Genomic Landscape of Multidrug Resistance and Virulence in Enterococcus faecalis IRMC827A from a Long-Term Patient
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Isolation of Bacteria and DNA Extraction
2.3. Genome Mining for Multidrug-Resistant Genes
3. Results
WGS-Based Antimicrobial Susceptibility for Antimicrobial Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, B.E. The Life and Times of the Enterococcus. Clin. Microbiol. Rev. 1990, 3, 46–65. [Google Scholar] [CrossRef] [PubMed]
- Kundra, S.; Lam, L.N.; Kajfasz, J.K.; Casella, L.G.; Andersen, M.J.; Abranches, J.; Flores-Mireles, A.L.; Lemos, J.A. C-Di-AMP Is Essential for the Virulence of Enterococcus faecalis. Infect. Immun. 2021, 89, e0036521. [Google Scholar] [CrossRef] [PubMed]
- Kwit, R.; Zając, M.; Śmiałowska-Węglińska, A.; Skarżyńska, M.; Bomba, A.; Lalak, A.; Skrzypiec, E.; Wojdat, D.; Koza, W.; Mikos-Wojewoda, E.; et al. Prevalence of Enterococcus spp. and the Whole-Genome Characteristics of Enterococcus faecium and Enterococcus faecalis Strains Isolated from Free-Living Birds in Poland. Pathogens 2023, 12, 836. [Google Scholar] [CrossRef]
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the Environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, F.; Willems, R.J.L.; Gilmore, M.S. Enterococcus Diversity, Origins in Nature, and Gut Colonization. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Willems, R.J.L.; Friedrich, A.W.; Rossen, J.W.A.; Bathoorn, E. Enterococcus faecium: From Microbiological Insights to Practical Recommendations for Infection Control and Diagnostics. Antimicrob. Resist. Infect. Control 2020, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus Spp. of Animal Origin. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Ruoff, K.L.; de la Maza, L.; Murtagh, M.J.; Spargo, J.D.; Ferraro, M.J. Species Identities of Enterococci Isolated from Clinical Specimens. J. Clin. Microbiol. 1990, 28, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Huycke, M.M.; Sahm, D.F.; Gilmore, M.S. Multiple-Drug Resistant Enterococci: The Nature of the Problem and an Agenda for the Future. Emerg. Infect. Dis. 1998, 4, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Le Breton, Y.; Boël, G.; Benachour, A.; Prévost, H.; Auffray, Y.; Rincé, A. Molecular Characterization of Enterococcus faecalis Two-Component Signal Transduction Pathways Related to Environmental Stresses. Environ. Microbiol. 2003, 5, 329–337. [Google Scholar] [CrossRef]
- Hancock, L.E.; Perego, M. Systematic Inactivation and Phenotypic Characterization of Two-Component Signal Transduction Systems of Enterococcus faecalis V583. J. Bacteriol. 2004, 186, 7951–7958. [Google Scholar] [CrossRef] [PubMed]
- Fiore, E.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, B.; Wityk, P.; Gałęcka, M.; Michalik, M. The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021, 9, 1900. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Teng, F.; Weinstock, G.M.; Murray, B.E. Translocation of Enterococcus faecalis Strains across a Monolayer of Polarized Human Enterocyte-like T84 Cells. J. Clin. Microbiol. 2004, 42, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.-A.; Klugman, K.; Davies, S. Access to Effective Antimicrobials: A Worldwide Challenge. Lancet 2016, 387, 168–175. [Google Scholar] [CrossRef]
- Bondi, M.; Laukova, A.; de Niederhausern, S.; Messi, P.; Papadopoulou, C.; Economou, V. Controversial Aspects Displayed by Enterococci: Probiotics or Pathogens? Biomed. Res. Int. 2020, 2020, 9816185. [Google Scholar] [CrossRef]
- Hou, J.; Long, X.; Wang, X.; Li, L.; Mao, D.; Luo, Y.; Ren, H. Global Trend of Antimicrobial Resistance in Common Bacterial Pathogens in Response to Antibiotic Consumption. J. Hazard. Mater. 2023, 442, 130042. [Google Scholar] [CrossRef]
- Uchil, R.R.; Kohli, G.S.; Katekhaye, V.M.; Swami, O.C. Strategies to Combat Antimicrobial Resistance. J. Clin. Diagn. Res. 2014, 8, ME01–ME04. [Google Scholar] [CrossRef]
- Brinkwirth, S.; Ayobami, O.; Eckmanns, T.; Markwart, R. Hospital-Acquired Infections Caused by Enterococci: A Systematic Review and Meta-Analysis, WHO European Region, 1 January 2010 to 4 February 2020. Euro. Surveill. 2021, 26, 2001628. [Google Scholar] [CrossRef]
- Jabbari Shiadeh, S.M.; Pormohammad, A.; Hashemi, A.; Lak, P. Global Prevalence of Antibiotic Resistance in Blood-Isolated Enterococcus faecalis and Enterococcus faecium: A Systematic Review and Meta-Analysis. Infect. Drug. Resist. 2019, 12, 2713–2725. [Google Scholar] [CrossRef]
- Uttley, A.H.; Collins, C.H.; Naidoo, J.; George, R.C. Vancomycin-Resistant Enterococci. Lancet 1988, 1, 57–58. [Google Scholar] [CrossRef]
- Smout, E.; Palanisamy, N.; Valappil, S.P. Prevalence of Vancomycin-Resistant Enterococci in India between 2000 and 2022: A Systematic Review and Meta-Analysis. Antimicrob. Resist. Infect. Control 2023, 12, 79. [Google Scholar] [CrossRef]
- Dadashi, M.; Sharifian, P.; Bostanshirin, N.; Hajikhani, B.; Bostanghadiri, N.; Khosravi-Dehaghi, N.; van Belkum, A.; Darban-Sarokhalil, D. The Global Prevalence of Daptomycin, Tigecycline, and Linezolid-Resistant Enterococcus faecalis and Enterococcus faecium Strains from Human Clinical Samples: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 720647. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.L.; Maddaus, M.A.; Simmons, R.L. Proposed Mechanisms for the Translocation of Intestinal Bacteria. Rev. Infect. Dis. 1988, 10, 958–979. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.L.; Jechorek, R.P.; Erlandsen, S.L. Evidence for the Translocation of Enterococcus faecalis across the Mouse Intestinal Tract. J. Infect. Dis. 1990, 162, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Kao, P.H.N.; Kline, K.A. Dr. Jekyll and Mr. Hide: How Enterococcus faecalis Subverts the Host Immune Response to Cause Infection. J. Mol. Biol. 2019, 431, 2932–2945. [Google Scholar] [CrossRef]
- Hashem, Y.A.; Abdelrahman, K.A.; Aziz, R.K. Phenotype-Genotype Correlations and Distribution of Key Virulence Factors in Enterococcus faecalis Isolated from Patients with Urinary Tract Infections. Infect. Drug Resist. 2021, 14, 1713–1723. [Google Scholar] [CrossRef]
- Qadri, S.H.; Qunibi, W.Y.; Al-Ballaa, S.R.; Kadhi, Y.; Burdette, J.M. Vancomycin Resistant Enterococcus: A Case Report and Review of the Literature. Ann. Saudi. Med. 1993, 13, 289–293. [Google Scholar] [CrossRef]
- Salem-Bekhit, M.M.; Moussa, I.M.I.; Muharram, M.M.; Alanazy, F.K.; Hefni, H.M. Prevalence and Antimicrobial Resistance Pattern of Multidrug-Resistant Enterococci Isolated from Clinical Specimens. Indian J. Med. Microbiol. 2012, 30, 44–51. [Google Scholar] [CrossRef]
- Somily, A.M.; Al-Mohizea, M.M.; Absar, M.M.; Fatani, A.J.; Ridha, A.M.; Al-Ahdal, M.N.; Senok, A.C.; Al-Qahtani, A.A. Molecular Epidemiology of Vancomycin Resistant Enterococci in a Tertiary Care Hospital in Saudi Arabia. Microb. Pathog. 2016, 97, 79–83. [Google Scholar] [CrossRef]
- Kankalil George, S.; Suseela, M.R.; El Safi, S.; Ali Elnagi, E.; Al-Naam, Y.A.; Adlan Mohammed Adam, A.; Mary Jacob, A.; Al-Maqati, T.; Kumar Ks, H. Molecular Determination of van Genes among Clinical Isolates of Enterococci at a Hospital Setting. Saudi J. Biol. Sci. 2021, 28, 2895–2899. [Google Scholar] [CrossRef] [PubMed]
- Farman, M.; Yasir, M.; Al-Hindi, R.R.; Farraj, S.A.; Jiman-Fatani, A.A.; Alawi, M.; Azhar, E.I. Genomic Analysis of Multidrug-Resistant Clinical Enterococcus faecalis Isolates for Antimicrobial Resistance Genes and Virulence Factors from the Western Region of Saudi Arabia. Antimicrob. Resist. Infect. Control 2019, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Kreft, B.; Marre, R.; Schramm, U.; Wirth, R. Aggregation Substance of Enterococcus faecalis Mediates Adhesion to Cultured Renal Tubular Cells. Infect. Immun. 1992, 60, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Van Tyne, D.; Martin, M.J.; Gilmore, M.S. Structure, Function, and Biology of the Enterococcus faecalis Cytolysin. Toxins 2013, 5, 895–911. [Google Scholar] [CrossRef]
- Chow, J.W.; Thal, L.A.; Perri, M.B.; Vazquez, J.A.; Donabedian, S.M.; Clewell, D.B.; Zervos, M.J. Plasmid-Associated Hemolysin and Aggregation Substance Production Contribute to Virulence in Experimental Enterococcal Endocarditis. Antimicrob. Agents Chemother. 1993, 37, 2474–2477. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; van der Donk, W.A. The Sequence of the Enterococcal cytolysin Imparts Unusual Lanthionine Stereochemistry. Nat. Chem. Biol. 2013, 9, 157–159. [Google Scholar] [CrossRef]
- Doss Susai Backiam, A.; Duraisamy, S.; Karuppaiya, P.; Balakrishnan, S.; Chandrasekaran, B.; Kumarasamy, A.; Raju, A. Antibiotic Susceptibility Patterns and Virulence-Associated Factors of Vancomycin-Resistant Enterococcal Isolates from Tertiary Care Hospitals. Antibiotics 2023, 12, 981. [Google Scholar] [CrossRef]
- Del Papa, M.F.; Hancock, L.E.; Thomas, V.C.; Perego, M. Full Activation of Enterococcus faecalis Gelatinase by a C-Terminal Proteolytic Cleavage. J. Bacteriol. 2007, 189, 8835–8843. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Guzmán-Soto, I.; McTiernan, C.; Gonzalez-Gomez, M.; Ross, A.; Gupta, K.; Suuronen, E.J.; Mah, T.-F.; Griffith, M.; Alarcon, E.I. Mimicking Biofilm Formation and Development: Recent Progress in in Vitro and in Vivo Biofilm Models. iScience 2021, 24, 102443. [Google Scholar] [CrossRef]
- Khalil, M.A.; Alorabi, J.A.; Al-Otaibi, L.M.; Ali, S.S.; Elsilk, S.E. Antibiotic Resistance and Biofilm Formation in Enterococcus spp. Isolated from Urinary Tract Infections. Pathogens 2022, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- AlJindan, R.; AlEraky, D.M.; Mahmoud, N.; Abdalhamid, B.; Almustafa, M.; AbdulAzeez, S.; Borgio, J.F. Drug Resistance-Associated Mutations in ERG11 of Multidrug-Resistant Candida auris in a Tertiary Care Hospital of Eastern Saudi Arabia. J. Fungi 2020, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- AlJindan, R.; AlEraky, D.M.; Borgio, J.F.; AbdulAzeez, S.; Abdalhamid, B.; Mahmoud, N.; Farhat, M. Diagnostic Deficiencies of C. difficile Infection among Patients in a Tertiary Hospital in Saudi Arabia: A Laboratory-Based Case Series. Saudi J. Biol. Sci. 2021, 28, 4472–4477. [Google Scholar] [CrossRef] [PubMed]
- AlJindan, R.; AlEraky, D.M.; Farhat, M.; Almandil, N.B.; AbdulAzeez, S.; Borgio, J.F. Genomic Insights into Virulence Factors and Multi-Drug Resistance in Clostridium perfringens IRMC2505A. Toxins 2023, 15, 359. [Google Scholar] [CrossRef]
- Borgio, J.F.; Rasdan, A.S.; Sonbol, B.; Alhamid, G.; Almandil, N.B.; AbdulAzeez, S. Emerging Status of Multidrug-Resistant Bacteria and Fungi in the Arabian Peninsula. Biology 2021, 10, 1144. [Google Scholar] [CrossRef]
- Zhong, Z.; Kwok, L.-Y.; Hou, Q.; Sun, Y.; Li, W.; Zhang, H.; Sun, Z. Comparative Genomic Analysis Revealed Great Plasticity and Environmental Adaptation of the Genomes of Enterococcus faecium. BMC Genom. 2019, 20, 602. [Google Scholar] [CrossRef]
- Al-Qaaneh, A.M.; Al-Ghamdi, F.H.; AbdulAzeez, S.; Borgio, J.F. Safety of Tocilizumab in COVID-19 Patients and Benefit of Single-Dose: The Largest Retrospective Observational Study. Pharmaceutics 2022, 14, 624. [Google Scholar] [CrossRef]
- AlEraky, D.M.; Madi, M.; El Tantawi, M.; AlHumaid, J.; Fita, S.; AbdulAzeez, S.; Borgio, J.F.; Al-Harbi, F.A.; Alagl, A.S. Predominance of Non-Streptococcus Mutans Bacteria in Dental Biofilm and Its Relation to Caries Progression. Saudi J. Biol. Sci. 2021, 28, 7390–7395. [Google Scholar] [CrossRef]
- Borgio, J.F.; Alhujaily, R.; Alquwaie, R.; Alabdullah, M.J.; AlHasani, E.; Alothman, W.; Alaqeel, R.K.; Alfaraj, A.S.; Kaabi, A.; Alhur, N.F.; et al. Mining the Nanotube-Forming Bacillus amyloliquefaciens MR14M3 Genome for Determining Anti-Candida auris and Anti-Candida albicans Potential by Pathogenicity and Comparative Genomics Analysis. Comput. Struct. Biotechnol. J. 2023, 21, 4261–4276. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A Modular and Extensible Implementation of the RAST Algorithm for Building Custom Annotation Pipelines and Annotating Batches of Genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the All-Bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017, 45, D535–D542. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Schomburg, I.; Chang, A.; Ebeling, C.; Gremse, M.; Heldt, C.; Huhn, G.; Schomburg, D. BRENDA, the Enzyme Database: Updates and Major New Developments. Nucleic Acids Res. 2004, 32, D431–D433. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a Reference Resource for Gene and Protein Annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef]
- Overbeek, R.; Begley, T.; Butler, R.M.; Choudhuri, J.V.; Chuang, H.-Y.; Cohoon, M.; de Crécy-Lagard, V.; Diaz, N.; Disz, T.; Edwards, R.; et al. The Subsystems Approach to Genome Annotation and Its Use in the Project to Annotate 1000 Genomes. Nucleic Acids Res. 2005, 33, 5691–5702. [Google Scholar] [CrossRef]
- Davis, J.J.; Gerdes, S.; Olsen, G.J.; Olson, R.; Pusch, G.D.; Shukla, M.; Vonstein, V.; Wattam, A.R.; Yoo, H. PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. Front. Microbiol. 2016, 7, 118. [Google Scholar] [CrossRef]
- Saier, M.H.; Reddy, V.S.; Tsu, B.V.; Ahmed, M.S.; Li, C.; Moreno-Hagelsieb, G. The Transporter Classification Database (TCDB): Recent Advances. Nucleic Acids Res. 2016, 44, D372–D379. [Google Scholar] [CrossRef]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The Comprehensive Antibiotic Resistance Database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and Refined Dataset for Big Data Analysis—10 Years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
- Mao, C.; Abraham, D.; Wattam, A.R.; Wilson, M.J.C.; Shukla, M.; Yoo, H.S.; Sobral, B.W. Curation, Integration and Visualization of Bacterial Virulence Factors in PATRIC. Bioinformatics 2015, 31, 252–258. [Google Scholar] [CrossRef]
- Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; et al. DrugBank 4.0: Shedding New Light on Drug Metabolism. Nucleic Acids Res. 2014, 42, D1091–D1097. [Google Scholar] [CrossRef]
- Zhu, F.; Han, B.; Kumar, P.; Liu, X.; Ma, X.; Wei, X.; Huang, L.; Guo, Y.; Han, L.; Zheng, C.; et al. Update of TTD: Therapeutic Target Database. Nucleic Acids Res. 2010, 38, D787–D791. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast Genome and Metagenome Distance Estimation Using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef]
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and Precise Alignment of Raw Reads against Redundant Databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef]
- Hasman, H.; Clausen, P.T.L.C.; Kaya, H.; Hansen, F.; Knudsen, J.D.; Wang, M.; Holzknecht, B.J.; Samulioniené, J.; Røder, B.L.; Frimodt-Møller, N.; et al. LRE-Finder, a Web Tool for Detection of the 23S rRNA Mutations and the optrA, Cfr, Cfr(B) and poxtA Genes Encoding Linezolid Resistance in Enterococci from Whole-Genome Sequences. J. Antimicrob. Chemother. 2019, 74, 1473–1476. [Google Scholar] [CrossRef]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. PathogenFinder—Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. PLoS ONE 2013, 8, e77302. [Google Scholar] [CrossRef]
- Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of Mobile Genetic Elements Associated with Antibiotic Resistance in Salmonella enterica Using a Newly Developed Web Tool: MobileElementFinder. J. Antimicrob. Chemother. 2021, 76, 101–109. [Google Scholar] [CrossRef]
- Founou, R.C.; Founou, L.L.; Allam, M.; Ismail, A.; Essack, S.Y. Enterococcus faecalis ST21 Harbouring Tn6009 Isolated from a Carriage Sample in South Africa. S. Afr. Med. J. 2021, 111, 98–99. [Google Scholar] [CrossRef]
- Freitas, A.d.A.R.; Souza, S.D.S.R.; Faria, A.R.; Planet, P.J.; Merquior, V.L.C.; Teixeira, L.M. Draft Genome Sequences of Two Commensal Enterococcus faecalis Strains Isolated from American Black Vultures (Coragyps atratus) in Brazil. Microbiol. Resour. Announc. 2022, 11, e0005722. [Google Scholar] [CrossRef]
- Khan, A.; Miller, W.R.; Axell-House, D.; Munita, J.M.; Arias, C.A. Antimicrobial Susceptibility Testing for Enterococci. J. Clin. Microbiol. 2022, 60, e0084321. [Google Scholar] [CrossRef]
- Kuwabara, M.; Irimajiri, R.; Togo, S.; Fujino, Y.; Honsho, M.; Mawatari, S.; Fujino, T.; Doi, K. Complete Genome Sequence of the Thermophilic Enterococcus faecalis Strain K-4, Isolated from a Grass Silage in Thailand. Microbiol. Resour. Announc. 2023, 12, e0081422. [Google Scholar] [CrossRef]
- Segawa, T.; Hisatsune, J.; Ishida-Kuroki, K.; Sugawara, Y.; Masuda, K.; Tadera, K.; Kashiyama, S.; Yokozaki, M.; Le, M.N.-T.; Kawada-Matsuo, M.; et al. Complete Genome Sequence of optrA-Carrying Enterococcus faecalis Isolated from Open Pus in a Japanese Patient. J. Glob. Antimicrob. Resist. 2023, 33, 276–278. [Google Scholar] [CrossRef]
- Wardal, E.; Żabicka, D.; Hryniewicz, W.; Sadowy, E. VanA-Enterococcus faecalis in Poland: Hospital Population Clonal Structure and vanA Mobilome. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1245–1261. [Google Scholar] [CrossRef]
- Bristy, S.A.; Hossain, M.A.; Hasan, M.I.; Mahmud, S.M.H.; Moni, M.A.; Rahman, M.H. An Integrated Complete-Genome Sequencing and Systems Biology Approach to Predict Antimicrobial Resistance Genes in the Virulent Bacterial Strains of Moraxella catarrhalis. Brief. Funct. Genom. 2023, 22, 375–391. [Google Scholar] [CrossRef]
- Abbaszade, G.; Szabó, A.; Vajna, B.; Farkas, R.; Szabó, C.; Tóth, E. Whole Genome Sequence Analysis of Cupriavidus campinensis S14E4C, a Heavy Metal Resistant Bacterium. Mol. Biol. Rep. 2020, 47, 3973–3985. [Google Scholar] [CrossRef]
- Yossa, N.; Bell, R.; Tallent, S.; Brown, E.; Binet, R.; Hammack, T. Genomic Characterization of Bacillus cereus Sensu Stricto 3A ES Isolated from Eye Shadow Cosmetic Products. BMC Microbiol. 2022, 22, 240. [Google Scholar] [CrossRef]
- Bolotin, V.; Kovalenko, G.; Marchenko, N.; Solodiankin, O.; Rudova, N.; Kutsenko, V.; Bortz, E.; Gerilovych, A.; Drown, D.M. Complete Genome Sequence of Brucella abortus 68, Isolated from Aborted Fetal Sheep in Ukraine. Microbiol. Resour. Announc. 2021, 10, e01436-20. [Google Scholar] [CrossRef] [PubMed]
- Rangseekaew, P.; Ua-Arak, N.; Pathom-Aree, W. Draft Genome Sequence Data of Plant Growth Promoting and Calcium Carbonate Precipitating Bacillus velezensis CMU008. Data Brief 2023, 47, 108965. [Google Scholar] [CrossRef] [PubMed]
- Elarabi, N.I.; Halema, A.A.; Abdelhadi, A.A.; Henawy, A.R.; Samir, O.; Abdelhaleem, H.A.R. Draft Genome of Raoultella planticola, a High Lead Resistance Bacterium from Industrial Wastewater. AMB Express 2023, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.K.; Mazlan, Z.; Mastor, N.N.; Hoque, M.Z. Whole Genome Sequence Data of Chromobacterium violaceum WCH4, a Human Pathogenic Strain from Sabah, Malaysia. Data Brief 2021, 39, 107533. [Google Scholar] [CrossRef] [PubMed]
- Mohakud, N.K.; Panda, R.K.; Patra, S.D.; Sahu, B.R.; Ghosh, M.; Kushwaha, G.S.; Misra, N.; Suar, M. Genome Analysis and Virulence Gene Expression Profile of a Multi Drug Resistant Salmonella enterica Serovar Typhimurium Ms202. Gut Pathog. 2022, 14, 28. [Google Scholar] [CrossRef]
- Akter, T.; Haque, M.N.; Ehsan, R.; Paul, S.I.; Foysal, M.J.; Tay, A.C.Y.; Islam, M.T.; Rahman, M.M. Virulence and Antibiotic-Resistance Genes in Enterococcus faecalis Associated with Streptococcosis Disease in Fish. Sci. Rep. 2023, 13, 1551. [Google Scholar] [CrossRef]
- Apostolakos, I.; Paramithiotis, S.; Mataragas, M. Functional and Safety Characterization of Weissella paramesenteroides Strains Isolated from Dairy Products through Whole-Genome Sequencing and Comparative Genomics. Dairy 2022, 3, 799–813. [Google Scholar] [CrossRef]
- Haandrikman, A.J.; van Leeuwen, C.; Kok, J.; Vos, P.; de Vos, W.M.; Venema, G. Insertion Elements on Lactococcal proteinase Plasmids. Appl. Environ. Microbiol. 1990, 56, 1890–1896. [Google Scholar] [CrossRef]
- Harmer, C.J.; Hall, R.M. An Analysis of the IS6/IS26 Family of Insertion Sequences: Is It a Single Family? Microb. Genom. 2019, 5, e000291. [Google Scholar] [CrossRef]
- Colagrossi, L.; Costabile, V.; Scutari, R.; Agosta, M.; Onori, M.; Mancinelli, L.; Lucignano, B.; Onetti Muda, A.; Del Baldo, G.; Mastronuzzi, A.; et al. Evidence of Pediatric Sepsis Caused by a Drug Resistant Lactococcus garvieae Contaminated Platelet Concentrate. Emerg. Microbes. Infect. 2022, 11, 1325–1334. [Google Scholar] [CrossRef]
- Buelow, E.; Rico, A.; Gaschet, M.; Lourenço, J.; Kennedy, S.P.; Wiest, L.; Ploy, M.-C.; Dagot, C. Hospital Discharges in Urban Sanitation Systems: Long-Term Monitoring of Wastewater Resistome and Microbiota in Relationship to Their Eco-Exposome. Water Res. X 2020, 7, 100045. [Google Scholar] [CrossRef] [PubMed]
- Matviichuk, O.; Mondamert, L.; Geffroy, C.; Gaschet, M.; Dagot, C.; Labanowski, J. River Biofilms Microbiome and Resistome Responses to Wastewater Treatment Plant Effluents Containing Antibiotics. Front. Microbiol. 2022, 13, 795206. [Google Scholar] [CrossRef] [PubMed]
- Parra-Flores, J.; Holý, O.; Bustamante, F.; Lepuschitz, S.; Pietzka, A.; Contreras-Fernández, A.; Castillo, C.; Ovalle, C.; Alarcón-Lavín, M.P.; Cruz-Córdova, A.; et al. Virulence and Antibiotic Resistance Genes in Listeria monocytogenes Strains Isolated from Ready-to-Eat Foods in Chile. Front. Microbiol. 2021, 12, 796040. [Google Scholar] [CrossRef] [PubMed]
- Soge, O.O.; Beck, N.K.; White, T.M.; No, D.B.; Roberts, M.C. A Novel Transposon, Tn6009, Composed of a Tn916 Element Linked with a Staphylococcus aureus Mer Operon. J. Antimicrob. Chemother. 2008, 62, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Sun, J.; Mikalsen, T.; Roberts, A.P.; Sundsfjord, A. Characterisation of the Plasmidome within Enterococcus faecalis Isolated from Marginal Periodontitis Patients in Norway. PLoS ONE 2013, 8, e62248. [Google Scholar] [CrossRef]
- El-Badawy, M.F.; Eed, E.M.; Sleem, A.S.; El-Sheikh, A.A.K.; Maghrabi, I.A.; Abdelwahab, S.F. The First Saudi Report of Novel and Common Mutations in the gyrA and parC Genes among Pseudomonas spp. Clinical Isolates Recovered from Taif Area. Infect Drug Resist 2022, 15, 3801–3814. [Google Scholar] [CrossRef]
- Al-Agamy, M.H.M. Detection of Mutations in Quinolone-Resistant Determining Regions in Clinical Isolates of Escherichia coli from Saudi Arabia. Afr. J. Biotechnol. 2012, 11. [Google Scholar] [CrossRef]
- Shibl, A.M.; Al-Agamy, M.H.; Khubnani, H.; Senok, A.C.; Tawfik, A.F.; Livermore, D.M. High Prevalence of Acquired Quinolone-Resistance Genes among Enterobacteriaceae from Saudi Arabia with CTX-M-15 β-Lactamase. Diagn. Microbiol. Infect. Dis. 2012, 73, 350–353. [Google Scholar] [CrossRef]
- El-Tayeb, M.A.; Ibrahim, A.S.S.; Al-Salamah, A.A.; Almaary, K.S.; Elbadawi, Y.B. Prevalence, Serotyping and Antimicrobials Resistance Mechanism of Salmonella enterica Isolated from Clinical and Environmental Samples in Saudi Arabia. Braz. J. Microbiol. 2017, 48, 499–508. [Google Scholar] [CrossRef]
General Info | |
---|---|
Genome Name | Enterococcus faecalis IRMC827A |
Taxonomy Info | |
Superkingdom | Bacteria |
Phylum | Firmicutes |
Order | Lactobacillales |
Family | Enterococcaceae |
Genus | Enterococcus |
Species | Enterococcus faecalis |
Genome Statistics | |
Contigs | 42 |
Genome Length | 2,899,764 bp |
GC Content | 37.34 |
Contig L50 | 6 |
Contig N50 | 193,505 |
Annotation Statistics | |
CDS | 2889 |
tRNA | 41 |
Repeat Regions | 7 |
rRNA | 2 |
Hypothetical proteins | 639 |
Proteins with functional assignments | 2250 |
Proteins with EC number assignments | 686 |
Proteins with GO assignments | 564 |
Proteins with Pathway assignments | 463 |
Proteins with genus-specific family (PLfam) assignments | 2813 |
Proteins with cross-genus family (PGfam) assignments | 2848 |
S. No | Antimicrobial Resistant Mechanism | Name of the Genes |
---|---|---|
1 | Antibiotic inactivation enzyme | ANT(6)-I, CatA8 family |
2 | Antibiotic target in susceptible species | Alr, Ddl, EF-G, EF-Tu, folA, Dfr, folP, gyrA, gyrB, inhA, fabI, Iso-tRNA, kasA, MurA, rho, rpoB, rpoC, S10p, S12p |
3 | Antibiotic target modifying enzyme | RlmA(II) |
4 | Antibiotic target protection protein | Lsa(A), Tet(M) |
5 | Antibiotic target replacement protein | FabK |
6 | Efflux pump conferring antibiotic resistance | Tet(L), YkkCD |
7 | Gene conferring resistance via absence | gidB |
8 | Protein altering cell wall charge conferring antibiotic resistance | GdpD, MprF, PgsA |
9 | Regulator modulating expression of antibiotic resistance genes | LiaF, LiaR, LiaS |
S. No | Source | Source ID | SO | Gene | Product | Classification | SC | QC | % Identity | E-Value |
---|---|---|---|---|---|---|---|---|---|---|
1 | ResFinder 4.1/Victors | CP002491.1/29377514 | b/c | SrtA | Sortase A, LPXTG specific | 100 | 100 | 100 | 1 × 10−134 | |
2 | ResFinder 4.1 | CP002491.1 | b | cCF10 | 99.76 | |||||
3 | ResFinder 4.1 | 295112306 | e | cOB1 | 99.53 | |||||
4 | ResFinder 4.1 | CP002621.1 | f | cad | 99.89 | |||||
5 | ResFinder 4.1 | AF435439.1 | g | camE | Sex pheromone cam373 precursor | 99.80 | ||||
6 | ResFinder 4.1/VFDB/Victors | CP003726.1/VFG042976/306753329 | a/c/ | ebpA | Von Willebrand factor type A domain protein | Adherence, Biofilm formation, Sortase-assembled pili | 100 | 74 | 99 | 1 × 10−130 |
7 | ResFinder 4.1 | AE016830.1 | c | efaAfs | 99.68 | |||||
8 | ResFinder 4.1 | AE016830.1 | c | tpx | 99.61 | |||||
9 | Victors | 29376182 | c | EF1623 | Ethanolamine utilization protein similar to pdua/pduj | 100 | 100 | 100 | 7 × 10−46 | |
10 | Victors/VFDB | 29375537 | c | bopD | Maltose operon transcriptional repressor malr, laci family | Biofilm formation | 100 | 100 | 99 | 1 × 10−190 |
11 | Victors | 29375014 | c | EF0376 | Putative lipoprotein | 100 | 100 | 100 | 1 × 10−206 | |
12 | VFDB | VFG002189 | c | cpsB | Phosphatidate cytidylyltransferase | Antiphagocytosis | 100 | 100 | 99 | 1 × 10−147 |
12 | Victors | 29376329 | c | purL | Phosphoribosylformylglycinamidine synthase, synthetase subunit | 100 | 100 | 99 | 0.0 | |
14 | Victors | 67043736 | m | perR | Peroxide stress regulator perr, FUR family | 100 | 100 | 100 | 1 × 10−82 | |
15 | Victors | 29376108 | c | recQ-1 | ATP-dependent DNA helicase recq | 99 | 99 | 99 | 1 × 10−275 | |
16 | Victors | 29376080 | c | EF1513 | ABC transporter, substrate-binding protein (cluster 5, nickel/peptides/opines) | 100 | 100 | 99 | 0.0 | |
17 | Victors | 29375449 | c | EF0861 | Acetyltransferase, GNAT family | 100 | 100 | 99 | 1 × 10−88 | |
18 | Victors | 29376708 | c | map | Methionine aminopeptidase | 100 | 100 | 100 | 1 × 10−151 | |
19 | Victors | 29374885 | c | brnQ | Na (+)-dependent branched-chain amino acid transporter | 100 | 100 | 100 | 1 × 10−256 | |
20 | Victors | 29376132 | c | psr | Cell envelope-associated transcriptional attenuator lytr-cpsa-Psr, subfamily A1 | 100 | 100 | 99 | 1 × 10−225 | |
21 | VFDB | VFG002190 | c | cpsA | Undecaprenyl diphosphate synthase | Antiphagocytosis | 100 | 100 | 99 | 1 × 10−156 |
22 | Victors | 29375019 | c | EF0382 | Regulator of polyketide synthase expression | 100 | 100 | 100 | 1 × 10−304 | |
23 | Victors | 29377421 | c | EF2957 | Maltose O-acetyltransferase | 100 | 100 | 100 | 1 × 10−106 | |
24 | VFDB | VFG002165 | c | efaA | Manganese ABC transporter, periplasmic-binding protein sita | Adherence | 100 | 100 | 99 | 1 × 10−178 |
25 | Victors | 29376164 | c | scrR-1 | Sucrose operon repressor scrr, laci family | 100 | 99 | 100 | 1 × 10−183 | |
26 | Victors | 29376105 | c | EF1542 | Hypothetical protein | 71 | 100 | 99 | 1 × 10−195 | |
27 | Victors | 29375870 | c | EF1302 | Transcriptional regulator | 100 | 100 | 99 | 1 × 10−167 | |
28 | Victors | 29377084 | c | EF2598 | PTS system, beta-glucoside-specific IIB component/PTS system, beta-glucoside-specific IIC component/PTS system, beta-glucoside-specific IIA component | 100 | 100 | 99 | 0.0 | |
29 | Victors | 29377078 | c | EF2591 | Glyoxalase family protein | 100 | 97 | 100 | 1 × 10−156 | |
30 | VFDB | VFG042978 | c | ebpC | Cell wall surface anchor family protein | Adherence, Biofilm formation, Sortase-assembled pili | 100 | 100 | 99 | 0.0 |
31 | VFDB/Victors | VFG042979/29375670 | c | srtC | Sortase A, LPXTG specific | Adherence, Biofilm formation, Sortase-assembled pili | 99 | 98 | 99 | 1 × 10−160 |
32 | Victors | 29375331 | c | EF0737 | Hypothetical protein | 100 | 100 | 99 | 1 × 10−298 | |
33 | Victors | 29376151 | c | EF1590 | N1-spermidine/spermine acetyltransferase paia | 100 | 100 | 100 | 1 × 10−100 | |
34 | Victors | 29376139 | c | thyA | Thymidylate synthase | 100 | 100 | 99 | 1 × 10−189 |
S. No | Gene | Mutation | Nucleotide Change | Amino Acid Change | Resistance Phenotype |
---|---|---|---|---|---|
1 | gyrA | gyrA p.S83Y | AGT -> TAT | S -> Y | Nalidixic acid, Ciprofloxacin |
2 | gyrA | gyrA p.D759N | GAT -> AAT | D -> N | Unknown |
3 | parC | parC p.S80I | AGC -> ATC | S -> I | Nalidixic acid, Ciprofloxacin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgio, J.F.; AlJindan, R.; Alghourab, L.H.; Alquwaie, R.; Aldahhan, R.; Alhur, N.F.; AlEraky, D.M.; Mahmoud, N.; Almandil, N.B.; AbdulAzeez, S. Genomic Landscape of Multidrug Resistance and Virulence in Enterococcus faecalis IRMC827A from a Long-Term Patient. Biology 2023, 12, 1296. https://doi.org/10.3390/biology12101296
Borgio JF, AlJindan R, Alghourab LH, Alquwaie R, Aldahhan R, Alhur NF, AlEraky DM, Mahmoud N, Almandil NB, AbdulAzeez S. Genomic Landscape of Multidrug Resistance and Virulence in Enterococcus faecalis IRMC827A from a Long-Term Patient. Biology. 2023; 12(10):1296. https://doi.org/10.3390/biology12101296
Chicago/Turabian StyleBorgio, J. Francis, Reem AlJindan, Lujeen H. Alghourab, Rahaf Alquwaie, Razan Aldahhan, Norah F. Alhur, Doaa M. AlEraky, Nehal Mahmoud, Noor B. Almandil, and Sayed AbdulAzeez. 2023. "Genomic Landscape of Multidrug Resistance and Virulence in Enterococcus faecalis IRMC827A from a Long-Term Patient" Biology 12, no. 10: 1296. https://doi.org/10.3390/biology12101296
APA StyleBorgio, J. F., AlJindan, R., Alghourab, L. H., Alquwaie, R., Aldahhan, R., Alhur, N. F., AlEraky, D. M., Mahmoud, N., Almandil, N. B., & AbdulAzeez, S. (2023). Genomic Landscape of Multidrug Resistance and Virulence in Enterococcus faecalis IRMC827A from a Long-Term Patient. Biology, 12(10), 1296. https://doi.org/10.3390/biology12101296