Monitoring the Spread of Grapevine Viruses in Vineyards of Contrasting Agronomic Practices: A Metagenomic Investigation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sites Selection
2.2. Sentinel Vine Material
2.3. Sentinel Vine Deployment
2.4. Potential Alternative Hosts for GRBV and GPGV
2.5. Sample Handling, Nucleic Acids Extraction and PCR Procedure
2.6. HTS Procedure
2.7. HTS Data Analysis
2.8. Sequence Identity Analysis
3. Results
3.1. Viral Status of the Pre-Introduction Sentinel Vines with PCR and HTS
3.2. Viral Status of the Post-Introduction Sentinel Vines with PCR and HTS
3.3. Viral Status of Established Vines and Wild Grapes
3.4. Viral Status of Floor-Covering and Perennial Plants with HTS
3.5. Phylogenetic Analysis of the Newly Acquired Virus in Sentinel Vines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, B.; Martelli, G.P.; Golino, D.A.; Fuchs, M. Grapevine Viruses: Molecular Biology, Diagnostics and Management; Springer International: New York, NY, USA, 2017; ISBN 9783319577067. [Google Scholar]
- Maliogka, V.I.; Martelli, G.P.; Fuchs, M.; Katis, N.I. Control of Viruses Infecting Grapevine. In Advances in Virus Research; Elsevier: New York, NY, USA, 2015. [Google Scholar]
- Fuchs, M. Grapevine Viruses: A Multitude of Diverse Species with Simple but Overall Poorly Adopted Management Solutions in the Vineyard. J. Plant Pathol. 2020, 102, 643–653. [Google Scholar] [CrossRef]
- Bahder, B.W.; Zalom, F.G.; Jayanth, M.; Sudarshana, M.R. Phylogeny of Geminivirus Coat Protein Sequences and Digital PCR Aid in Identifying Spissistilus Festinus as a Vector of Grapevine Red Blotch-Associated Virus. Phytopathology 2016, 106, 1223–1230. [Google Scholar] [CrossRef]
- Cieniewicz, E.; Flasco, M.; Brunelli, M.; Onwumelu, A.; Wise, A.; Fuchs, M.F. Differential Spread of Grapevine Red Blotch Virus in California and New York Vineyards. Phytobiomes J. 2019, 3, 203–211. [Google Scholar] [CrossRef]
- Lim, S.; Igori, D.; Zhao, F.; Moon, J.S.; Cho, I.S.; Choi, G.S. First Report of Grapevine Red Blotch-Associated Virus on Grapevine in Korea. Plant Dis. 2016, 100, 1957. [Google Scholar] [CrossRef]
- Rasool, S.; Naz, S.; Rowhani, A.; Diaz-Lara, A.; Golino, D.A.; Farrar, K.D.; Al Rwahnih, M. Survey of Grapevine Pathogens in Pakistan. J. Plant Pathol. 2019, 101, 725–732. [Google Scholar] [CrossRef]
- Marwal, A.; Kumar, R.; Paul Khurana, S.M.; Gaur, R.K. Complete Nucleotide Sequence of a New Geminivirus Isolated from Vitis vinifera in India: A Symptomless Host of Grapevine Red Blotch Virus. VirusDisease 2019, 30, 106–111. [Google Scholar] [CrossRef]
- Luna, F.; Debat, H.; Moyano, S.; Zavallo, D.; Asurmendi, S.; Gomez-Talquenca, S. First Report of Grapevine Red Blotch Virus Infecting Grapevine in Argentina. J. Plant Pathol. 2019, 101, 1239. [Google Scholar] [CrossRef]
- Poojari, S.; Lowery, D.T.; Rott, M.; Schmidt, A.M.; Úrbez-Torres, J.R. Incidence, Distribution and Genetic Diversity of Grapevine Red Blotch Virus in British Columbia. Can. J. Plant Pathol. 2017, 39, 201–211. [Google Scholar] [CrossRef]
- Gasperin-Bulbarela, J.; Licea-Navarro, A.F.; Pino-Villar, C.; Hernández-Martínez, R.; Carrillo-Tripp, J. First Report of Grapevine Red Blotch Virus in Mexico. Plant Dis. 2019, 103, 381. [Google Scholar] [CrossRef]
- Dalton, D.T.; Hilton, R.J.; Kaiser, C.; Daane, K.M.; Sudarshana, M.R.; Vo, J.; Zalom, F.G.; Buser, J.Z.; Walton, V.M. Spatial Associations of Vines Infected with Grapevine Red Blotch Virus in Oregon Vineyards. Plant Dis. 2019, 103, 1507–1514. [Google Scholar] [CrossRef]
- Flasco, M.T.; Hoyle, V.; Cieniewicz, E.J.; Loeb, G.; Mclane, H.; Perry, K.; Fuchs, M.F. Vector of Grapevine Red Blotch Virus in Vineyards. Viruses 2023, 15, 927. [Google Scholar] [CrossRef]
- Cieniewicz, E.J.; Pethybridge, S.J.; Loeb, G.; Perry, K.; Fuchs, M. Insights into the Ecology of Grapevine Red Blotch Virus in a Diseased Vineyard. Phytopathology 2018, 108, 94–102. [Google Scholar] [CrossRef]
- Bahder, B.W.; Zalom, F.G.; Sudarshana, M.R. An Evaluation of the Flora Adjacent to Wine Grape Vineyards for the Presence of Alternative Host Plants of Grapevine Red Blotch-Associated Virus. Plant Dis. 2016, 100, 1571–1574. [Google Scholar] [CrossRef]
- Wilson, H.; Hogg, B.N.; Blaisdell, G.K.; Andersen, J.C.; Yazdani, A.S.; Billings, A.C.; Ooi, K.M.; Soltani, N.; Almeida, R.P.P.; Cooper, M.L.; et al. Survey of Vineyard Insects and Plants to Identify Potential Insect Vectors and Noncrop Reservoirs of Grapevine Red Blotch Virus. PhytoFrontiersTM 2022, 2, 66–73. [Google Scholar] [CrossRef]
- Tarquini, G.; Zaina, G.; Ermacora, P.; De Amicis, F.; Franco-Orozco, B.; Loi, N.; Martini, M.; Bianchi, G.L.; Pagliari, L.; Firrao, G.; et al. Agroinoculation of Grapevine Pinot Gris Virus in Tobacco and Grapevine Provides Insights on Viral Pathogenesis. PLoS ONE 2019, 14, e0214010. [Google Scholar] [CrossRef]
- Bertazzon, N.; Forte, V.; Filippin, L.; Causin, R.; Maixner, M.; Angelini, E. Association between Genetic Variability and Titre of Grapevine Pinot Gris Virus with Disease Symptoms. Plant Pathol. 2017, 66, 949–959. [Google Scholar] [CrossRef]
- Vu, M.; Vemulapati, B.M.; McFadden-Smith, W.; Fall, M.L.; Úrbez-Torres, J.R.; Moreau, D.L.; Poojari, S. Phylogenetic and Evolutionary Studies of Grapevine Pinot Gris Virus Isolates from Canada. Viruses 2023, 15, 735. [Google Scholar] [CrossRef]
- Hily, J.M.; Poulicard, N.; Candresse, T.; Vigne, E.; Beuve, M.; Renault, L.; Velt, A.; Spilmont, A.S.; Lemaire, O. Datamining, Genetic Diversity Analyses, and Phylogeographic Reconstructions Redefine the Worldwide Evolutionary History of Grapevine Pinot Gris Virus and Grapevine Berry Inner Necrosis Virus. Phytobiomes J. 2020, 4, 165–177. [Google Scholar] [CrossRef]
- Malagnini, V.; de Lillo, E.; Saldarelli, P.; Beber, R.; Duso, C.; Raiola, A.; Zanotelli, L.; Valenzano, D.; Giampetruzzi, A.; Morelli, M.; et al. Transmission of Grapevine Pinot Gris Virus by Colomerus vitis (Acari: Eriophyidae) to Grapevine. Arch. Virol. 2016, 161, 2595–2599. [Google Scholar] [CrossRef]
- Hily, J.M.; Komar, V.; Poulicard, N.; Vigne, E.; Jacquet, O.; Protet, N.; Spilmont, A.S.; Lemaire, O. Biological Evidence and Molecular Modeling of a Grapevine Pinot Gris Virus Outbreak in a Vineyard. Phytobiomes J. 2021, 5, 464–472. [Google Scholar] [CrossRef]
- Poojari, S.; Moreau, D.L.; Kahl, D.; Ritchie, M.; Ali, S.; Úrbez-Torres, J.R. Disease Incidence and Genetic Variability of Economically Important Grapevine Viruses in Nova Scotia. Can. J. Plant Pathol. 2020, 42, 584–594. [Google Scholar] [CrossRef]
- Flasco, M.; Hoyle, V.; Cieniewicz, E.J.; Roy, B.G.; McLane, H.L.; Perry, K.L.; Loeb, G.; Nault, B.; Heck, M.; Fuchs, M. Grapevine Red Blotch Virus Is Transmitted by the Three-Cornered Alfalfa Hopper in a Circulative, Nonpropagative Mode with Unique Attributes. Phytopathology 2021, 111, 1851–1861. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A. Pesticides Pollution: Classifications, Human Health Impact, Extraction and Treatment Techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Gabriel, D.; Sait, S.M.; Kunin, W.E.; Benton, T.G. Food Production vs. Biodiversity: Comparing Organic and Conventional Agriculture. J. Appl. Ecol. 2013, 50, 355–364. [Google Scholar] [CrossRef]
- Marrone, P.G. Barriers to Adoption of Biological Control Agents and Biological Pesticides. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2007, 12. [Google Scholar] [CrossRef]
- Knapp, S.; van der Heijden, M.G.A. A Global Meta-Analysis of Yield Stability in Organic and Conservation Agriculture. Nat. Commun. 2018, 9, 3632. [Google Scholar] [CrossRef] [PubMed]
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The Crop Yield Gap between Organic and Conventional Agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Wosula, E.N.; Davis, J.A.; Clark, C.A.; Smith, T.P.; Arancibia, R.A.; Musser, F.R.; Reed, J.T. The Role of Aphid Abundance, Species Diversity, and Virus Titer in the Spread of Sweetpotato Potyviruses in Louisiana and Mississippi. Plant Dis. 2013, 97, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Poudel, B.; Rollins, P.; Bishop, D.T.; Scott, S.W. Incidence of Viruses in Two Large-Scale Plantings of Blackberry in South Carolina as Detected through the Use of Sentinel Plants and RT-PCR. Plant Health Prog. 2018, 19, 19–22. [Google Scholar] [CrossRef]
- Al Rwahnih, M.; Dave, A.; Anderson, M.M.; Rowhani, A.; Uyemoto, J.K.; Sudarshana, M.R. Association of a DNA Virus with Grapevines Affected by Red Blotch Disease in California. Phytopathology 2013, 103, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Morán, F.; Olmos, A.; Lotos, L.; Predajňa, L.; Katis, N.; Glasa, M.; Maliogka, V.; Ruiz-García, A.B. A Novel Specific Duplex Real-Time RT-PCR Method for Absolute Quantitation of Grapevine Pinot Gris Virus in Plant Material and Single Mites. PLoS ONE 2018, 13, e0197237. [Google Scholar] [CrossRef]
- Tzanetakis, I.E.; Martin, R.R. A New Method for Extraction of Double-Stranded RNA from Plants. J. Virol. Methods 2008, 149, 167–170. [Google Scholar] [CrossRef]
- Rott, M.; Xiang, Y.; Boyes, I.; Belton, M.; Saeed, H.; Kesanakurti, P.; Hayes, S.; Lawrence, T.; Birch, C.; Bhagwat, B.; et al. Application of next Generation Sequencing for Diagnostic Testing of Tree Fruit Viruses and Viroids. Plant Dis. 2017, 101, 1489–1499. [Google Scholar] [CrossRef]
- Xiao, H.; Shabanian, M.; Moore, C.; Li, C.; Meng, B. Survey for Major Viruses in Commercial Vitis Vinifera Wine Grapes in Ontario. Virol. J. 2018, 15, 127. [Google Scholar] [CrossRef]
- Gambino, G.; Cuozzo, D.; Fasoli, M.; Pagliarani, C.; Vitali, M.; Boccacci, P.; Pezzotti, M.; Mannini, F. Co-Evolution between Grapevine Rupestris Stem Pitting-Associated Virus and Vitis vinifera L. Leads to Decreased Defence Responses and Increased Transcription of Genes Related to Photosynthesis. J. Exp. Bot. 2012, 63, 5919–5933. [Google Scholar] [CrossRef]
- Muhire, B.M.; Varsani, A.; Martin, D.P. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 2014, 9, e108277. [Google Scholar] [CrossRef]
- Tamura, K.; Battistuzzi, F.U.; Billing-Ross, P.; Murillo, O.; Filipski, A.; Kumar, S. Estimating Divergence Times in Large Molecular Phylogenies. Proc. Natl. Acad. Sci. USA 2012, 109, 19333–19338. [Google Scholar] [CrossRef]
- Takahashi, K.; Nei, M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol. Biol. Evol. 2000, 17, 1251–1258. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kawaguchi-Ito, Y.; Li, S.F.; Tagawa, M.; Araki, H.; Goshono, M.; Yamamoto, S.; Tanaka, M.; Narita, M.; Tanaka, K.; Liu, S.X.; et al. Cultivated Grapevines Represent a Symptomless Reservoir for the Transmission of Hop Stunt Viroid to Hop Crops: 15 Years of Evolutionary Analysis. PLoS ONE 2009, 4, e8386. [Google Scholar] [CrossRef]
- Demian, E.; Jaksa-Czotter, N.; Varallyay, E. Grapevine Pinot Gris Virus Is Present in Different Non-Vitis Hosts. Plants 2022, 11, 1830. [Google Scholar] [CrossRef]
- Al Rwahnih, M.; Diaz-Lara, A.; Arnold, K.; Cooper, M.L.; Smith, R.J.; Zhuang, G.; Battany, M.C.; Bettiga, L.J.; Rowhani, A.; Golino, D. Incidence and Genetic Diversity of Grapevine Pinot Gris Virus in California. Am. J. Enol. Vitic. 2021, 72, 164–169. [Google Scholar] [CrossRef]
- Kahl, D.; Lowery, D.T.; Hart, M.; Úrbez-Torres, J.R. Seasonal Dynamics and Optimal Diagnostics of Grapevine Red Blotch Virus in a British Columbian Vineyard. Can. J. Plant Pathol. 2022, 44, 453–464. [Google Scholar] [CrossRef]
- Cattoli, G.; De Battisti, C.; Marciano, S.; Ormelli, S.; Monne, I.; Terregino, C.; Capua, I. False-Negative Results of a Validated Real-Time PCR Protocol for Diagnosis of Newcastle Disease Due to Genetic Variability of the Matrix Gene. J. Clin. Microbiol. 2009, 47, 3791. [Google Scholar] [CrossRef]
- Aubakirova, K.; Omasheva, M.; Ryabushkina, N.; Tazhibaev, T.; Kampitova, G.; Galiakparov, N. Evaluation of Five Protocols for DNA Extraction from Leaves of Malus sieversii, Vitis vinifera, and Armeniaca vulgaris. Genet. Mol. Res. 2014, 13, 1278–1287. [Google Scholar] [CrossRef]
- Mattox, A.K.; D’Souza, G.; Khan, Z.; Allen, H.; Henson, S.; Siewert, T.Y.; Koch, W.; Pardoll, D.M.; Fakhry, C. Comparison of next Generation Sequencing, Droplet Digital PCR, and Quantitative Real-Time PCR for the Earlier Detection and Quantification of HPV in HPV-Positive Oropharyngeal Cancer. Oral Oncol. 2022, 128, 105805. [Google Scholar] [CrossRef]
Sample a | HTS b | PCR c | |||||
---|---|---|---|---|---|---|---|
GRSPaV d | HSVd e | GaTLV f | GRBV g | GPGV h | GRBV | GPGV | |
Vineyard A | |||||||
CSV-1 | 100 | 100 | 27 | 0 | 0 | - | - |
CSV-2 | 100 | 100 | 0 | 0 | 0 | - | - |
CSV-3 | 100 | 100 | 0 | 0 | 0 | - | - |
CSV-4 | 94 | 100 | 15 | 0 | 0 | - | - |
Vineyard B | |||||||
CSV-5 | 98 | 100 | 0 | 0 | 0 | - | - |
CSV-6 | 39 | 73 | 41 | 0 | 0 | - | - |
CSV-7 | 100 | 100 | 23 | 0 | 0 | - | - |
CSV-8 | 100 | 100 | 0 | 0 | 0 | - | - |
Sample a | HTS b | PCR c | |||||
---|---|---|---|---|---|---|---|
GRSPaV d | HSVd e | GaTLV f | GPGV g | GRBV h | GPGV | GRBV | |
Vineyard A | |||||||
SSV-01 | 80.9 (×9.85) | 82.4 (×11.6) | 0 | 0 | 0 | − | − |
SSV-02 | 26.4 (×14.39) | 0 | 0 | 21.2 (×0.3) | 0 | − | − |
SSV-04 | 99.9 (×15.75) | 100 (×12.9) | 83.4 (×3.4) | 98.6 (×14.8) | 0 | + | − |
SSV-05 | 99.9 (×7.18) | 100 (×20.2) | 61 (×3) | 99.3 (×19.3) | 0 | + | − |
SSV-06 | 97.7 (×17.94) | 92.6 (×11.8) | 78.9 (×10.1) | 0 | 0 | − | − |
SSV-07 | 36.1 (×8.12) | 0 | 30.5 (×1.8) | 0 | 0 | − | − |
SSV-08 | 98.5 (×9.63) | 100 (×14.7) | 77.4 (×10.8) | 79 (×6) | 0 | + | − |
SSV-09 | 80.1 (×18.68) | 0 | 82.6 (×8.4) | 98.4 (×5.2) | 0 | + | − |
SSV-10 | 24 (×17.67) | 0 | 0 | 13.8 (×0.3) | 0 | − | − |
SSV-11 | 99.7 (×5.99) | 42.1 (×2.6) | 0 | 81.6 (×13.1) | 0 | + | − |
SSV-12 | 95.6 (×14.04) | 0 | 30.8 (×1.2) | 83.1 (×11.6) | 0 | + | − |
SSV-13 | 43.1 (×8.08) | 0 | 30.9 (×1.4) | 37.4 (×2.7) | 0 | − | − |
SSV-14 | 63 (×8.03) | 0 | 29 (×0.5) | 83 (×3.4) | 0 | + | − |
SSV-15 | 34.7 (×13.05) | 0 | 0 | 0 | 0 | − | − |
SSV-16 | 99.8 (×5.39) | 100 (×5.26) | 98.6 (×17) | 99.4 (×20) | 0 | + | − |
SSV-17 | 40.8 (×8.93) | 50.8 (×2.1) | 65.1 (×5.9) | 96.7 (×6.4) | 0 | + | − |
SSV-18 | 57 (×9.15) | 100 (×6.7) | 98.6 (×9.6) | 99.8 (×10.8) | 0 | − | − |
SSV-20 | 100 (×16.69) | 100 (×19.6) | 94.5 (×9.5) | 99.1 (×5.4) | + | − | |
Vineyard B | |||||||
SSV-21 | 99.9 (×5.3) | 100 (×9.4) | 91.3 (×8.3) | 99.4 (×13.1) | + | − | |
SSV-22 | 36.8 (×1.5) | 100 (×9.7) | 90.1 (×7) | 0 | 0 | − | − |
SSV-23 | 0 | 0 | 0 | 0 | 0 | − | − |
SSV-24 | 27.1 (×1.5) | 0 | 0 | 0 | 0 | − | − |
SSV-25 | 0 | 0 | 16.3 (×0.5) | 0 | 0 | − | − |
SSV-26 | 28.5 (×1.7) | 100 (×7.3) | 20.5 (×0.4) | 0 | 0 | − | − |
SSV-27 | 9.1 (0.1) | 0 | 14.4 (×0.5) | 0 | 0 | − | − |
SSV-28 | 1.7 (×0.1) | 0 | 3.1 (×0.1) | 0 | 0 | − | − |
SSV-30 | 15.8 (×0.3) | 0 | 0 | 0 | 0 | − | − |
SSV-31 | 0 | 0 | 22.9 (×0.7) | 0 | 0 | − | − |
SSV-32 | 0 | 0 | 11 (×0.3) | 0 | 0 | − | − |
SSV-33 | 0 | 100 (×14.8) | 46.7 (×3.3) | 0 | 0 | − | − |
SSV-34 | 20.4 (×0.3) | 0 | 0 | 0 | 0 | − | − |
SSV-35 | 0 | 0 | 0 | 0 | 0 | − | − |
SSV-36 | 10.5 (×0.2) | 0 | 0 | 0 | 0 | − | − |
SSV-37 | 72.5 (×4.1) | 0 | 21.3 (×0.7) | 0 | 0 | − | − |
SSV-38 | 0 | 0 | 0 | 0 | 0 | − | − |
SSV-39 | 0 | 0 | 8.9 (×0.2) | 0 | 0 | − | − |
SSV-40 | 99.9 (×5.3) | 51.9 (×1.8) | 0 | 0 | 0 | − | − |
Vineyard A | |||||
Sample a | GRBV b | GPGV c | Sample | GRBV | GPGV |
VA-1 | − | + | VA-11 | + | + |
VA-2 | + | + | VA-12 | + | + |
VA-3 | + | + | VA-13 | + | + |
VA-4 | + | + | VA-14 | + | + |
VA-5 | + | + | VA-15 | + | + |
VA-6 | + | + | VA-16 | + | + |
VA-7 | + | + | VA-17 | + | + |
VA-8 | + | + | VA-18 | + | + |
VA-9 | + | + | VA-19 | + | + |
VA-10 | + | + | VA-20 | + | + |
WG1 | − | + | WG2 | − | + |
WG3 | − | + | WG4 | − | + |
WG5 | − | + | |||
Vineyard B | |||||
Sample | GRBV | GPGV | Sample | GRBV | GPGV |
VB-1 | − | + | VB-11 | + | − |
VB-2 | + | + | VB-12 | + | + |
VB-3 | + | − | VB-13 | + | + |
VB-4 | + | + | VB-14 | + | − |
VB-5 | + | + | VB-15 | + | + |
VB-6 | + | − | VB-16 | + | + |
VB-7 | + | − | VB-17 | − | + |
VB-8 | + | + | VB-18 | − | + |
VB-9 | + | + | VB-19 | − | − |
VB-10 | + | + | VB-20 | − | + |
Sample a | GRSPaV b | HSVd c | GPGV d | GRBV e | GaTLV f | GLRaV-3 g | GLRaV-2 h | GRGV i | GSyV j | GVB k |
---|---|---|---|---|---|---|---|---|---|---|
VA-1 | 99.9 (×15.2) | 100 (×11.7) | 91.3 (×6.3) | 0 | 81 (×11.6) | 0 | 0 | 0 | 0 | 0 |
VA-2 | 99.9 (×21) | 100 (×12.8) | 22.9 (×0.6) | 33.9 (×0.8) | 6.7 (×0.1) | 0 | 0 | 29 (×1.5) | 28 (×1.1) | 0 |
VA-3 | 84.9 (×11.6) | 100 (×11.8) | 76 (×6.8) | 16.3 (×0.3) | 0 | 0 | 0 | 0 | 0 | 0 |
VA-4 | 79.4 (×8.5) | 84.8 (×14.5) | 94.6 (×11.4) | 50.1 (×2.8) | 0 | 0 | 0 | 8.6 (×0.1) | 0 | 0 |
VB-1 | 100 (×20.5) | 100 (×6.2) | 48.6 (×2.8) | 0 | 19.2 (×0.4) | 97.0 (×14.2) | 97.8 (×7.9) | 0 | 0 | 30.8 (×1.1) |
VB-2 | 99 (×14) | 100 (×14.2) | 31.1 (×2) | 23.4 (×0.9) | 81 (×11.6) | 3.8 (×0.1) | 0 | 0 | 0 | 0 |
VB-3 | 100 (×19.4) | 100 (×11.7) | 0 | 4 (×0.1) | 6.7 (×0.1) | 0 | 0 | 0 | 0 | 0 |
VB-4 | 95.1 (×7.3) | 100 (×12.8) | 33.1 (×1.6) | 84.7 (×5.7) | 0 | 0 | 0 | 0 | 0 | 0 |
WG-1 | 100 (×10.1) | 0 | 96.7 (×14.1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
WG-2 | 99.9 (×4.5) | 0 | 85.5 (×14) | 0 | 19.2 (×0.4) | 0 | 0.8 (×0.03) | 0 | 0 | 0 |
WG-3 | 99.5 (×10.1) | 0 | 35.7 (×1.5) | 0 | 81 (×11.6) | 0 | 0 | 0 | 0 | 0 |
WG-4 | 100 (×17.2) | 0 | 82.8 (×10.6) | 4.7 (×0.1) | 6.7 (×0.2) | 1.6 (×0.1) | 0 | 0 | 10.8 (×0.2) | 0 |
WG-5 | 70 (×3.2) | 0 | 33.1 (×1.6) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Vineyard A | ||||||||||
Category | Sample | WClV a | WCCV1 b | WCCV2 c | CIYMV d | CIYVV e | RCVMV f | White clover mottle virus | SPuV g | ToRSV h |
Floor-covering plants | Alfalfa | 35.1 (×3.2) | 24.5 (×1.1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
White clover A | 99.7 (×15.1) | 96.2 (×9.7) | 84.6 (×5.7) | 83.8 (×7.2) | 47.3 (×3.0) | 19.6 (×0.9) | 0 | 0 | 0 | |
Creeping thistle A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 92.3 (×11.1) | 0 | |
Perennial plants | Buckthorn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39.7 (×1.6) |
White ash | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48.5 (×2.2) | |
Elm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Vineyard B | ||||||||||
Category | Sample | WClMV | WCCV1 | WCCV2 | CYMV | CYVV | RCVMV | White clover mottle virus | SPuV | ToRSV |
Floor covering plants | White clover B | 100 (×20.1) | 90.0 (×9.2) | 37.3 (×1.6) | 65.2 (×4.1) | 99.5 (×12.5) | 99.5 (×16.4) | 61.2 (×4.2) | 0 | 0 |
Creeping thistle B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 96.8 (×7.2) | 0 | |
Dandelion | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, M.; McFadden-Smith, W.; Poojari, S. Monitoring the Spread of Grapevine Viruses in Vineyards of Contrasting Agronomic Practices: A Metagenomic Investigation. Biology 2023, 12, 1279. https://doi.org/10.3390/biology12101279
Vu M, McFadden-Smith W, Poojari S. Monitoring the Spread of Grapevine Viruses in Vineyards of Contrasting Agronomic Practices: A Metagenomic Investigation. Biology. 2023; 12(10):1279. https://doi.org/10.3390/biology12101279
Chicago/Turabian StyleVu, Minh, Wendy McFadden-Smith, and Sudarsana Poojari. 2023. "Monitoring the Spread of Grapevine Viruses in Vineyards of Contrasting Agronomic Practices: A Metagenomic Investigation" Biology 12, no. 10: 1279. https://doi.org/10.3390/biology12101279
APA StyleVu, M., McFadden-Smith, W., & Poojari, S. (2023). Monitoring the Spread of Grapevine Viruses in Vineyards of Contrasting Agronomic Practices: A Metagenomic Investigation. Biology, 12(10), 1279. https://doi.org/10.3390/biology12101279