li, W.; Gu, W.; He, Q.; Li, H. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere 2018, 208, 59–68. [Google Scholar] [CrossRef]
- Lu, T.; Zhu, Y.; Ke, M.; Peijnenburg, W.J.G.M.; Zhang, M.; Wang, T.; Chen, J.; Qian, H. Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin. Environ. Int. 2019, 126, 268–278. [Google Scholar] [CrossRef]
- Hasan, J.; Siddik, M.A.; Ghosh, A.K.; Mesbah, S.B.; Sadat, M.A.; Shahjahan, M. Increase in temperature increases ingestion and toxicity of polyamide microplastics in Nile tilapia. Chemosphere 2023, 327, 138502. [Google Scholar] [CrossRef]
- Zheng, Y.; Yuan, J.; Gu, Z.; Yang, G.; Li, T.; Chen, J. Transcriptome alterations in female Daphnia (Daphnia magna) exposed to 17β-estradiol. Environ. Pollut. 2020, 261, 114208. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Qu, J.; Qiu, L.; Fan, L.; Meng, S.; Song, C.; Bing, X.; Chen, J. Effect of 17α-methyltestosterone (MT) on oxidation stress in the liver of juvenile GIFT tilapia, Oreochromis niloticus. SpringerPlus 2016, 5, 338. [Google Scholar] [CrossRef]
- Istomina, A.A.; Zhukovskaya, A.F.; Mazeika, A.N.; Barsova, E.A.; Chelomin, V.P.; Mazur, M.A.; Elovskaya, O.A.; Mazur, A.A.; Dovzhenko, N.V.; Fedorets, Y.V.; et al. The relationship between lifespan of marine bivalves and their fatty acids of mitochondria lipids. Biology 2023, 12, 837. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Gu, Y.; Zhang, X.; Yu, H.; Liu, D.; Pang, Q. Betaine regulates the production of reactive oxygen species through wnt10b signaling in the liver of zebrafish. Front. Physiol. 2022, 13, 877178. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Z.; Wu, W.; Song, C.; Meng, S.; Fan, L.; Bing, X.; Chen, J. Effects of dietary resveratrol supplementation on hepatic and serum pro-/anti-inflammatory activity in juvenile GIFT tilapia, Oreochromis niloticus. Dev. Comp. Immunol. 2017, 73, 220–228. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, W.; Hu, G.; Qiu, L.; Bing, X.; Chen, J. Varieties of immunity activities and gut contents in tilapia with seasonal changes. Fish Shellfish Immunol. 2019, 90, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, V.; Iswarya, V.; Abraham Julian, P.; Seenivasan, R.; Chandrasekaran, N.; Mukherjee, A. Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp. Aquat. Toxicol. 2019, 207, 208–216. [Google Scholar] [CrossRef]
- Prata, J.C.; Lavorante, B.R.; Maria da Conceição , B.S.M.; Guilhermino, L. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquat. Toxicol. 2018, 197, 143–152. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Paul Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef]
- Neelavannan, K.; Sen, I.S. Microplastics in freshwater ecosystems of india: Current trends and future perspectives. ACS Omega 2023, 8, 34235–34248. [Google Scholar] [CrossRef]
- Detree, C.; Gallardo-Escarate, C. Single and repetitive microplastics exposures induce immune system modulation and homeostasis alteration in the edible mussel Mytilus galloprovincialis. Fish Shellfish Immunol. 2018, 83, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.B.; Won, E.J.; Kang, H.M.; Lee, M.C.; Hwang, D.S.; Hwang, U.K.; Zhou, B.; Souissi, S.; Lee, S.J.; Lee, J.S. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-P38 activation in the monogonont rotifer (Brachionus koreanus). Environ. Sci. Technol. 2016, 50, 8849–8857. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wu, T.; Wang, X.; Song, Z.; Zong, C.; Wei, N.; Li, D. Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ. Sci. Technol. 2019, 53, 10612–10619. [Google Scholar] [CrossRef] [PubMed]
Tissue | Time (d) | Group A | Group B | Group C | Group D | Group E | Group F |
---|---|---|---|---|---|---|---|
Brain | 7 | 40.82 ± 0.48 e | 11.05 ± 0.13 a | 17.74 ± 0.21 b | 9.61 ± 0.11 a | 29.15 ± 0.34 c | 34.17 ± 0.40 d |
10 | 33.54 ± 0.39 c | 21.04 ± 0.25 b | 59.02 ± 0.69 e | 40.14 ± 0.47 d | 5.83 ± 0.07 a | 22.27 ± 0.26 b | |
14 | 19.80 ± 2.33 ab | 21.51 ± 0.25 ab | 30.69 ± 0.36 b | 508.37 ± 5.99 c | 12.12 ± 0.14 a | 10.77 ± 0.13 a | |
Gill | 7 | 61.99 ± 0.73 d | 253.46 ± 2.99 e | 37.05 ± 0.44 b | 21.80 ± 0.26 a | 52.63 ± 0.62 c | 25.56 ± 0.30 a |
10 | 39.19 ± 0.46 b | 41.31 ± 0.49 b | 92.40 ± 1.09 d | 26.10 ± 0.31 a | 52.19 ± 0.61 c | 28.34 ± 0.33 a | |
14 | 36.75 ± 0.43 b | 56.56 ± 0.67 c | 57.34 ± 0.67 c | 117.83 ± 1.39 e | 64.82 ± 0.76 d | 22.40 ± 0.26 a | |
Liver | 7 | 11.81 ± 0.14 d | 6.72 ± 0.08 b | 13.05 ± 0.15 e | 14.10 ± 0.17 f | 5.13 ± 0.06 a | 9.68 ± 0.11 c |
10 | 15.55 ± 0.18 d | 12.65 ± 0.15 c | 24.70 ± 0.29 e | 12.73 ± 0.15 c | 6.48 ± 0.08 b | 4.68 ± 0.05 a | |
14 | 21.59 ± 0.25 b | 96.61 ± 1.14 e | 61.64 ± 0.73 d | 27.20 ± 0.32 c | 9.32 ± 0.11 a | 7.78 ± 0.09 a | |
Intestine | 7 | 4.77 ± 0.06 d | 2.09 ± 0.02 a | 4.78 ± 0.06 d | 2.05 ± 0.02 a | 4.08 ± 0.05 c | 3.85 ± 0.04 b |
10 | 18.76 ± 0.22 f | 13.00 ± 0.15 c | 15.67 ± 0.18 e | 11.71 ± 0.14 b | 14.12 ± 0.17 d | 8.08 ± 0.09 a | |
14 | 20.71 ± 0.24 c | 9.82 ± 0.11 b | 6.95 ± 0.08 a | 7.30 ± 0.09 a | 10.04 ± 0.12 b | 9.39 ± 0.11 b |
Tissue | Time (d) | Group A | Group B | Group C | Group D | Group E | Group F |
---|---|---|---|---|---|---|---|
Brain | 7 | 1.76 ± 0.02 e | 1.32 ± 0.01 d | 1.10 ± 0.01 c | 0.84 ± 0.01 b | 1.15 ± 0.01 c | 0.56 ± 0.01 a |
10 | 0.77 ± 0.01 c | 1.26 ± 0.01 d | 2.30 ± 0.03 e | 2.49 ± 0.03 f | 0.06 ± 0.01 a | 0.26 ± 0.01 b | |
14 | 0.93 ± 0.01 b | 1.38 ± 0.02 c | 2.73 ± 0.03 d | 8.77 ± 0.10 e | 0.32 ± 0.01 a | 0.40 ± 0.01 a | |
Gill | 7 | 3.74 ± 0.04 c | 9.50 ± 0.11 d | 2.00 ± 0.02 b | 0.90 ± 0.01 a | 1.09 ± 0.01 a | 0.95 ± 0.01 a |
10 | 0.21 ± 0.01 a | 1.00 ± 0.01 d | 2.25 ± 0.03 e | 0.92 ± 0.01 c | 0.68 ± 0.01 b | 0.73 ± 0.01 b | |
14 | 0.83 ± 0.01 c | 0.25 ± 0.01 a | 1.68 ± 0.02 d | 3.75 ± 0.04 e | 0.50 ± 0.01 b | 0.45 ± 0.01 b | |
Liver | 7 | 0.34 ± 0.01 c | 0.37 ± 0.01 d | 0.57 ± 0.01 e | 0.24 ± 0.01 b | 0.15 ± 0.01 a | 0.14 ± 0.01 a |
10 | 0.64 ± 0.01 d | 1.03 ± 0.01 e | 2.31 ± 0.03 f | 0.53 ± 0.01 c | 0.35 ± 0.01 b | 0.28 ± 0.01 a | |
14 | 0.58 ± 0.01 b | 4.17 ± 0.05 d | 1.38 ± 0.02 c | 0.50 ± 0.01 b | 0.20 ± 0.01 a | 0.18 ± 0.01 a | |
Intestine | 7 | 0.22 ± 0.01 d | 0.07 ± 0.01 b | 0.21 ± 0.01 d | 0.05 ± 0.01 a | 0.14 ± 0.01 c | 0.14 ± 0.01 c |
10 | 0.71 ± 0.01 d | 0.37 ± 0.01 a | 0.47 ± 0.01 b | 0.69 ± 0.01 d | 0.63 ± 0.01 c | 0.48 ± 0.01 b | |
14 | 1.15 ± 0.01 f | 0.56 ± 0.01 e | 0.22 ± 0.01 b | 0.27 ± 0.01 c | 0.13 ± 0.01 a | 0.53 ± 0.01 d |
Tissue | Time (d) | Group A | Group B | Group C | Group D | Group E | Group F |
---|---|---|---|---|---|---|---|
Brain | 7 | 0.78 ± 0.01 b | 0.76 ± 0.01 b | 1.07 ± 0.01 c | 0.66 ± 0.01 a | 1.11 ± 0.01 c | 1.53 ± 0.02 d |
10 | 1.96 ± 0.02 c | 1.43 ± 0.02 b | 3.49 ± 0.04 e | 2.41 ± 0.03 d | 0.59 ± 0.01 a | 0.62 ± 0.01 a | |
14 | 0.82 ± 0.01 a | 2.63 ± 0.03 c | 2.25 ± 0.03 c | 17.27 ± 0.20 d | 1.53 ± 0.02 b | 0.66 ± 0.01 a | |
Gill | 7 | 2.46 ± 0.03 d | 5.33 ± 0.06 e | 1.15 ± 0.01 c | 0.55 ± 0.06 a | 0.87 ± 0.01 b | 0.66 ± 0.01 a |
10 | 0.72 ± 0.01 b | 1.18 ± 0.01 d | 1.68 ± 0.02 e | 0.64 ± 0.01 a | 0.79 ± 0.01 c | 0.77 ± 0.01 bc | |
14 | 0.97 ± 0.01 b | 1.83 ± 0.02 e | 1.28 ± 0.01 d | 3.35 ± 0.04 f | 1.16 ± 0.01 c | 0.57 ± 0.01 a | |
Liver | 7 | 0.28 ± 0.01 a | 0.30 ± 0.01 a | 0.33 ± 0.01 b | 0.39 ± 0.01 c | 0.29 ± 0.01 a | 0.33 ± 0.01 b |
10 | 0.90 ± 0.01 c | 1.23 ± 0.01 d | 1.60 ± 0.02 e | 0.54 ± 0.01 b | 0.52 ± 0.01 ab | 0.48 ± 0.01 a | |
14 | 0.79 ± 0.01 c | 3.97 ± 0.05 f | 1.97 ± 0.02 e | 1.21 ± 0.01 d | 0.65 ± 0.01 b | 0.51 ± 0.01 a | |
Intestine | 7 | 0.15 ± 0.01 c | 0.05 ± 0.01 a | 0.27 ± 0.01 e | 0.05 ± 0.01 a | 0.18 ± 0.00 d | 0.13 ± 0.01 b |
10 | 0.91 ± 0.01 d | 0.83 ± 0.01 c | 1.12 ± 0.01 e | 1.10 ± 0.01 e | 0.59 ± 0.01 b | 0.43 ± 0.01 a | |
14 | 0.95 ± 0.01 f | 0.65 ± 0.01 d | 0.78 ± 0.01 e | 0.42 ± 0.01 b | 0.33 ± 0.01 a | 0.51 ± 0.01 c |
Tissue | Time(d) | Group A | Group B | Group C | Group D | Group E | Group F |
---|---|---|---|---|---|---|---|
Brain | 7 | 3.27 ± 0.04 d | 1.65 ± 0.02 b | 1.29 ± 0.01 a | 1.31 ± 0.01 a | 1.58 ± 0.02 b | 1.99 ± 0.02 c |
10 | 10.07 ± 0.12 f | 3.69 ± 0.04 c | 8.84 ± 0.10 e | 4.43 ± 0.05 d | 2.36 ± 0.03 b | 1.25 ± 0.01 a | |
14 | 4.05 ± 0.05 b | 10.98 ± 0.13 d | 7.58 ± 0.09 c | 43.99 ± 0.52 e | 5.04 ± 0.06 b | 1.87 ± 0.02 a | |
Gill | 7 | 5.77 ± 0.07 e | 5.95 ± 0.07 e | 1.48 ± 0.02 d | 0.59 ± 0.01 a | 1.20 ± 0.01 c | 0.96 ± 0.01 b |
10 | 1.66 ± 0.02 e | 1.08 ± 0.01 b | 3.66 ± 0.04 f | 1.38 ± 0.02 d | 1.24 ± 0.01 c | 0.97 ± 0.01 a | |
14 | 1.68 ± 0.02 b | 2.36 ± 0.03 c | 3.17 ± 0.04 d | 4.29 ± 0.05 e | 2.22 ± 0.03 c | 1.00 ± 0.01 a | |
Liver | 7 | 1.92 ± 0.02 d | 1.03 ± 0.01 b | 0.95 ± 0.01 a | 1.29 ± 0.01 c | 0.99 ± 0.01 ab | 1.23 ± 0.01 c |
10 | 3.44 ± 0.04 d | 5.02 ± 0.06 f | 3.81 ± 0.04 e | 1.25 ± 0.01 a | 2.28 ± 0.03 c | 1.55 ± 0.02 b | |
14 | 3.11 ± 0.04 b | 14.30 ± 0.17 e | 5.22 ± 0.06 d | 4.41 ± 0.05 c | 1.22 ± 0.01 a | 1.45 ± 0.02 a | |
Intestine | 7 | 0.36 ± 0.01 e | 0.09 ± 0.01 b | 0.51 ± 0.01 f | 0.08 ± 0.01 a | 0.23 ± 0.01 d | 0.21 ± 0.00 c |
10 | 1.79 ± 0.02 e | 1.12 ± 0.01 c | 2.21 ± 0.03 f | 1.46 ± 0.02 d | 0.91 ± 0.01 b | 0.57 ± 0.01 a | |
14 | 1.91 ± 0.02 e | 1.21 ± 0.01 c | 1.28 ± 0.01 d | 0.69 ± 0.01 ab | 0.62 ± 0.01 a | 0.69 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Addotey, T.N.A.; Chen, J.; Xu, G. Effect of Polystyrene Microplastics on the Antioxidant System and Immune Response in GIFT (Oreochromis niloticus). Biology 2023, 12, 1430. https://doi.org/10.3390/biology12111430
Zheng Y, Addotey TNA, Chen J, Xu G. Effect of Polystyrene Microplastics on the Antioxidant System and Immune Response in GIFT (Oreochromis niloticus). Biology. 2023; 12(11):1430. https://doi.org/10.3390/biology12111430
Chicago/Turabian StyleZheng, Yao, Tracy Naa Adoley Addotey, Jiazhang Chen, and Gangchun Xu. 2023. "Effect of Polystyrene Microplastics on the Antioxidant System and Immune Response in GIFT (Oreochromis niloticus)" Biology 12, no. 11: 1430. https://doi.org/10.3390/biology12111430
APA StyleZheng, Y., Addotey, T. N. A., Chen, J., & Xu, G. (2023). Effect of Polystyrene Microplastics on the Antioxidant System and Immune Response in GIFT (Oreochromis niloticus). Biology, 12(11), 1430. https://doi.org/10.3390/biology12111430