Post-Mating Responses in Insects Induced by Seminal Fluid Proteins and Octopamine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Post-Mating Response Induced by SFPs
2.1. Physiological Structures and Behavioral Changes
2.2. The Protein Network of SFPs Regulates the Storage and Release of Sperm
2.3. SPs Influence Egg Production
2.4. SP Induced Vitellogenesis
2.5. SFPs Affect Female Receptivity
2.6. SFPs Constitute the Regulatory Network of Post-Mating Response
3. OA and Their Receptors in Activating Post-Mating Responses
3.1. OA Regulates the Contraction of Oviduct Muscles during Ovulation
3.2. OA Causes Receptivity Decline
3.3. OA Mediates Sperm Release
3.4. Distribution of Other Neurotransmitters in the Reproductive Organs
4. Regulation of Gene Expression in Insect Post-Mating Responses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baker, C.A.; Clemens, J.; Murthy, M. Acoustic Pattern Recognition and Courtship Songs: Insights from Insects. Annu. Rev. Neurosci. 2019, 42, 129–147. [Google Scholar] [CrossRef]
- Derlink, M.; Abt, I.; Mabon, R.; Julian, C.; Virant-Doberlet, M.; Jacquot, E. Mating behavior of Psammotettix alienus (Hemiptera: Cicadellidae). Insect Sci. 2018, 25, 148–160. [Google Scholar] [CrossRef]
- Woods, W.A., Jr.; Hendrickson, H.; Mason, J.; Lewis, S.M. Energy and predation costs of firefly courtship signals. Am. Nat. 2007, 170, 702–708. [Google Scholar] [CrossRef]
- Godfrey, J.A.; Murray, T.M.; Rypstra, A.L. The effects of environmental light on the role of male chemotactile cues in wolf spider mating interactions. Behav. Ecol. Sociobiol. 2022, 76, 39. [Google Scholar] [CrossRef]
- Guo, H.; Mo, B.T.; Li, G.C.; Li, Z.L.; Huang, L.Q.; Sun, Y.L.; Dong, J.F.; Smith, D.P.; Wang, C.Z. Sex pheromone communication in an insect parasitoid, Campoletis chlorideae Uchida. Proc. Natl. Acad. Sci. USA 2022, 119, e2215442119. [Google Scholar] [CrossRef]
- Hollis, B.; Koppik, M.; Wensing, K.U.; Ruhmann, H.; Genzoni, E.; Erkosar, B.; Kawecki, T.J.; Fricke, C.; Keller, L. Sexual conflict drives male manipulation of female postmating responses in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2019, 116, 8437–8444. [Google Scholar] [CrossRef]
- Avila, F.W.; Sirot, L.K.; LaFlamme, B.A.; Rubinstein, C.D.; Wolfner, M.F. Insect seminal fluid proteins: Identification and function. Annu. Rev. Entomol. 2011, 56, 21–40. [Google Scholar] [CrossRef]
- Carvalho, G.B.; Kapahi, P.; Anderson, D.J.; Benzer, S. Allocrine modulation of feeding behavior by the Sex Peptide of Drosophila. Curr. Biol. 2006, 16, 692–696. [Google Scholar] [CrossRef]
- Bloch Qazi, M.C.; Heifetz, Y.; Wolfner, M.F. The developments between gametogenesis and fertilization: Ovulation and female sperm storage in Drosophila melanogaster. Dev. Biol. 2003, 256, 195–211. [Google Scholar] [CrossRef]
- Avila, F.W.; Ravi Ram, K.; Bloch Qazi, M.C.; Wolfner, M.F. Sex peptide is required for the efficient release of stored sperm in mated Drosophila females. Genetics 2010, 186, 595–600. [Google Scholar] [CrossRef]
- Isaac, R.E.; Li, C.; Leedale, A.E.; Shirras, A.D. Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proc. Biol. Sci. 2010, 277, 65–70. [Google Scholar] [CrossRef]
- Moschilla, J.A.; Tomkins, J.L.; Simmons, L.W. Males adjust their manipulation of female remating in response to sperm competition risk. Proc. Biol. Sci. 2020, 287, 20201238. [Google Scholar] [CrossRef]
- Tuni, C.; Weber, S.; Bilde, T.; Uhl, G. Male spiders reduce pre- and postmating sexual investment in response to sperm competition risk. Behav. Ecol. 2017, 28, 1030–1036. [Google Scholar] [CrossRef]
- Bath, E.; Buzzoni, D.; Ralph, T.; Wigby, S.; Sepil, I. Male condition influences female post mating aggression and feeding in Drosophila. Funct. Ecol. 2021, 35, 1288–1298. [Google Scholar] [CrossRef]
- Koppik, M.; Fricke, C. Gene expression changes in male accessory glands during ageing are accompanied by reproductive decline in Drosophila melanogaster. Mol. Ecol. 2017, 26, 6704–6716. [Google Scholar] [CrossRef]
- Misra, S.; Wolfner, M.F. Drosophila seminal sex peptide associates with rival as well as own sperm, providing SP function in polyandrous females. Elife 2020, 9, e58322. [Google Scholar] [CrossRef]
- Sirot, L.K.; Wolfner, M.F.; Wigby, S. Protein-specific manipulation of ejaculate composition in response to female mating status in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2011, 108, 9922–9926. [Google Scholar] [CrossRef]
- Wolfner, M.F. The gifts that keep on giving: Physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 2002, 88, 85–93. [Google Scholar] [CrossRef]
- Lung, O.; Kuo, L.; Wolfner, M.F. Drosophila males transfer antibacterial proteins from their accessory gland and ejaculatory duct to their mates. J. Insect Physiol. 2001, 47, 617–622. [Google Scholar] [CrossRef]
- Saudan, P.; Hauck, K.; Soller, M.; Choffat, Y.; Ottiger, M.; Sporri, M.; Ding, Z.; Hess, D.; Gehrig, P.M.; Klauser, S.; et al. Ductus ejaculatorius peptide 99B (DUP99B), a novel Drosophila melanogaster sex-peptide pheromone. Eur. J. Biochem. 2002, 269, 989–997. [Google Scholar] [CrossRef]
- Lung, O.; Wolfner, M.F. Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem. Mol. Biol. 2001, 31, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Takami, Y.; Sasabe, M.; Nagata, N.; Sota, T. Dual function of seminal substances for mate guarding in a ground beetle. Behav. Ecol. 2008, 19, 1173–1178. [Google Scholar] [CrossRef]
- Ravi Ram, K.; Ji, S.; Wolfner, M.F. Fates and targets of male accessory gland proteins in mated female Drosophila melanogaster. Insect Biochem. Mol. Biol. 2005, 35, 1059–1071. [Google Scholar] [CrossRef]
- Ravi Ram, K.; Wolfner, M.F. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr. Comp. Biol. 2007, 47, 427–445. [Google Scholar] [CrossRef] [PubMed]
- Poiani, A. Complexity of seminal fluid: A review. Behav. Ecol. Sociobiol. 2006, 60, 289–310. [Google Scholar] [CrossRef]
- Herndon, L.A.; Wolfner, M.F. A Drosophila seminal fluid protein, Acp26Aa, stimulates egg laying in females for 1 day after mating. Proc. Natl. Acad. Sci. USA 1995, 92, 10114–10118. [Google Scholar] [CrossRef]
- Neubaum, D.M.; Wolfner, M.F. Mated Drosophila melanogaster females require a seminal fluid protein, Acp36DE, to store sperm efficiently. Genetics 1999, 153, 845–857. [Google Scholar] [CrossRef]
- Chapman, T. The soup in my fly: Evolution, form and function of seminal fluid proteins. PLoS Biol. 2008, 6, e179. [Google Scholar] [CrossRef]
- Ramm, S.A.; McDonald, L.; Hurst, J.L.; Beynon, R.J.; Stockley, P. Comparative proteomics reveals evidence for evolutionary diversification of rodent seminal fluid and its functional significance in sperm competition. Mol. Biol. Evol. 2009, 26, 189–198. [Google Scholar] [CrossRef]
- Sirot, L.K.; Wong, A.; Chapman, T.; Wolfner, M.F. Sexual conflict and seminal fluid proteins: A dynamic landscape of sexual interactions. Cold Spring Harb. Perspect. Biol. 2014, 7, a017533. [Google Scholar] [CrossRef]
- Kubli, E. Sex-peptides: Seminal peptides of the Drosophila male. Cell. Mol. Life Sci. 2003, 60, 1689–1704. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Chen, S.; Busser, S.; Liu, H.; Honegger, T.; Kubli, E. Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr. Biol. 2005, 15, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Rezaval, C.; Pavlou, H.J.; Dornan, A.J.; Chan, Y.B.; Kravitz, E.A.; Goodwin, S.F. Neural circuitry underlying Drosophila female postmating behavioral responses. Curr. Biol. 2012, 22, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Yapici, N.; Kim, Y.J.; Ribeiro, C.; Dickson, B.J. A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 2008, 451, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Rumpf, S.; Xiang, Y.; Gordon, M.D.; Song, W.; Jan, L.Y.; Jan, Y.N. Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron 2009, 61, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Hasemeyer, M.; Yapici, N.; Heberlein, U.; Dickson, B.J. Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 2009, 61, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Soller, M.; Haussmann, I.U.; Hollmann, M.; Choffat, Y.; White, K.; Kubli, E.; Schafer, M.A. Sex-peptide-regulated female sexual behavior requires a subset of ascending ventral nerve cord neurons. Curr. Biol. 2006, 16, 1771–1782. [Google Scholar] [CrossRef] [PubMed]
- Ottiger, M.; Soller, M.; Stocker, R.F.; Kubli, E. Binding sites of Drosophila melanogaster sex peptide pheromones. J. Neurobiol. 2000, 44, 57–71. [Google Scholar] [CrossRef]
- Avila, F.W.; Mattei, A.L.; Wolfner, M.F. Sex peptide receptor is required for the release of stored sperm by mated Drosophila melanogaster females. J. Insect Physiol. 2015, 76, 1–6. [Google Scholar] [CrossRef]
- White, M.A.; Bonfini, A.; Wolfner, M.F.; Buchon, N. Drosophila melanogaster sex peptide regulates mated female midgut morphology and physiology. Proc. Natl. Acad. Sci. USA 2021, 118, e2018112118. [Google Scholar] [CrossRef]
- Apger-McGlaughon, J.; Wolfner, M.F. Post-mating change in excretion by mated Drosophila melanogaster females is a long-term response that depends on sex peptide and sperm. J. Insect Physiol. 2013, 59, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Duhart, J.M.; Buchler, J.R.; Inami, S.; Kennedy, K.J.; Jenny, B.P.; Afonso, D.J.S.; Koh, K. Modulation and Neural Correlates of Postmating Sleep Plasticity in Drosophila Females. Curr. Biol. 2023, 33, 2702–2716. [Google Scholar] [CrossRef] [PubMed]
- Civetta, A.; Clark, A.G. Correlated effects of sperm competition and postmating female mortality. Proc. Natl. Acad. Sci. USA 2000, 97, 13162–13165. [Google Scholar] [CrossRef] [PubMed]
- Wigby, S.; Chapman, T. Sex peptide causes mating costs in female Drosophila melanogaster. Curr. Biol. 2005, 15, 316–321. [Google Scholar] [CrossRef]
- Liu, S.; Li, B.; Liu, W.; Liu, Y.; Ren, B.; Wang, G. Sex peptide receptor mediates the post-mating switch in Helicoverpa. armigera (Lepidoptera: Noctuidae) female reproductive behavior. Pest Manag. Sci. 2021, 77, 3427–3435. [Google Scholar] [CrossRef]
- Ravi Ram, K.; Wolfner, M.F. Sustained Post-Mating Response in Drosophila melanogaster Requires Multiple Seminal Fluid Proteins. PLoS Genet. 2005; preprint. [Google Scholar] [CrossRef]
- Ram, K.R.; Wolfner, M.F. A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila. Proc. Natl. Acad. Sci. USA 2009, 106, 15384–15389. [Google Scholar] [CrossRef]
- Wolfner, M.F. Battle and ballet: Molecular interactions between the sexes in Drosophila. J. Hered. 2009, 100, 399–410. [Google Scholar] [CrossRef]
- LaFlamme, B.A.; Ram, K.R.; Wolfner, M.F. The Drosophila melanogaster seminal fluid protease “seminase” regulates proteolytic and post-mating reproductive processes. PLoS Genet. 2012, 8, e1002435. [Google Scholar] [CrossRef]
- Gligorov, D.; Sitnik, J.L.; Maeda, R.K.; Wolfner, M.F.; Karch, F. A novel function for the Hox gene Abd-B in the male accessory gland regulates the long-term female post-mating response in Drosophila. PLoS Genet. 2013, 9, e1003395. [Google Scholar] [CrossRef]
- McCullough, E.L.; Whittington, E.; Singh, A.; Pitnick, S.; Wolfner, M.F.; Dorus, S. The life history of Drosophila sperm involves molecular continuity between male and female reproductive tracts. Proc. Natl. Acad. Sci. USA 2022, 119, e2119899119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kim, A.J.; Rivera-Perez, C.; Noriega, F.G.; Kim, Y.J. The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat. Commun. 2022, 13, 969. [Google Scholar] [CrossRef]
- Meiselman, M.; Lee, S.S.; Tran, R.T.; Dai, H.; Ding, Y.; Rivera-Perez, C.; Wijesekera, T.P.; Dauwalder, B.; Noriega, F.G.; Adams, M.E. Endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2017, 114, E3849–E3858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, S.; Liu, S. Juvenile Hormone Studies in Drosophila melanogaster. Front. Physiol. 2021, 12, 785320. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Shi, J.; Jiang, X.; Song, Y.; Du, J.; Zhao, Z. Neuropeptide F regulates feeding via the juvenile hormone pathway in Ostrinia furnacalis larvae. Pest Manag. Sci. 2023, 79, 1193–1203. [Google Scholar] [CrossRef]
- Meiselman, M.R.; Ganguly, A.; Dahanukar, A.; Adams, M.E. Post-mating Refractoriness in Drosophila melanogaster Depends Upon Ecdysis Triggering Hormone Signaling. bioRxiv 2021. [Google Scholar] [CrossRef]
- Pondeville, E.; Maria, A.; Jacques, J.C.; Bourgouin, C.; Dauphin-Villemant, C. Anopheles gambiae males produce and transfer the vitellogenic steroid hormone 20-hydroxyecdysone to females during mating. Proc. Natl. Acad. Sci. USA 2008, 105, 19631–19636. [Google Scholar] [CrossRef]
- Baldini, F.; Gabrieli, P.; South, A.; Valim, C.; Mancini, F.; Catteruccia, F. The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae. PLoS Biol. 2013, 11, e1001695. [Google Scholar] [CrossRef]
- Gabrieli, P.; Kakani, E.G.; Mitchell, S.N.; Mameli, E.; Want, E.J.; Mariezcurrena Anton, A.; Serrao, A.; Baldini, F.; Catteruccia, F. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2014, 111, 16353–16358. [Google Scholar] [CrossRef]
- Bretman, A.; Lawniczak, M.K.; Boone, J.; Chapman, T. A mating plug protein reduces early female remating in Drosophila melanogaster. J. Insect Physiol. 2010, 56, 107–113. [Google Scholar] [CrossRef]
- Torres-Vila, L.M.; Mendiola-Díaz, F.J.; Echave-Sanabria, A.C. Do male seminal donations shape female post-mating receptivity in a usually monandrous moth? Behav. Ecol. Sociobiol. 2019, 73, 163. [Google Scholar] [CrossRef]
- Pilpel, N.; Nezer, I.; Applebaum, S.W.; Heifetz, Y. Mating-increases trypsin in female Drosophila hemolymph. Insect Biochem. Mol. Biol. 2008, 38, 320–330. [Google Scholar] [CrossRef]
- Singh, A.; Buehner, N.A.; Lin, H.; Baranowski, K.J.; Findlay, G.D.; Wolfner, M.F. Long-term interaction between Drosophila sperm and sex peptide is mediated by other seminal proteins that bind only transiently to sperm. Insect Biochem. Mol. Biol. 2018, 102, 43–51. [Google Scholar] [CrossRef]
- Findlay, G.D.; Sitnik, J.L.; Wang, W.; Aquadro, C.F.; Clark, N.L.; Wolfner, M.F. Evolutionary rate covariation identifies new members of a protein network required for Drosophila melanogaster female post-mating responses. PLoS Genet. 2014, 10, e1004108. [Google Scholar] [CrossRef] [PubMed]
- Roeder, T. Octopamine in invertebrates. Prog. Neurobiol. 1999, 59, 533–561. [Google Scholar] [CrossRef]
- White, M.A.; Chen, D.S.; Wolfner, M.F. She’s got nerve: Roles of octopamine in insect female reproduction. J. Neurogenet. 2021, 35, 132–153. [Google Scholar] [CrossRef] [PubMed]
- Lange, A.B. Tyramine: From octopamine precursor to neuroactive chemical in insects. Gen. Comp. Endocrinol. 2009, 162, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Saraswati, S.; Fox, L.E.; Soll, D.R.; Wu, C.F. Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. J. Neurobiol. 2004, 58, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.H.; Carney, G.E.; McClung, C.A.; Willard, S.S.; Taylor, B.J.; Hirsh, J. Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: Distinct roles for neural tyramine and octopamine in female fertility. J. Biol. Chem. 2005, 280, 14948–14955. [Google Scholar] [CrossRef]
- Evans, P.D.; Maqueira, B. Insect octopamine receptors: A new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert. Neurosci. 2005, 5, 111–118. [Google Scholar] [CrossRef]
- Farooqui, T. Review of octopamine in insect nervous systems. Open Access Insect Physiol. 2012, 1–17. [Google Scholar] [CrossRef]
- Wu, S.F.; Xu, G.; Qi, Y.X.; Xia, R.Y.; Huang, J.; Ye, G.Y. Two splicing variants of a novel family of octopamine receptors with different signaling properties. J. Neurochem. 2014, 129, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Han, K.A.; Millar, N.S.; Davis, R.L. A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J. Neurosci. 1998, 18, 3650–3658. [Google Scholar] [CrossRef] [PubMed]
- Maqueira, B.; Chatwin, H.; Evans, P.D. Identification and characterization of a novel family of Drosophila beta-adrenergic-like octopamine G-protein coupled receptors. J. Neurochem. 2005, 94, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Balfanz, S.; Strunker, T.; Frings, S.; Baumann, A. A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J. Neurochem. 2005, 93, 440–451. [Google Scholar] [CrossRef]
- Wu, S.F.; Jv, X.M.; Huang, J.M.; Gao, C.F. Molecular features and expression profiles of octopamine receptors in the brown planthopper, Nilaparvata lugens. Pest Manag. Sci. 2019, 75, 2663–2671. [Google Scholar] [CrossRef]
- Wu, S.F.; Jv, X.M.; Li, J.; Xu, G.J.; Cai, X.Y.; Gao, C.F. Pharmacological characterisation and functional roles for egg-laying of a beta-adrenergic-like octopamine receptor in the brown planthopper Nilaparvata lugens. Insect Biochem. Mol. Biol. 2017, 87, 55–64. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Jiang, L.; Ahamd, S.; Chen, Y.; Zhang, J.Y.; Stanley, D.; Miao, H.; Ge, L.Q. The octopamine receptor, OA2B2, modulates stress resistance and reproduction in Nilaparvata lugens Stål (Hemiptera: Delphacidae). Insect Mol. Biol. 2022, 31, 33–48. [Google Scholar] [CrossRef]
- Avila, F.W.; Bloch Qazi, M.C.; Rubinstein, C.D.; Wolfner, M.F. A requirement for the neuromodulators octopamine and tyramine in Drosophila melanogaster female sperm storage. Proc. Natl. Acad. Sci. USA 2012, 109, 4562–4567. [Google Scholar] [CrossRef]
- Monastirioti, M.; Linn, C.E., Jr.; White, K. Characterization of Drosophila tyramine beta-hydroxylase gene and isolation of mutant flies lacking octopamine. J. Neurosci. 1996, 16, 3900–3911. [Google Scholar] [CrossRef]
- Monastirioti, M. Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev. Biol. 2003, 264, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Mattei, A.L.; Riccio, M.L.; Avila, F.W.; Wolfner, M.F. Correction for Mattei et al., Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning. Proc. Natl. Acad. Sci. USA 2017, 114, E5485. [Google Scholar] [CrossRef]
- Middleton, C.A.; Nongthomba, U.; Parry, K.; Sweeney, S.T.; Sparrow, J.C.; Elliott, C.J. Neuromuscular organization and aminergic modulation of contractions in the Drosophila ovary. BMC Biol. 2006, 4, 17. [Google Scholar] [CrossRef]
- Rodriguez-Valentin, R.; Lopez-Gonzalez, I.; Jorquera, R.; Labarca, P.; Zurita, M.; Reynaud, E. Oviduct contraction in Drosophila is modulated by a neural network that is both, octopaminergic and glutamatergic. J. Cell. Physiol. 2006, 209, 183–198. [Google Scholar] [CrossRef]
- Hana, S.; Lange, A.B. Octopamine and tyramine regulate the activity of reproductive visceral muscles in the adult female blood-feeding bug, Rhodnius prolixus. J. Exp. Biol. 2017, 220, 1830–1836. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Sabandal, P.R.; Fernandez, A.; Sabandal, J.M.; Lee, H.G.; Evans, P.; Han, K.A. The octopamine receptor Octbeta2R regulates ovulation in Drosophila melanogaster. PLoS ONE 2014, 9, e104441. [Google Scholar] [CrossRef]
- Louis, M.; Lee, H.-G.; Rohila, S.; Han, K.-A. The Octopamine Receptor OAMB Mediates Ovulation via Ca2+/Calmodulin-Dependent Protein Kinase II in the Drosophila Oviduct Epithelium. PLoS ONE 2009, 4, e4716. [Google Scholar] [CrossRef]
- Crocker, A.; Shahidullah, M.; Levitan, I.B.; Sehgal, A. Identification of a Neural Circuit that Underlies the Effects of Octopamine on Sleep:Wake Behavior. Neuron 2010, 65, 670–681. [Google Scholar] [CrossRef]
- Rezaval, C.; Nojima, T.; Neville, M.C.; Lin, A.C.; Goodwin, S.F. Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila. Curr. Biol. 2014, 24, 725–730. [Google Scholar] [CrossRef]
- Barrozo, R.B.; Jarriault, D.; Simeone, X.; Gaertner, C.; Gadenne, C.; Anton, S. Mating-induced transient inhibition of responses to sex pheromone in a male moth is not mediated by octopamine or serotonin. J. Exp. Biol. 2010, 213, 1100–1106. [Google Scholar] [CrossRef]
- Yamane, T. Genetic variation in the effect of monoamines on female mating receptivity and oviposition in the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). BMC Evol. Biol. 2014, 14, 172. [Google Scholar] [CrossRef]
- Arthur, B.; Hauschteck-Jungen, E.; Nöthiger, R.; Ward, P.I. A female nervous system is necessary for normal sperm storage in Drosophila melanogaster: A masculinized nervous system is as good as none. Proc. R. Soc. Lond Ser. B Biol. Sci. 1998, 265, 1749–1753. [Google Scholar] [CrossRef]
- Allen, A.K.; Spradling, A.C. The Sf1-related nuclear hormone receptor Hr39 regulates Drosophila female reproductive tract development and function. Development 2008, 135, 311–321. [Google Scholar] [CrossRef]
- Heifetz, Y.; Lindner, M.; Garini, Y.; Wolfner, M.F. Mating regulates neuromodulator ensembles at nerve termini innervating the Drosophila reproductive tract. Curr. Biol. 2014, 24, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Fowler, E.K.; Bradley, T.; Moxon, S.; Chapman, T. Divergence in Transcriptional and Regulatory Responses to Mating in Male and Female Fruitflies. Sci. Rep. 2019, 9, 16100. [Google Scholar] [CrossRef] [PubMed]
- Dalton, J.E.; Kacheria, T.S.; Knott, S.R.; Lebo, M.S.; Nishitani, A.; Sanders, L.E.; Stirling, E.J.; Winbush, A.; Arbeitman, M.N. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster. BMC Genom. 2010, 11, 541. [Google Scholar] [CrossRef]
- Kocher, S.D.; Richard, F.J.; Tarpy, D.R.; Grozinger, C.M. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genom. 2008, 9, 232. [Google Scholar] [CrossRef]
- Sitnik, J.L.; Gligorov, D.; Maeda, R.K.; Karch, F.; Wolfner, M.F. The Female Post-Mating Response Requires Genes Expressed in the Secondary Cells of the Male Accessory Gland in Drosophila melanogaster. Genetics 2016, 202, 1029–1041. [Google Scholar] [CrossRef]
- Sirot, L.; Bansal, R.; Esquivel, C.J.; Arteaga-Vazquez, M.; Herrera-Cruz, M.; Pavinato, V.A.C.; Abraham, S.; Medina-Jimenez, K.; Reyes-Hernandez, M.; Dorantes-Acosta, A.; et al. Post-mating gene expression of Mexican fruit fly females: Disentangling the effects of the male accessory glands. Insect Mol. Biol. 2021, 30, 480–496. [Google Scholar] [CrossRef]
- Dottorini, T.; Persampieri, T.; Palladino, P.; Baker, D.A.; Spaccapelo, R.; Senin, N.; Crisanti, A. Regulation of Anopheles gambiae male accessory gland genes influences postmating response in female. FASEB J. 2013, 27, 86–97. [Google Scholar] [CrossRef]
- Alfonso-Parra, C.; Ahmed-Braimah, Y.H.; Degner, E.C.; Avila, F.W.; Villarreal, S.M.; Pleiss, J.A.; Wolfner, M.F.; Harrington, L.C. Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. PLoS Negl. Trop. Dis. 2016, 10, e0004451. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shi, M.R.; Xu, J.; Chen, P.; Liu, J.H. Mating-Induced Trade-Offs upon Egg Production versus Fertilization and Offspring’s Survival in a Sawfly with Facultative Parthenogenesis. Insects 2021, 12, 693. [Google Scholar] [CrossRef] [PubMed]
- Newell, N.R.; Ray, S.; Dalton, J.E.; Fortier, J.C.; Kao, J.Y.; Chang, P.L.; Nuzhdin, S.V.; Arbeitman, M.N. The Drosophila Post-mating Response: Gene Expression and Behavioral Changes Reveal Perdurance and Variation in Cross-Tissue Interactions. G3 Genes Genomes Genet. 2020, 10, 967–983. [Google Scholar] [CrossRef] [PubMed]
- Cherasse, S.; Dacquin, P.; Aron, S. Mating triggers an up-regulation of vitellogenin and defensin in ant queens. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2019, 205, 745–753. [Google Scholar] [CrossRef]
- Wu, T.; Cao, D.H.; Liu, Y.; Yu, H.; Fu, D.Y.; Ye, H.; Xu, J. Mating-Induced Common and Sex-Specific Behavioral, Transcriptional Changes in the Moth Fall Armyworm (Spodoptera frugiperda, Noctuidae, Lepidoptera) in Laboratory. Insects 2023, 14, 209. [Google Scholar] [CrossRef]
- McGraw, L.A.; Clark, A.G.; Wolfner, M.F. Post-mating Gene Expression Profiles of Female Drosophila melanogaster in Response to Time and to Four Male Accessory Gland Proteins. Genetics 2008, 179, 1395–1408. [Google Scholar] [CrossRef]
- Fedorka, K.M.; Linder, J.E.; Winterhalter, W.; Promislow, D. Post-mating disparity between potential and realized immune response in Drosophila melanogaster. Proc. Biol. Sci. 2007, 274, 1211–1217. [Google Scholar] [CrossRef]
- Short, S.M.; Wolfner, M.F.; Lazzaro, B.P. Female Drosophila melanogaster suffer reduced defense against infection due to seminal fluid components. J. Insect Physiol. 2012, 58, 1192–1201. [Google Scholar] [CrossRef]
- Short, S.M.; Lazzaro, B.P. Female and male genetic contributions to post-mating immune defence in female Drosophila melanogaster. Proc. Biol. Sci. 2010, 277, 3649–3657. [Google Scholar] [CrossRef]
- Innocenti, P.; Morrow, E.H. Immunogenic males: A genome-wide analysis of reproduction and the cost of mating in Drosophila melanogaster females. J. Evol. Biol. 2009, 22, 964–973. [Google Scholar] [CrossRef]
- Wing, S.R. Cost of Mating for Female Insects: Risk of Predation in Photinus collustrans (Coleoptera: Lampyridae). Am. Nat. 1988, 131, 139–142. [Google Scholar] [CrossRef]
- Arnqvist, G.; Ronn, J.; Watson, C.; Goenaga, J.; Immonen, E. Concerted evolution of metabolic rate, economics of mating, ecology, and pace of life across seed beetles. Proc. Natl. Acad. Sci. USA 2022, 119, e2205564119. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gonzalez, F.; Simmons, L.W. Male-induced costs of mating for females compensated by offspring viability benefits in an insect. J. Evol. Biol. 2010, 23, 2066–2075. [Google Scholar] [CrossRef] [PubMed]
- Martínez Villar, M.; Germil, M.; Pavón-Peláez, C.; Tomasco, I.H.; Bilde, T.; Toft, S.; Albo, M.J. Lack of Female Preference for Nuptial Gifts May Have Led to Loss of the Male Sexual Trait. Evol. Biol. 2023, 50, 318–331. [Google Scholar] [CrossRef]
- Short, S.M.; Lazzaro, B.P. Reproductive status alters transcriptomic response to infection in female Drosophila melanogaster. G3 Genes Genomes Genet. 2013, 3, 827–840. [Google Scholar] [CrossRef]
- Mueller, J.L.; Linklater, J.R.; Ravi Ram, K.; Chapman, T.; Wolfner, M.F. Targeted Gene Deletion and Phenotypic Analysis of the Drosophila melanogaster Seminal Fluid Protease Inhibitor Acp62F. Genetics 2008, 178, 1605–1614. [Google Scholar] [CrossRef]
- Rubinstein, C.D.; Wolfner, M.F. Drosophila seminal protein ovulin mediates ovulation through female octopamine neuronal signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 17420–17425. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, G.-X.; Yu, X.-P.; Li, D.-T. Post-Mating Responses in Insects Induced by Seminal Fluid Proteins and Octopamine. Biology 2023, 12, 1283. https://doi.org/10.3390/biology12101283
Guan G-X, Yu X-P, Li D-T. Post-Mating Responses in Insects Induced by Seminal Fluid Proteins and Octopamine. Biology. 2023; 12(10):1283. https://doi.org/10.3390/biology12101283
Chicago/Turabian StyleGuan, Guang-Xiang, Xiao-Ping Yu, and Dan-Ting Li. 2023. "Post-Mating Responses in Insects Induced by Seminal Fluid Proteins and Octopamine" Biology 12, no. 10: 1283. https://doi.org/10.3390/biology12101283
APA StyleGuan, G. -X., Yu, X. -P., & Li, D. -T. (2023). Post-Mating Responses in Insects Induced by Seminal Fluid Proteins and Octopamine. Biology, 12(10), 1283. https://doi.org/10.3390/biology12101283