Vertical Slot Fishways: Incremental Knowledge to Define the Best Solution
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Facility
2.2. Fish Capture and Holding
2.3. Fish Experiments
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Ethical Note
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbarossa, V.; Schmitt, R.J.P.; Huijbregts, M.A.J.; Zarfl, C.; King, H.; Schipper, A.M. Impacts of Current and Future Large Dams on the Geographic Range Connectivity of Freshwater Fish Worldwide. Proc. Natl. Acad. Sci. USA 2020, 117, 3648–3655. [Google Scholar] [CrossRef] [PubMed]
- Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows. PLoS ONE 2013, 8, e65089. [Google Scholar] [CrossRef] [PubMed]
- Rodeles, A.A.; Miranda, R.; Galicia, D. Barriers to Longitudinal River Connectivity: Review of Impacts, Study Methods and Management for Iberian Fish Conservation. Limnetica 2020, 39, 1. [Google Scholar] [CrossRef]
- Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than One Million Barriers Fragment Europe’s Rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef]
- Costa, M.J.; Duarte, G.; Segurado, P.; Branco, P. Major threats to European freshwater fish species. Sci. Total Environ. 2021, 797, 149105. [Google Scholar] [CrossRef]
- The Potential of Barrier Removal to Reconnect Europ’s Rivers. Available online: https://www.ecrr.org/Publications/id/935 (accessed on 25 October 2023).
- Cooke, S.J.; Hinch, S.G. Improving the Reliability of Fishway Attraction and Passage Efficiency Estimates to Inform Fishway Engineering, Science, and Practice. Ecol. Eng. 2013, 58, 123–132. [Google Scholar] [CrossRef]
- Bunt, C.M.; Castro-Santos, T.; Haro, A. Performance of Fish Passage Structures at Upstream Barriers to Migration. River Res. Appl. 2012, 28, 457–478. [Google Scholar] [CrossRef]
- Noonan, M.J.; Grant, J.W.A.; Jackson, C.D. A Quantitative Assessment of Fish Passage Efficiency. Fish Fish. 2012, 13, 450–464. [Google Scholar] [CrossRef]
- Romão, F.; Quaresma, A.L.; Branco, P.; Santos, J.M.; Amaral, S.; Ferreira, M.T.; Katopodis, C.; Pinheiro, A.N. Passage Performance of Two Cyprinids with Different Ecological Traits in a Fishway with Distinct Vertical Slot Configurations. Ecol. Eng. 2017, 105, 180–188. [Google Scholar] [CrossRef]
- Larinier, M. Environmental Issues, Dams and Fish Migration. FAO Fish. Tech. Pap. 2001, 419, 45–84. [Google Scholar]
- The ICE Protocol for Ecological Continuity—Assessing the Passage of Obstacles by Fish. Concepts, Design and Application. Available online: https://professionnels.ofb.fr/en/node/731 (accessed on 25 October 2023).
- O’Connor, C.M.; Reddon, A.R.; Ligocki, I.Y.; Hellmann, J.K.; Garvy, K.A.; Marsh-Rollo, S.E.; Hamilton, I.M.; Balshine, S. Motivation but Not Body Size Influences Territorial Contest Dynamics in a Wild Cichlid Fish. Anim. Behav. 2015, 107, 19–29. [Google Scholar] [CrossRef]
- Sanz-Ronda, F.J.; Bravo-Córdoba, F.J.; Fuentes-Pérez, J.F.; Castro-Santos, T. Ascent Ability of Brown Trout, Salmo Trutta, and Two Iberian Cyprinids—Iberian Barbel, Luciobarbus Bocagei, and Northern Straight-Mouth Nase, Pseudochondrostoma Duriense − in a Vertical Slot Fishway. Knowl. Manag. Aquat. Ecosyst. 2016, 417, 10. [Google Scholar] [CrossRef]
- Fuentes-Pérez, J.F.; Eckert, M.; Tuhtan, J.A.; Ferreira, M.T.; Kruusmaa, M.; Branco, P. Spatial Preferences of Iberian Barbel in a Vertical Slot Fishway under Variable Hydrodynamic Scenarios. Ecol. Eng. 2018, 125, 131–142. [Google Scholar] [CrossRef]
- Migration of Freshwater Fishes. Wiley Online Books. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470999653 (accessed on 25 October 2023).
- DVWK; Fisheries and Aquaculture Management Division. Fish Passes. Design, Dimensions and Monitoring; FAO/DVWK: Rome, Italy, 2002; ISBN 978-92-5-104894-8. [Google Scholar]
- Tauber, M.; Mader, H. Development of an Economical and Ecological Optimized Multi Slot Fish Bypass. In Proceedings of the Small Hydro 2009, Vancouver, BC, Canada, 28–29 April 2009. [Google Scholar]
- Mader, H.; Brandl, A.; Käfer, S. Design and Function Monitoring of an Enature® Vertical Slot Fish Pass in a Large Potamal River in Carinthia/Austria. Water 2020, 12, 551. [Google Scholar] [CrossRef]
- Romão, F.; Quaresma, A.L.; Santos, J.M.; Branco, P.; Pinheiro, A.N.; Romão, F.; Quaresma, A.L.; Santos, J.M.; Branco, P.; Pinheiro, A.N. Cyprinid Passage Performance in an Experimental Multislot Fishway across Distinct Seasons. Mar. Freshw. Res. 2019, 70, 881–890. [Google Scholar] [CrossRef]
- Romão, F.; Quaresma, A.L.; Santos, J.M.; Amaral, S.D.; Branco, P.; Pinheiro, A.N. Multislot Fishway Improves Entrance Performance and Fish Transit Time over Vertical Slots. Water 2021, 13, 275. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Saveliev, A.A. Beginner’s Guide to Spatial, Temporal and Spatial-Temporal Ecological Data Analysis with R-INLA. Volume I: Using GLM and GLMM; Highland Statistics Ltd.: Newburgh, UK, 2017. [Google Scholar]
- van de Schoot, R.; Depaoli, S.; King, R.; Kramer, B.; Märtens, K.; Tadesse, M.G.; Vannucci, M.; Gelman, A.; Veen, D.; Willemsen, J.; et al. Bayesian Statistics and Modelling. Nat. Rev. Methods Primers 2021, 1, 1. [Google Scholar] [CrossRef]
- Zuur, A.F.; Hilbe, J.M.; Ieno, E.N. Beginner’s Guide to GLM and GLMM: A Frequentist and Bayesian Perspective for Ecologists; Highland Statistics Ltd.: Newburgh, UK, 2013. [Google Scholar]
- Thiele, J.; Markussen, B. Potential of GLMM in Modelling Invasive Spread. CABI Rev. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized Linear Mixed Models: A Practical Guide for Ecology and Evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Romão, F.; Branco, P.; Quaresma, A.L.; Amaral, S.D.; Pinheiro, A.N. Effectiveness of a Multi-Slot Vertical Slot Fishway versus a Standard Vertical Slot Fishway for Potamodromous Cyprinids. Hydrobiologia 2018, 816, 153–163. [Google Scholar] [CrossRef]
- Clay, C.H. Design of Fishways and Other Fish Facilities, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Rajaratnam, N.; Katopodis, C.; Solanki, S. New Designs for Vertical Slot Fishways. Can. J. Civ. Eng. 1992, 19, 402–414. [Google Scholar] [CrossRef]
- Romão, F.; Santos, J.M.; Katopodis, C.; Pinheiro, A.N.; Branco, P. How Does Season Affect Passage Performance and Fatigue of Potamodromous Cyprinids? An Experimental Approach in a Vertical Slot Fishway. Water 2018, 10, 395. [Google Scholar] [CrossRef]
- Chan, M.D. Fish Ecomorphology: Predicting Habitat Preferences of Stream Fishes from Their Body Shape; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2001. [Google Scholar]
- Fauth, J.E.; Bernardo, J.; Camara, M.; Resetarits, W.J.; Van Buskirk, J.; McCollum, S.A. Simplifying the Jargon of Community Ecology: A Conceptual Approach. Am. Nat. 1996, 147, 282–286. [Google Scholar] [CrossRef]
- Benitez, J.-P.; Nzau Matondo, B.; Dierckx, A.; Ovidio, M. An Overview of Potamodromous Fish Upstream Movements in Medium-Sized Rivers, by Means of Fish Passes Monitoring. Aquat. Ecol. 2015, 49, 481–497. [Google Scholar] [CrossRef]
- Mateus, C.S.; Quintella, B.R.; Almeida, P.R. The Critical Swimming Speed of Iberian Barbel Barbus Bocagei in Relation to Size and Sex. J. Fish Biol. 2008, 73, 1783–1789. [Google Scholar] [CrossRef]
- Decree-Law 113/2013 of 7th August from the Ministry of Agriculture, Sea, Environment and Territory Planning. Diário da República: I série, No 151. 2013. Available online: https://files.diariodarepublica.pt/1s/2013/08/15100/0470904739.pdf (accessed on 1 September 2015).
- Decree-Law 1/2019 of 10th January from the Presidency of the Council of Ministers. Diário da República: I série, No 7 (2019). Available online: https://files.diariodarepublica.pt/1s/2019/01/00700/0009000093.pdf (accessed on 1 September 2015).
- Pitcher, T.J. Functions of Shoaling Behaviour in Teleosts. In The Behaviour of Teleost Fishes; Pitcher, T.J., Ed.; Springer: Boston, MA, USA, 1986; pp. 294–337. ISBN 978-1-4684-8261-4. [Google Scholar]
- White, A.J.; Schreer, J.F.; Cooke, S.J. Behavioral and Physiological Responses of the Congeneric Largemouth (Micropterus Salmoides) and Smallmouth Bass (M. Dolomieu) to Various Exercise and Air Exposure Durations. Fish. Res. 2008, 89, 9–16. [Google Scholar] [CrossRef]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Martins, T.G.; Simpson, D.; Lindgren, F.; Rue, H. Bayesian Computing with INLA: New Features. Comput. Stat. Data Anal. 2013, 67, 68–83. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing. 2019. Available online: https://www.r-project.org/ (accessed on 17 June 2023).
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A Protocol for Data Exploration to Avoid Common Statistical Problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Johnston, R.; Jones, K.; Manley, D. Confounding and Collinearity in Regression Analysis: A Cautionary Tale and an Alternative Procedure, Illustrated by Studies of British Voting Behaviour. Qual. Quant. 2018, 52, 1957–1976. [Google Scholar] [CrossRef]
- O’Hara, R.B. How to Make Models Add Up—A Primer on GLMMs. anzf 2009, 46, 124–137. [Google Scholar] [CrossRef]
- Martínez-Capel, F.; García De Jalón, D.; Werenitzky, D.; Baeza, D.; Rodilla-Alamá, M. Microhabitat Use by Three Endemic Iberian Cyprinids in Mediterranean Rivers (Tagus River Basin, Spain). Fish. Manag. Ecol. 2009, 16, 52–60. [Google Scholar] [CrossRef]
- Whittingham, M.J.; Stephens, P.A.; Bradbury, R.B.; Freckleton, R.P. Why Do We Still Use Stepwise Modelling in Ecology and Behaviour? J. Anim. Ecol. 2006, 75, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Murtaugh, P.A. Performance of Several Variable-Selection Methods Applied to Real Ecological Data. Ecol. Lett. 2009, 12, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Millar, R.B. Comparison of Hierarchical Bayesian Models for Overdispersed Count Data Using DIC and Bayes’ Factors. Biometrics 2009, 65, 962–969. [Google Scholar] [CrossRef] [PubMed]
- INLAutils Package—RDocumentation. Available online: https://www.rdocumentation.org/packages/INLAutils/versions/0.0.5 (accessed on 25 October 2023).
- Diagnostic Tools for INLA Models. Inlatools. Available online: https://inlatools.netlify.app/index.html (accessed on 28 October 2023).
- Santos, J.M.; Silva, A.; Katopodis, C.; Pinheiro, P.; Pinheiro, A.; Bochechas, J.; Ferreira, M.T. Ecohydraulics of Pool-Type Fishways: Getting Past the Barriers. Ecol. Eng. 2012, 48, 38–50. [Google Scholar] [CrossRef]
- Larinier, M. Fishways—General Considerations. Bull. Fr. Pêche Piscic. 2002, 364, 21–27. [Google Scholar] [CrossRef]
- Larinier, M. Location of fishways. Bull. Fr. Pêche Piscic. 2002, 364, 39–53. [Google Scholar] [CrossRef]
- Larinier, M. Biological factors to be taken into account in the design of fishways, the concept of obstructions to upstream migration. Bull. Fr. Pêche Piscic. 2002, 364, 28–38. [Google Scholar] [CrossRef]
- Rajaratnam, N.; Van der Vinne, G.; Katopodis, C. Hydraulics of Vertical Slot Fishways. J. Hydraul. Eng. 1986, 112, 909–927. [Google Scholar] [CrossRef]
- Roscoe, D.W.; Hinch, S.G. Effectiveness Monitoring of Fish Passage Facilities: Historical Trends, Geographic Patterns and Future Directions. Fish Fish. 2010, 11, 12–33. [Google Scholar] [CrossRef]
- Wilkes, M.A.; Mckenzie, M.; Webb, J.A. Fish Passage Design for Sustainable Hydropower in the Temperate Southern Hemisphere: An Evidence Review. Rev Fish Biol Fish. 2018, 28, 117–135. [Google Scholar] [CrossRef]
- Calles, O.; Greenberg, L. Connectivity Is a Two-Way Street—The Need for a Holistic Approach to Fish Passage Problems in Regulated Rivers. River Res. Appl. 2009, 25, 1268–1286. [Google Scholar] [CrossRef]
- Valbuena-Castro, J.; Fuentes-Pérez, J.F.; García-Vega, A.; Bravo-Córdoba, F.J.; Ruiz-Legazpi, J.; Martínez de Azagra Paredes, A.; Sanz-Ronda, F.J. Coarse Fishway Assessment to Prioritize Retrofitting Efforts: A Case Study in the Duero River Basin. Ecol. Eng. 2020, 155, 105946. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Text with EEA Relevance. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 1 September 2015).
- Message, R.; Greenhough, B. “But It’s Just a Fish”: Understanding the Challenges of Applying the 3Rs in Laboratory Aquariums in the UK. Animals 2019, 9, 1075. [Google Scholar] [CrossRef]
- Keefer, M.L.; Moser, M.L.; Boggs, C.T.; Daigle, W.R.; Peery, C.A. Effects of Body Size and River Environment on the Upstream Migration of Adult Pacific Lampreys. N. Am. J. Fish. Manag. 2009, 29, 1214–1224. [Google Scholar] [CrossRef]
- Jones, P.E.; Svendsen, J.C.; Börger, L.; Champneys, T.; Consuegra, S.; Jones, J.A.H.; Garcia de Leaniz, C. One Size Does Not Fit All: Inter- and Intraspecific Variation in the Swimming Performance of Contrasting Freshwater Fish. Conserv. Physiol. 2020, 8, coaa126. [Google Scholar] [CrossRef]
- Shiau, J.; Watson, J.R.; Cramp, R.L.; Gordos, M.A.; Franklin, C.E. Interactions between Water Depth, Velocity and Body Size on Fish Swimming Performance: Implications for Culvert Hydrodynamics. Ecol. Eng. 2020, 156, 105987. [Google Scholar] [CrossRef]
- Odeh, M.; Noreika, J.; Haro, A.; Maynard, A.; Castro-Santos, T.; Cada, G. Evaluation of the Effects of Turbulence on the Behaviour of Migratory Fish; US Geological Survey: Reston, VA, USA, 2002; p. 55. [Google Scholar]
- Hershey, H. Updating the Consensus on Fishway Efficiency: A Meta-Analysis. Fish Fish. 2021, 22, 735–748. [Google Scholar] [CrossRef]
- Sanz-Ronda, F.J.; Bravo-Córdoba, F.J.; Sánchez-Pérez, A.; García-Vega, A.; Valbuena-Castro, J.; Fernandes-Celestino, L.; Torralva, M.; Oliva-Paterna, F.J. Passage Performance of Technical Pool-Type Fishways for Potamodromous Cyprinids: Novel Experiences in Semiarid Environments. Water 2019, 11, 2362. [Google Scholar] [CrossRef]
- Pavlov, D.S.; Mikheev, V.N.; Kostin, V.V. Migrations of Fish Juveniles in Dammed Rivers: The Role of Ecological Barriers. J. Ichthyol. 2019, 59, 234–245. [Google Scholar] [CrossRef]
Configuration Code | Configuration Description | Flow Discharge (L/s) | Season |
---|---|---|---|
VSF_CD | VSF with central and lateral deflector | 110 | Spring and Fall |
VSF_LD | VSF with lateral deflector | 81 | Spring and Fall |
VSF_ALT | VSF with alternating slots | 88 | Spring |
MSF | MSF | 56 | Spring and Fall |
MSF_O | MSF with an orifice instead of the first slot | 36 | Spring |
MSF_ON | MSF with orifice and notch in the first slot | 33 | Fall |
Type of Variable | Variable | Acronym | Description | Unit/Levels | Role in Modelling Procedure 1 | Role in Modelling Procedure 2 |
---|---|---|---|---|---|---|
Ordinal | Number of successes | Success_num | Number of times a fish overcomes the entire experimental fishway | — | Response variable | Response variable |
Factor | Species name | Species | Identification of the species from which the fish used in the experimental run belong to | Iberian barbel and Southern Iberian Chub | Random effect | Random effect |
Factor | Seasons | Season | Identification of the season in which the experiment took place | Spring and Fall | Fixed effect | — |
Factor | Period of the day | Day_period | Identification of the period of the day in which the experiment occurred | Morning (from 7 to 12 am) and afternoon (from 12 to 6 pm) | Fixed effect | Random effect |
Continuous | Average length of fish school | Length_avg | Average total length considering the five fish present in each fish school | cm | Fixed effect | Fixed effect |
Continuous | Water temperature in the fishway | Temp_PPP | Water temperature in the fishway measured before the experiment | °C | Fixed effect | Fixed effect |
Continuous | Water conductivity in the fishway | Conduct_PPP | Water conductivity in the fishway measured before the experiment | µS cm−1 | Fixed effect | — |
Continuous | Water conductivity during acclimatation | Conduct_aclim | Water conductivity in the aclimatation tanks | µS cm−1 | Fixed effect | — |
Continuous | Water pH during acclimatation | pH_aclim | Water pH in the aclimatation tanks | — | Fixed effect | — |
Factor | Fishway configuration | Fishway_config | Configuration of the fishway used for each experimental run | MSF — MSF_O — MSF_ON —VSF_ALT —VSF_CD — VSF_LD — | Random effect | Fixed effect |
Null Model | Model Parameters | DIC | WAIC | Dispersion | |
440.95 | 441.65 | 0.91 | |||
Full Model | Model parameters | DIC | WAIC | Dispersion | |
428.68 | 429.31 | 0.5 | |||
Explanatory Variables | Regression Parameter | ||||
mean | sd | Lower_CI | Upper_CI | ||
length_avg | 0.288 | 0.097 | 0.098 | 0.479 | |
Temp_PPP | 0.243 | 0.110 | 0.025 | 0.460 | |
Conduct_PPP | 0.078 | 0.111 | −0.140 | 0.298 | |
Conduct_aclim | −0.003 | 0.128 | −0.253 | 0.248 | |
pH_aclim | −0.224 | 0.131 | −0.481 | 0.034 | |
Season (Spring) | 0.171 | 0.205 | −0.233 | 0.573 | |
Day_period (Morning) | 0.389 | 0.187 | 0.020 | 0.757 |
Null Model | Model Parameters | DIC | WAIC | Dispersion | |
440.95 | 441.65 | 0.91 | |||
Full Model | Model Parameters | DIC | WAIC | Dispersion | |
425.42 | 427.3 | 0.532 | |||
Explanatory Variables | Regression Parameter | ||||
mean | sd | Lower_CI | Upper_CI | ||
length_avg.std | 0.338 | 0.094 | 0.154 | 0.522 | |
Temp_PPP.std | 0.036 | 0.113 | −0.186 | 0.258 | |
Fishway_config (MSF_O) | 0.961 | 0.304 | 0.365 | 1.559 | |
Fishway_config (MSF_ON) | 0.284 | 0.304 | −0.313 | 0.884 | |
Fishway_config (VSF_ALT) | 0.886 | 0.376 | 0.148 | 1.629 | |
Fishway_config (VSF_CD) | 0.102 | 0.282 | −0.451 | 0.658 | |
Fishway_config (VSF_LD) | −0.081 | 0.277 | −0.623 | 0.466 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branco, P.; Mascarenhas, A.M.; Duarte, G.; Romão, F.; Quaresma, A.; Amaral, S.D.; Ferreira, M.T.; Pinheiro, A.N.; Santos, J.M. Vertical Slot Fishways: Incremental Knowledge to Define the Best Solution. Biology 2023, 12, 1431. https://doi.org/10.3390/biology12111431
Branco P, Mascarenhas AM, Duarte G, Romão F, Quaresma A, Amaral SD, Ferreira MT, Pinheiro AN, Santos JM. Vertical Slot Fishways: Incremental Knowledge to Define the Best Solution. Biology. 2023; 12(11):1431. https://doi.org/10.3390/biology12111431
Chicago/Turabian StyleBranco, Paulo, Ana Margarida Mascarenhas, Gonçalo Duarte, Filipe Romão, Ana Quaresma, Susana Dias Amaral, Maria Teresa Ferreira, António N. Pinheiro, and José Maria Santos. 2023. "Vertical Slot Fishways: Incremental Knowledge to Define the Best Solution" Biology 12, no. 11: 1431. https://doi.org/10.3390/biology12111431
APA StyleBranco, P., Mascarenhas, A. M., Duarte, G., Romão, F., Quaresma, A., Amaral, S. D., Ferreira, M. T., Pinheiro, A. N., & Santos, J. M. (2023). Vertical Slot Fishways: Incremental Knowledge to Define the Best Solution. Biology, 12(11), 1431. https://doi.org/10.3390/biology12111431