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Simple Summary: A highly virulent, multidrug-resistant Enterococcus faecalis IRMC827A strain was
found in a Saudi Arabian hospital. The strain carries antimicrobial resistance genes and mobile
genetic elements, making it resistant to various antibiotics. It also carries virulence factors associated
with adherence, biofilm formation, and spreading multidrug resistance. The study highlights the
importance of monitoring multidrug-resistant E. faecalis colonization and infection in hospitalized
patients, as it is a serious pathogen.

Abstract: We report on a highly virulent, multidrug-resistant strain of Enterococcus faecalis IRMC827A
that was found colonizing a long-term male patient at a tertiary hospital in Khobar, Saudi Arabia.
The E. faecalis IRMC827A strain carries several antimicrobial drug resistance genes and harbours
mobile genetic elements such as Tn6009, which is an integrative conjugative element that can transfer
resistance genes between bacteria and ISS1N via an insertion sequence. Whole-genome-sequencing-
based antimicrobial susceptibility testing on strains from faecal samples revealed that the isolate
E. faecalis IRMC827A is highly resistant to a variety of antibiotics, including tetracycline, doxy-
cycline, minocycline, dalfopristin, virginiamycin, pristinamycin, chloramphenicol, streptomycin,
clindamycin, lincomycin, trimethoprim, nalidixic acid and ciprofloxacin. The isolate IRMC827A
carries several virulence factors that are significantly associated with adherence, biofilm formation,
sortase-assembled pili, manganese uptake, antiphagocytosis, and spreading factor of multidrug
resistance. The isolate also encompasses two mutations (G2576T and G2505A) in the 23S rRNA gene
associated with linezolid resistance and three more mutations (gyrA p.S83Y, gyrA p.D759N and parC
p.S80I) of the antimicrobial resistance phenotype. The findings through next-generation sequencing
on the resistome, mobilome and virulome of the isolate in the study highlight the significance of
monitoring multidrug-resistant E. faecalis colonization and infection in hospitalized patients. As
multidrug-resistant E. faecalis is a serious pathogen, it is particularly difficult to treat and can cause
fatal infections. It is important to have quick and accurate diagnostic tests for multidrug-resistant E.
faecalis, to track the spread of multidrug-resistant E. faecalis in healthcare settings, and to improve
targeted interventions to stop its spread. Further research is necessary to develop novel antibiotics
and treatment strategies for multidrug-resistant E. faecalis infections.
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1. Introduction

Enterococcus faecalis is a non-sporulating, facultatively anaerobic, and Gram-positive
bacteria [1]. It is a causative agent of several pathological conditions, including surgical
wound infections, infective endocarditis and central line-associated bloodstream infec-
tions [2,3]. Enterococci was first discovered by Thiercelin in 1899. However, until 1984 they
were considered part of Streptococcus [4–6]. Contemporarily, more than 50 morphologically
and biochemically diverse species belong to Enterococcus [1,3].

E. faecalis was first isolated from a patient with infective endocarditis in 1906 [7]. More-
over, E. faecalis has been isolated from plants, water, soil, sewage, fermented cheese, and
dairy food [8]. In the last century, E. faecalis was one of the leading causes of hospital-
acquired infections because of its multidrug resistance nature, with few therapeutic options.
The dramatic increase in prevalence is due to the bacteria’s versatility in accommodating
nutrition-poor environments and diverse ecological niches, such as pH, hypertonic and
hypotonic conditions and temperature, as well as its ability to defeat the infection control
interventions employed in hospitals [9–13]. Enterococcus is a known human intestinal flora
inhabitant. Its opportunistic infections in immune-compromised individuals, along with pa-
tients receiving broad-spectrum antibiotic treatment or requiring extended hospitalization,
are well studied [14,15]. Antimicrobial drugs have been the cornerstone of medical treat-
ment during the last few decades. Since then, the infection survival rate has declined. Yet,
the widespread utilization of antimicrobial drugs has been the selective pressure leading to
antimicrobial resistance [16–18]. Despite the various applied infectious control interven-
tions across the hospital settings, as well as the wild environments concerning antimicrobial
drug use, antimicrobial resistance still continues to rise [10,19]. A comprehensive study
in European countries has demonstrated that Enterococci species accounted for approxi-
mately 6.1% to 17.5% of the isolated pathogens and were associated with the highest rate
of mortality [20]. Likewise, a global meta-analysis study has highlighted the acceleration
of bloodstream infections associated with antimicrobial resistance in Southeast Asian and
Eastern Mediterranean countries compared to the world [21]. It is specifically noted that
there has been a rapid growth in the vancomycin-resistant Enterococci (VRE) rate since
it was first reported in 1988 [22]. VRE is a serious dilemma as its infections are not easily
treated, owing to the fact that vancomycin is a drug of last resort [17]. India has experienced
an upsurge in the prevalence of VRE, estimated to have risen up to 10% since 2000 [23].
Furthermore, the latest evidence has revealed the presence of VRE in food, animals, and
wild environments which holds the risk of interstrain transmission of resistance genes and
might require more complicated interventions and multisectoral collaboration [17]. The
expansion of antimicrobial resistance has encompassed other antimicrobial drugs, such
as tigecycline, linezolid, and daptomycin, yet they are still considered reasonable options
against enterococcal infections [24].

The translocation process of E. faecalis remains controversial. Some studies have
proposed that it occurs when E. faecalis crosses the lymphatic system after failing to be
neutralized through phagocytosis by intestinal epithelial cells, dendritic cells, or other
tissue-resident leukocytes. Others have claimed it happens when a slight quantity of
bacteria diffuses across the intestinal barrier into the bloodstream. [13,25,26]. However,
this minor leakage is not a threat in immunocompetent individuals; the innate system is
sufficient to conquer such invaders [13,27,28]. Over-colonization of bacteria is a significant
risk factor for developing intestinal infection, and it is certainly associated with E. faecalis
emergences; it competes with other commensals to colonize human intestines [27].

The spread of multidrug-resistant microorganisms is not uncommon in Saudi Arabia.
In recent years, several hospitals across the kingdom have been reporting resistant bacteria.
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The vancomycin-resistant genes in Enterococcus species were first identified in Riyadh
in 1993, and ever since, the provenance of these genes has steadily increased [29]. The
following genes—van A, van B, and van C—were identified in the central region and are
estimated to occur in approximately 3.5% to 4% of the detected isolates [30,31], while in the
eastern region, the prevalence rate of vancomycin-resistant genes is higher compared to
other regions of the country at 6.1% [32]. However, a genomic analysis study of E. faecalis
in the western region has identified over 34 resistance-associated genes linked to various
types of commonly used antibiotics [33].

Aggregation substance is the foremost virulence factor for pathogenesis. It permits
the bacteria to adhere to and colonize the host’s epithelial tissues [34]. E. faecalis secretes
substances that present bactericidal and cytocidal activities. In addition, virulent E. faecalis
strains express a pore-forming exotoxin named cytolysin [35]. For instance, Cytolysin
coded by cylLL and cylLS genes hemolyze the host’s cells [28,36–38]. Gelatinase encoded
by the gelE gene hydrolyzes gelatin [28,38,39]. Lastly, serine protease encoded by the sprE
gene disintegrates casein [28,38]. Conjointly, these virulence factors play a role in forming
biofilm communities. Biofilm communities are cells encased in an exopolymer matrix
and can adhere to biotic and abiotic surfaces, exchange genetic material, and facilitate the
spread to extra-intestinal sites. Most importantly, it gives them the beneficial feature of
being resistant to antibiotics and immunological responses [40–42].

Various studies including a recent systematic review were conducted to give promi-
nence to the prevalence and emergence of multidrug-resistant bacteria and fungi from the
Arabian Peninsula, including Saudi Arabia [43–46]. Around 80 species of bacteria and fungi
were reported in a recent systematic review from the Arabian region [46]. Unfortunately,
Saudi Arabia reported the highest number of multidrug-resistant bacteria among the other
Arabian countries and demonstrated the highest mortality rate. E. faecalis accounts for 256
out of 533 cases caused by Enterococcus species from the Arabian Peninsula [46]. Consider-
ing the great genomic plasticity of E. faecalis, which allows the bacteria to disseminate the
resistant genes [6,47], an increase in the incidence of E. faecalis after drug administration
for treating COVID-19 patients was reported from the study region—the Eastern Province
of Saudi [48]. A thorough genomic analysis of E. faecalis in the eastern region of Saudi
Arabia has not been previously investigated in the literature. Hence, the objective of this
study is to sequence the whole genome of E. faecalis IRMC827A and to perform analysis
using various bioinformatics platforms. The isolate was evaluated for the presence of genes
associated with multidrug-resistant virulent factors as well as phenotypic mutations.

2. Materials and Methods
2.1. Ethical Approval

Imam Abdulrahman Bin Faisal University’s ethical committee reviewed and approved
this project (IRB-2022-01-398). The 1964 Helsinki Declaration and its following revisions, as
well as comparable ethical principles, were followed during every procedure.

2.2. Isolation of Bacteria and DNA Extraction

Using cycloserine, cefoxitin, and fructose agar media and a faecal sample from a male
patient who was clinically suspected of having a gastrointestinal infection and had recently
experienced antibiotic exposure and diarrhoea, a pathogenic strain was isolated. Six pre-
disposing antimicrobial agents (ciprfloxacin, gentamicin, flagyl, meropenem, vancomycin,
and tazocin) have been associated with infection. The pathogenic strain was isolated using
cycloserine, cefoxitin, and fructose agar media. A positive strain was cultivated on acyclo-
serine cefoxitin fructose agar selective medium (CCFA) (MOLEQULE-ON, Auckland, New
Zealand). The Gentra Puregene Yeast/Bact. Kit (Qiagen, Hilden, Germany) was used to
extract the whole DNA. Thermo Scientific’s Nanodrop 2000 (Waltham, MA, USA) was
used to evaluate the purity, quality, and amount of genomic DNA in accordance with the
manufacturer’s recommendations. The isolate was PCR amplified, and the 16S rRNA gene
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was sequenced (GenBank Accession No: OR533998) and analysed as we described earlier
to confirm the strain as bacteria [45,49].

2.3. Genome Mining for Multidrug-Resistant Genes

The genome of the isolate was sequenced using an Illumina HiSeq system (Illumina,
San Diego, CA, USA). Genomic DNA was sheared randomly to construct three-read
libraries. The paired-end fragment libraries were sequenced according to the Illumina
HiSeq system’s protocol. Raw reads of low quality from paired-end sequencing were
discarded and other reads were assembled using SOAPdenovo v1.05 software. The paired
readings were put together and annotated as previously described [45,50] using the RAST
tool kit (RASTtk 1.3.0) [51] and PATRIC (BV-BRC 3.28.5) [52]. We determined the taxonomy
of the IRMC827A’s genome and estimated the average G + C content and contig count
using the predictions for the proteins and their roles in gene ontology (GO) [53], enzyme
commission (EC) [54], pathways [55], subsystems of protein complexes [56] and protein
family types [57]. Specific source databases for known transporters [58], antibiotic-resistant
genes [59], virulence factors [60,61], and drug targets [62,63], were used for identifying
speciality genes in the IRMC827A genome. Plasmid multilocus sequence typing was
used for detecting known plasmid types of IRMC827A [64]. Anti-microbial resistance
(AMR) genes were detected using k-mer-based methods [52]. Phylogenetic analysis was
completed using 100 genes from the NCBI reference for the IRMC827A’s genome in addition
to representative genomes by Mash/MinHash (Mash v2.3) [65] aligned with MUSCLE [66]
and a matrix analysis with fast bootstrapping [67,68]. Metagenomic read mapping was
conducted through k-mer alignment against the selected template using the VFDB (2019)
and CARD (2020) databases [69].

Resistance phenotypes of IRMC827A were predicted using ResFinderFG (Version 2.0)
using a functional metagenomic antibiotic resistance database. LRE-Finder (Version 1.0)
was applied to detect the mutations in the 23S rRNA gene and genes encoding linezolid
resistance (optrA, cfr, cfr(B) and poxtA) in Enterococci [69,70]. Pathogenic protein families
and mobile genetic elements associated with antibiotic resistance in the IRMC827A were
predicted using PathogenFinder (Version 1.1) [71] and MGE [72], respectively.

3. Results

The collected stool sample was subjected to isolating anaerobic bacteria and the
isolated bacterial strain, IRMC827A, was initially identified as Enterococcus IRMC827A
using 16S rRNA gene sequencing and analysis. In order to identify the genetic impact in
the genome of IRMC827A, the whole genome of the strain was sequenced successfully, and
annotated (Table 1).

Table 1. Assembly details and annotated features of Enterococcus faecalis IRMC827A.

General Info

Genome Name Enterococcus faecalis IRMC827A

Taxonomy Info

Superkingdom Bacteria

Phylum Firmicutes

Order Lactobacillales

Family Enterococcaceae

Genus Enterococcus

Species Enterococcus faecalis
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Table 1. Cont.

General Info

Genome Statistics

Contigs 42

Genome Length 2,899,764 bp

GC Content 37.34

Contig L50 6

Contig N50 193,505

Annotation Statistics

CDS 2889

tRNA 41

Repeat Regions 7

rRNA 2

Hypothetical proteins 639

Proteins with functional assignments 2250

Proteins with EC number assignments 686

Proteins with GO assignments 564

Proteins with Pathway assignments 463

Proteins with genus-specific family (PLfam) assignments 2813

Proteins with cross-genus family (PGfam) assignments 2848

The IRMC827A genome (GenBank accession No: JAVLSN000000000; SubmissionID:
SUB13827866; BioProject ID: PRJNA1014890) was assembled into 42 contigs with an average
G+C content of 37.34% and a total length of 2,899,764 bp (Table 1). This IRMC827A
genome belongs to the superkingdom Bacteria, and its taxonomy is cellular organisms >
Bacteria > Terrabacteria group > Firmicutes > Bacilli > Lactobacillales > Enterococcaceae >
Enterococcus > Enterococcus faecalis. There are 2 ribosomal RNA (rRNA) genes, 41 transfer
RNA (tRNA) genes, and 2889 protein-coding sequences (CDS) in this E. faecalis IRMC827A
genome (Table 1). Figure 1 displays a circular graphical representation of the distribution
of E. faecalis IRMC827A genome annotations as well as a summary of the distinct biological
process or structural complex for the genome. The phylogenetic tree (Figure 2), the number
of speciality genes (Tables 2 and 3), the antimicrobial resistance gene details (Table 2),
the functional classification (Figure 1), and the genome comparison between Enterococcus
faecalis IRMC827A and Enterococcus faecalis V583 (Figure 2) all show that the IRMC827A
genome is similar to that of Enterococcus faecalis. In the examination of the proteins, 2250
proteins with known functions and 639 hypothetical proteins were found (Table 1). A total
of 686 proteins had EC numbers and 564 had GO designations among the proteins with
functional assignments. There are 2813 genus-specific protein families (PLFams) and 2848
cross-genus protein families (PGFams) in the genome of E. faecalis IRMC827A.
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Table 2. Antimicrobial resistance genes and associated antimicrobial resistance mechanisms identified
in the genome of E. faecalis IRMC827A.

S. No Antimicrobial Resistant Mechanism Name of the Genes

1 Antibiotic inactivation enzyme ANT(6)-I, CatA8 family

2 Antibiotic target in susceptible species
Alr, Ddl, EF-G, EF-Tu, folA, Dfr, folP,

gyrA, gyrB, inhA, fabI, Iso-tRNA, kasA,
MurA, rho, rpoB, rpoC, S10p, S12p

3 Antibiotic target modifying enzyme RlmA(II)

4 Antibiotic target protection protein Lsa(A), Tet(M)

5 Antibiotic target replacement protein FabK

6 Efflux pump conferring antibiotic
resistance Tet(L), YkkCD

7 Gene conferring resistance via absence gidB

8 Protein altering cell wall charge
conferring antibiotic resistance GdpD, MprF, PgsA

9 Regulator modulating expression of
antibiotic resistance genes LiaF, LiaR, LiaSBiology 2023, 12, 1296 6 of 18 

 

 

 
Figure 1. A circular graphical display of the distribution of the genome annotations in Enterococcus 
faecalis IRMC827A. This includes the antimicrobial resistance genes projected on the outer ring with 
names coloured blue. 

Figure 1. A circular graphical display of the distribution of the genome annotations in Enterococcus
faecalis IRMC827A. This includes the antimicrobial resistance genes projected on the outer ring with
names coloured blue.
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Figure 2. Phylogenetic tree and genome comparison of IRMC827A genome. (A) Phylogenetic tree 
of IRMC827A genome. Blue arrow indicates the genome of IRMC827A. Statistics used for phyloge-
netic tree analysis: alignment program—mafft; branch support method—RAxML fast bootstrap-
ping; requested genomes and number of genomes with data—44; single-copy genes requested, 
found and number of protein aligned—100; max allowed deletions and duplications—0; number of 
aligned amino acids—39,722; protein alignment time—346.3 s; number of aligned nucleotides—
119,166; number CDS alignments—100; RAxML time—8526.6 s; RAxML likelihood -2,334,654.7903; 
(B) genome comparison between E. faecalis IRMC827A and E. faecalis V583 representing homologous 
regions. 

  

Figure 2. Phylogenetic tree and genome comparison of IRMC827A genome. (A) Phylogenetic tree of
IRMC827A genome. Blue arrow indicates the genome of IRMC827A. Statistics used for phylogenetic
tree analysis: alignment program—mafft; branch support method—RAxML fast bootstrapping; re-
quested genomes and number of genomes with data—44; single-copy genes requested, found and
number of protein aligned—100; max allowed deletions and duplications—0; number of aligned
amino acids—39,722; protein alignment time—346.3 s; number of aligned nucleotides—119,166; num-
ber CDS alignments—100; RAxML time—8526.6 s; RAxML likelihood -2,334,654.7903; (B) genome
comparison between E. faecalis IRMC827A and E. faecalis V583 representing homologous regions.
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Table 3. List of virulence factors in the genome of E. faecalis IRMC827A.

S. No Source Source ID SO Gene Product Classification SC QC % Identity E-Value

1 ResFinder
4.1/Victors

CP002491.1/
29377514 b/c SrtA Sortase A, LPXTG specific 100 100 100 1 × 10−134

2 ResFinder 4.1 CP002491.1 b cCF10 99.76

3 ResFinder 4.1 295112306 e cOB1 99.53

4 ResFinder 4.1 CP002621.1 f cad 99.89

5 ResFinder 4.1 AF435439.1 g camE Sex pheromone cam373 precursor 99.80

6 ResFinder
4.1/VFDB/Victors

CP003726.1/
VFG042976/

306753329
a/c/ ebpA Von Willebrand factor type A

domain protein

Adherence, Biofilm
formation,

Sortase-assembled pili
100 74 99 1 × 10−130

7 ResFinder 4.1 AE016830.1 c efaAfs 99.68

8 ResFinder 4.1 AE016830.1 c tpx 99.61

9 Victors 29376182 c EF1623 Ethanolamine utilization protein
similar to pdua/pduj 100 100 100 7 × 10−46

10 Victors/VFDB 29375537 c bopD Maltose operon transcriptional
repressor malr, laci family Biofilm formation 100 100 99 1 × 10−190

11 Victors 29375014 c EF0376 Putative lipoprotein 100 100 100 1 × 10−206

12 VFDB VFG002189 c cpsB Phosphatidate cytidylyltransferase Antiphagocytosis 100 100 99 1 × 10−147

12 Victors 29376329 c purL Phosphoribosylformylglycinamidine
synthase, synthetase subunit 100 100 99 0.0

14 Victors 67043736 m perR Peroxide stress regulator perr, FUR
family 100 100 100 1 × 10−82

15 Victors 29376108 c recQ-1 ATP-dependent DNA helicase recq 99 99 99 1 × 10−275

16 Victors 29376080 c EF1513
ABC transporter, substrate-binding

protein (cluster 5,
nickel/peptides/opines)

100 100 99 0.0

17 Victors 29375449 c EF0861 Acetyltransferase, GNAT family 100 100 99 1 × 10−88
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Table 3. Cont.

S. No Source Source ID SO Gene Product Classification SC QC % Identity E-Value

18 Victors 29376708 c map Methionine aminopeptidase 100 100 100 1 × 10−151

19 Victors 29374885 c brnQ Na (+)-dependent branched-chain
amino acid transporter 100 100 100 1 × 10−256

20 Victors 29376132 c psr
Cell envelope-associated
transcriptional attenuator

lytr-cpsa-Psr, subfamily A1
100 100 99 1 × 10−225

21 VFDB VFG002190 c cpsA Undecaprenyl diphosphate synthase Antiphagocytosis 100 100 99 1 × 10−156

22 Victors 29375019 c EF0382 Regulator of polyketide synthase
expression 100 100 100 1 × 10−304

23 Victors 29377421 c EF2957 Maltose O-acetyltransferase 100 100 100 1 × 10−106

24 VFDB VFG002165 c efaA Manganese ABC transporter,
periplasmic-binding protein sita Adherence 100 100 99 1 × 10−178

25 Victors 29376164 c scrR-1 Sucrose operon repressor scrr, laci
family 100 99 100 1 × 10−183

26 Victors 29376105 c EF1542 Hypothetical protein 71 100 99 1 × 10−195

27 Victors 29375870 c EF1302 Transcriptional regulator 100 100 99 1 × 10−167

28 Victors 29377084 c EF2598

PTS system, beta-glucoside-specific
IIB component/PTS system,
beta-glucoside-specific IIC
component/PTS system,

beta-glucoside-specific IIA
component

100 100 99 0.0

29 Victors 29377078 c EF2591 Glyoxalase family protein 100 97 100 1 × 10−156

30 VFDB VFG042978 c ebpC Cell wall surface anchor family
protein

Adherence, Biofilm
formation,

Sortase-assembled pili
100 100 99 0.0
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Table 3. Cont.

S. No Source Source ID SO Gene Product Classification SC QC % Identity E-Value

31 VFDB/Victors VFG042979/29375670 c srtC Sortase A, LPXTG specific
Adherence, Biofilm

formation,
Sortase-assembled pili

99 98 99 1 × 10−160

32 Victors 29375331 c EF0737 Hypothetical protein 100 100 99 1 × 10−298

33 Victors 29376151 c EF1590 N1-spermidine/spermine
acetyltransferase paia 100 100 100 1 × 10−100

34 Victors 29376139 c thyA Thymidylate synthase 100 100 99 1 × 10−189

SO: Source organism; a = E. faecalis D32; b = E. faecalis 62; c = E. faecalis V583; e: Enterococcus sp. 7L76; f: E. faecalis OG1RF; g: E. faecalis strain OG1X; h: Neisseria meningitidis MC58; m: E.
faecalis; SC: Subject coverage; QC: Query coverage. Complete list of virulence factors in the genome of E. faecalis IRMC827A presented in Table S1.
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WGS-Based Antimicrobial Susceptibility for Antimicrobial Resistance

The CARD (Comprehensive Antibiotic Resistance Database), PATRIC (Pathosystems
Resource Integration Center), NDARO (National Database of Antibiotic Resistant Organ-
isms) databases and ResFinder were used for identifying acquired antimicrobial resis-
tance genes using the whole genome of E. faecalis IRMC827A, and revealed more than
30 antimicrobial resistance genes with various antimicrobial resistance mechanisms (Table 2
and Figure 3). The E. faecalis IRMC827A genome has the highest number (n = 19) of genes
connected to antibiotic targets in susceptible species. Three genes (LiaF, LiaR, and LiaS) in-
volved in regulator modulating expression of antibiotic resistance genes were also identified
in the IRMC827A genome. Two genes were found in each category such as antibiotic inacti-
vation enzyme, antibiotic target protection protein and efflux pump conferring antibiotic
resistance in association with the mechanism of resistance in the genome of IRMC827A.
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Figure 3. Number of speciality genes identified in the genome mining of E. faecalis IRMC827A and
the homology identified from the specific source database. AR: antibiotic resistance; VF: virulence
factor; DT: drug target; CARD: Comprehensive Antibiotic Resistance Database; NDARO: National
Database of Antibiotic Resistant Organisms; PATRIC: Pathosystems Resource Integration Center;
TCDB: Transporter Classification Database; VFDB: Virulence Factor Database; NDARO: National
Database of Antibiotic Resistant Organisms; TTD: Therapeutic Target Database.

Fifty-two virulence factors were identified in the genome of IRMC827A through
ResFinder, VFDB, Victors and PATRIC (Table 3). Virulence factors are significantly as-
sociated with adherence, biofilm formation, sortase-assembled pili, manganese uptake,
ABC transporter, antiphagocytosis, exoenzyme, and spreading factor of multidrug resis-
tance in the genome of IRMC827A (Tables 3 and S1). Metagenomic read mapping of
the genome of E. faecalis IRMC827A against the template genomes (Staphylococcus aureus;
Streptococcus pneumoniae; Enterococcus faecium; E. faecalis; Clostridium difficile; Geobacillus
stearothermophilus and E. faecalis) using antibiotic resistance database exposed significant
genes (p value = 1 × 10−26) (Table S2).

Plasmid multilocus sequence typing of IRMC827A revealed the presence of genes
repA (GenBank: AB374546.1; Location: 83,003..84,010) and HMPREF0351_12738 (GenBank:
CP003584.1; Location: 24,026..25,231) in E. faecalis plasmid pMG2200 and E. faecium DO
plasmid 1, respectively, based on known plasmid types with 100% identity. ResFinderFG-
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based analysis for identifying resistance phenotypes of IRMC827A identified a resistance
phenotype to chloramphenicol (Hit name: cat; 100% identity), tetracycline (Hit name:
tet_efflux; 100% identity) and cotrimoxazole (Hit name: dfr; 98.18% identity) (Figure S1)
based on a functional metagenomic database. Antimicrobial-resistant phenotype analysis
exposed resistance phenotype to 13 antimicrobial agents (tetracycline, doxycycline, minocy-
cline, dalfopristin, virginiamycin m, pristinamycin iia, chloramphenicol, streptomycin,
clindamycin, lincomycin, trimethoprim, nalidixic acid and ciprofloxacin) in E. faecalis
IRMC827A (Tables S3 and S4). Tetracycline, ciprofloxacin, and chloramphenicol-resistant
phenotypes specific to E. faecalis were observed in the IRMC827A genome (Table S4).
Two mutations G2576T and G2505A in the 23S rRNA gene were identified as associated
with linezolid resistance; however, no mutations were detected in genes such as optrA,
cfr, cfr(B) and poxtA in E. faecalis IRMC827A encoding linezolid resistance. There were
three resistance-phenotype-associated mutations—gyrA p.S83Y, gyrA p.D759N and parC
p.S80I—identified in the genome of E. faecalis IRMC827A (Table 4).

Table 4. List of resistance-phenotype-associated mutations in the genome of E. faecalis IRMC827A.

S. No Gene Mutation Nucleotide Change Amino Acid Change Resistance Phenotype

1 gyrA gyrA p.S83Y AGT -> TAT S -> Y Nalidixic acid, Ciprofloxacin

2 gyrA gyrA p.D759N GAT -> AAT D -> N Unknown

3 parC parC p.S80I AGC -> ATC S -> I Nalidixic acid, Ciprofloxacin

Pathogenic protein families of the IRMC827A revealed the strain as a human pathogen
(probability score 0.891) with a proteome coverage of 1.97% and 55 matched pathogenic
protein families (Table S5). Alignment to reference-based prediction for mobile genetic
elements (MGE) associated with antibiotic resistance of the IRMC827A revealed the pres-
ence of two MGEs—integrative conjugative element (name of the MGE: Tn6009; Accession:
EU399632) and insertion sequence (name of the MGE: ISS1N; Accession: M37395) (Table S6).
Tn6009 (position in contig: 31342-33230) showed alignment coverage of 100% containing
1889/1889 bp with sequence identity of 99.95% and one substitution. The ISS1N (position
in contig: 16162-16969) showed alignment coverage of 100% containing 808/808 bp with a
sequence identity of 98.51% and 12 substitutions.

4. Discussion

Recent studies have found various strains of E. faecalis from different resources that are
highly resistant to antibiotics and carry several virulence factors [3,73–78]. Due to its mul-
tidrug resistance, adaptability to nutrient-poor environments and a variety of ecological
niches and limited therapy choices, E. faecalis was one of the main causes of hospital-
acquired infections and saw dramatic increase in prevalence [9–13]. The presence of genes
and alleles involved in antimicrobial resistance observed in the isolate IRMC827A were
reported earlier from various bacterial organisms, such as multidrug-resistant Moraxella
catarrhalis [79], a heavy-metal-resistant bacterium Cupriavidus campinensis S14E4C [80],
Bacillus cereus isolated from eye shadow cosmetic products [81], Brucella abortus isolated
from aborted fetal sheep [82], Bacillus velezensis CMU008 [83], multidrug-resistant Clostrid-
ium perfringens [45], a high-lead-resistance bacterium Raoultella planticola [84], a human
pathogenic strain from Malaysia Chromobacterium violaceum [85], and multidrug-resistant
Salmonella enterica [86], including E. faecalis [87].

The analysis revealed the presence of two V domain mutations such as G2576T and
G2505A in the 23S rRNA gene which are resistant to linezolid in Enterococci [69,70]. Recent
studies reported an increase in the occurrence of linezolid resistance among Enterococci [77],
which is in line with the observations of the current study on the linezolid resistance-
associated mutations in E. faecalis IRMC827A. Resistance-associated mutations in various
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genes and matched pathogenic protein families clearly support the multidrug-resistant
phenotype of E. faecalis IRMC827A.

One ISS1N insertion sequence, first identified in Lactococcus lactis, was found in the
study isolate IRMC827A. These sequences are thought to be crucial for the conjugal trans-
fer of genes involved in lactose processing between different lactic acid bacteria species.
However, it is not clear in any descriptions of ISS1N mediating the transfer of virulence
or resistance genes. Weissella paramesenteroides were found to be substantially related to
IS [88–90]. Luna Colagrossi and colleagues reported that the insertion sequence ISS1N
is an important factor for bacterial genome shaping and exogenous genetic content inte-
gration [91]. The transposase gene ISS1N was significantly abundant in microorganisms
from urban wastewater compared to hospital wastewater [92]. The presence of insertion
sequence ISS1N was reported in Bacteroidetes incertae sedis, Opitutae, and Nitrospira in the
resistome analysis of microbial communities in river biofilms [93] and Listeria monocytogenes
isolated from ready-to-eat foods in Chile [94]. To our knowledge, this is the first report of E.
faecalis in Saudi Arabia that is also carrying Tn6009, along with ISS1N and other resistant
genes [46]. E. faecalis with a mobile genetic element, the integrative conjugative element
Tn6009, was reported recently in South Africa’s characteristic vancomycin-resistant pheno-
type [73]. Tn6009 is known to be a mobile genetic element that can transfer resistance genes
between bacteria [95]. According to a Norwegian study, E. faecalis, which is responsible
for peripheral periodontitis in hospitalised patients, has Tn916 linked with the integrase
genes [96]. Another study found that Tn6009 was linked to Tn916-like components in
S. aureus that helped spread MDR determinants that could be acquired from a variety
of bacteria, with Enterococcus spp. having the highest rate of transmissibility [95]. The
presence of transposase genes does not necessarily mean that the transposases are active.
However, it is important to note that transposons can play a role in the spread of antibiotic
resistance genes. Our research suggests that the presence of Tn6009 in the microbiome
of the strain in combination with various antimicrobial-resistant genes may facilitate the
transfer of resistance and virulence factors and subsequently contribute to the fitness and
pathogenicity of E. faecalis IRMC827A. This could result in outbreaks in the future caused
by other bacteria in the microbiome in addition to E. faecalis. In order to reduce outbreak
conditions, additional molecular research is required to track the genomic and pathogenic-
ity trends of clinical and carriage isolates across geographical areas. Antibiotic use should
be considered carefully in both clinical and community settings in order to prevent the
emergence and spread of antimicrobial resistance.

A recent study identified common and novel mutations in the gyrA and parC genes in
Pseudomonas spp. clinical isolates from Saudi Arabia and provided insight into the genetic
background of quinolone resistance [97]. A Saudi Arabian study found that the DNA
gyrase in clinical isolates of E. coli targets quinolones, and that a single amino acid change
in gyrA can make E. coli resistant to nalidixic acid and less sensitive to ciprofloxacin [98].
Another study on the qnr-positive isolates found various mutations in gyrA, but high-level
ciprofloxacin resistance was linked to double mutations in gyrA among Enterobacteriaceae
from Saudi Arabia [99]. Fluoroquinolone resistance was found to be linked to gyrA and
parC gene mutations in Salmonella enterica from Riyadh, Saudi Arabia [100]. E. faecalis
isolated from the western region of Saudi Arabia possessed gyrA and parC genes and exhib-
ited resistance to quinolone antibiotics like ciprofloxacin, levofloxacin, and moxifloxacin,
commonly used for UTIs, enteric infections, and respiratory tract infections [33]. These
studies clearly indicate the presence of the gyrA gene in various bacterial isolates from the
study country, which supports the resistance to antimicrobial agents as observed in the
present study.

The international spread of multidrug-resistant microorganisms is a challenge facing
healthcare providers today. It is crucial to gain some knowledge regarding local microorgan-
isms in the country. The findings of this study clarified and shed light on the understanding
of the molecular characteristics of E. faecalis. Nevertheless, the implementation of an ac-
tive surveillance system to refine hospital protocols and policies, as well as introducing
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more legislation on the accessibility and usability of antimicrobial drugs, might be feasible
strategies for now. Thus, future research must focus on developing new techniques for
these infections, such as drugs that could target the resistance sites or rather an advanced
treatment that acts on the resistance gene itself. Further studies are needed by either RNA
sequencing or RT-PCR analysis of the most important genes to confirm their state of expres-
sion to ensure phenotype. Genotypes are the genetic makeup of an organism. WGS can be
used to determine the genotype of an organism, but it cannot be used to directly determine
the phenotype. The lack of phenotypic identification through antibiotic susceptibility tests
from the isolate is one of the limitations of the study. Genetic makeup can be used to
develop new diagnostic tests and treatments for antibiotic-resistant infections. It can also
be used to track the spread of antibiotic resistance and to develop strategies to prevent it.

5. Conclusions

Many of the antibiotics commonly used to treat infections brought on by this pathogen,
including E. faecalis IRMC827A, are highly resistant to it. The strain carries several virulence
factors, including those that promote adherence to host cells, biofilm formation, and
resistance to phagocytosis. Various mutations and mobile genetic elements (Tn6009 and
ISS1N) in IRMC827A are associated with antibiotic resistance, which may contribute to the
high level of resistance to antibiotics due to their ability to cause serious and fatal infections
and be difficult to treat. The current observations of this study suggest that multidrug-
resistant E. faecalis IRMC827A is a serious concern for public health. Further research is
needed to develop novel antibiotics and effective treatment strategies for this pathogen.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12101296/s1, Table S1: List of virulence factors in the
genome of E. faecalis IRMC827A. Table S2: Metagenomic read mapping of E. faecalis IRMC827A
through various databases. Table S3: Antimicrobial-resistant phenotype results observed in E. faecalis
IRMC827A. Table S4: Antimicrobial-resistant phenotype specific for Enterococcus faecalis results
observed in E. faecalis IRMC827A. Table S5: List of pathogenic protein families of the IRMC827A.
Table S6: List of mobile genetic elements associated with antibiotic resistance of the IRMC827A.
Figure S1: Multiple sequence alignment of dfrG gene from Enterococcus faecalis IRMC827A.
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