Successional Development of the Phototrophic Community in Biological Soil Crusts on Coastal and Inland Dunes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling
2.2.1. Transects
2.2.2. Vegetation
2.2.3. Sample Collection
2.2.4. Sample Preparation and Analyses of Biocrust and Sediment Characteristics
2.3. Analyzed Parameters
2.3.1. Nutrient Analyses
2.3.2. Chlorophyll a
2.3.3. Algae Isolation, Community Cultivation, and Identification
2.3.4. Moss and Lichen Identification
2.4. Statistical Analyses
3. Results
3.1. Biocrust and Sediment Characteristics, and Nutrient Analyses
3.2. Vegetation Surveys
3.3. Algae and Cyanobacteria
3.4. Moss Species
3.5. Lichen Species
3.6. Biocrust Community Composition
4. Discussion
4.1. Vegetation
4.2. Species Composition Changes
4.2.1. Algae and Cyanobacteria
4.2.2. Mosses and Lichens
4.3. The Effect of Biocrust and Sediment Characteristics, and Nutrient Content on Biocrust Community Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez, M.L.; Psuty, N.N.; Lubke, R.A. A perspective on coastal dunes. In Coastal Dunes: Ecology and Conservation, 1st ed.; Martínez, M.L., Psuty, N.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 171, pp. 3–10. [Google Scholar]
- Maun, M.A. The sand dune environment. In The Biology of Coastal Sand Dunes, 1st ed.; Maun, M.A., Ed.; Oxford University Press: Oxford, UK, 2009; pp. 23–40. [Google Scholar]
- García Novo, F.; Díaz Barradas, M.C.; Zunzunegui, M.; García Mora, R.; Gallego Fernández, J.B. Plant functional types in coastal dune habitats. In Coastal Dunes: Ecology and Conservation, 1st ed.; Martínez, M.L., Psuty, N.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 171, pp. 155–169. [Google Scholar]
- Stevens, P.R.; Walker, T.W. The Chronosequence Concept and soil formation. Q. Rev. Biol. 1970, 45, 333–350. [Google Scholar] [CrossRef]
- Walker, L.R.; Wardle, D.A.; Bardgett, R.D.; Clarkson, B.D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 2010, 98, 725–736. [Google Scholar] [CrossRef]
- Hesp, P.A. Ecological processes and plant adaptations on coastal dunes. J. Arid. Environ. 1991, 21, 165–191. [Google Scholar] [CrossRef]
- Hayden, B.P.; Dueser, R.D.; Callahan, J.T.; Shugart, H.H. Long-Term Research at the Virginia Coast Reserve. Bioscience 1991, 41, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.E.; Gornish, E.S.; Buckley, H.L. Climate and coastal dune vegetation: Disturbance, recovery, and succession. Plant Ecol. 2010, 206, 97–104. [Google Scholar] [CrossRef]
- Elbert, W.; Weber, B.; Burrows, S.; Steinkamp, J.; Büdel, B.; Andreae, M.O.; Pöschl, U. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 2012, 5, 459–462. [Google Scholar] [CrossRef]
- Belnap, J.; Büdel, B.; Lange, O.L. Biological Soil Crusts: Characteristics and Distribution. In Biological Soil Crusts: Structure, Function, and Management, 1st ed.; Belnap, J., Lange, O.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 150, pp. 3–30. [Google Scholar] [CrossRef]
- Chamizo, S.; Cantón, Y.; Lázaro, R.; Solé-Benet, A.; Domingo, F. Crust Composition and Disturbance Drive Infiltration Through Biological Soil Crusts in Semiarid Ecosystems. Ecosystems 2012, 15, 148–161. [Google Scholar] [CrossRef]
- Veste, M.; Breckle, S.W.; Eggert, K.; Littmann, T. Vegetation pattern in arid sand dunes controlled by biological soil crusts along a climatic gradient in the Northern Negev desert. Basic Appl. Dryland Res. 2011, 5, 1–16. [Google Scholar] [CrossRef]
- Fischer, T.; Veste, M.; Schaaf, W.; Dümig, A.; Kögel-Knabner, I.; Wiehe, W.; Bens, O.; Hüttl, R.F. Initial pedogenesis in a topsoil crust 3 years after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochemistry 2010, 101, 165–176. [Google Scholar] [CrossRef]
- Felde, V.J.M.N.L.; Chamizo, S.; Felix-Henningsen, P.; Drahorad, S.L. What stabilizes biological soil crusts in the Negev Desert? Plant Soil 2018, 429, 9–18. [Google Scholar] [CrossRef]
- Rossi, F.; Mugnai, G.; De Philippis, R. Complex role of the polymeric matrix in biological soil crusts. Plant Soil 2018, 429, 19–34. [Google Scholar] [CrossRef]
- van Ancker, J.A.M.D.; Jungerius, P.D.; Mur, L.R. The role of algae in the stabilization of coastal dune blowouts. Earth Surf. Process. Landf. 1985, 10, 189–192. [Google Scholar] [CrossRef]
- Fischer, T.; Yair, A.; Veste, M. Infiltration, water holding capacity and growth patterns of biological soil crusts on sand dunes under arid and temperate climates. In Geophysical Research Abstracts; EGU2012-5034; EGU General Assembly: Vienna, Austria, 2012; Volume 14. [Google Scholar]
- Gypser, S.; Veste, M.; Fischer, T.; Lange, P. Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany. J. Hydrol. Hydromech. 2016, 64, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chamizo, S.; Cantón, Y.; Rodríguez-Caballero, E.; Domingo, F. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology 2016, 9, 1208–1221. [Google Scholar] [CrossRef]
- Lange, O.L. Photosynthesis of Soil-Crust Biota as Dependent on Environmental Factors. In Biological Soil Crusts: Structure, Function, and Management, 1st ed.; Belnap, J., Lange, O.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 150, pp. 217–240. [Google Scholar] [CrossRef]
- Castillo-Monroy, A.P.; Maestre, F.T.; Delgado-Baquerizo, M.; Gallardo, A. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: Insights from a Mediterranean grassland. Plant Soil 2010, 333, 21–34. [Google Scholar] [CrossRef]
- Wu, Y.; Rao, B.; Wu, P.; Liu, Y.; Li, G.; Li, D. Development of artificially induced biological soil crusts in fields and their effects on top soil. Plant Soil 2013, 37, 115–124. [Google Scholar] [CrossRef]
- Baumann, K.; Glaser, K.; Mutz, J.E.; Karsten, U.; MacLennan, A.; Hu, Y.; Michalik, D.; Kruse, J.; Eckhardt, K.U.; Schall, P.; et al. Biological soil crusts of temperate forests: Their role in P cycling. Soil Biol. Biochem. 2017, 109, 156–166. [Google Scholar] [CrossRef]
- Baumann, K.; Siebers, M.; Kruse, J.; Eckhardt, K.U.; Hu, Y.; Michalik, D.; Siebers, N.; Kar, G.; Karsten, U.; Leinweber, P. Biological soil crusts as key player in biogeochemical P cycling during pedogenesis of sandy substrate. Geoderma 2019, 338, 145–158. [Google Scholar] [CrossRef]
- Nevins, C.J.; Strauss, S.L.; Inglett, P.W. Biological soil crusts enhance moisture and nutrients in the upper rooting zone of sandy soil agroecosystems. J. Plant Nutr. Soil Sci. 2020, 183, 615–626. [Google Scholar] [CrossRef]
- Richardson, A.E.; Simpson, R.J. Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Miralles, I.; Domingo, F.; Cantón, Y.; Trasar-Cepeda, C.; Leirós, M.C.; Gil-Sotres, F. Hydrolase enzyme activities in a successional gradient of biological soil crusts in arid and semi-arid zones. Soil Biol. Biochem. 2012, 53, 124–132. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, M.; Belnap, J. Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China. J. Arid Environ. 2010, 74, 1186–1191. [Google Scholar] [CrossRef]
- Connell, J.H.; Slatyer, R.O. Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization. Am. Nat. 1977, 111, 1119–1144. [Google Scholar] [CrossRef]
- Garcia-Pichel, F.; Loza, V.; Marusenko, Y.; Mateo, P.; Potrafka, R.M. Temperature Drives the Continental-Scale Distribution of Key Microbes in Topsoil Communities. Science 2013, 340, 1574–1577. [Google Scholar] [CrossRef] [PubMed]
- Zaady, E.; Kuhn, U.; Wilske, B.; Sandoval-Soto, L.; Kesselmeier, J. Patterns of CO2 exchange in biological soil crusts of successional age. Soil Biol. Biochem. 2000, 32, 959–966. [Google Scholar] [CrossRef]
- Lan, S.; Wu, L.; Zhang, D.; Hu, C. Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ. Earth Sci. 2012, 65, 77–88. [Google Scholar] [CrossRef]
- Veste, M.; Littmann, T. Dewfall and Its Geo-ecological Implication for Biological Surface Crusts in Desert Sand Dunes (North-western Negev, Israel). J. Arid L. Stud. 2006, 16, 139–147. [Google Scholar]
- Bu, C.; Li, R.; Wang, C.; Bowker, M.A. Successful field cultivation of moss biocrusts on disturbed soil surfaces in the short term. Plant Soil 2018, 429, 227–240. [Google Scholar] [CrossRef]
- Gypser, S.; Herppich, W.B.; Fischer, T.; Lange, P.; Veste, M. Photosynthetic characteristics and their spatial variance on biological soil crusts covering initial soils of post-mining sites in Lower Lusatia, NE Germany. Flora Morphol. Distrib. Funct. Ecol. Plants 2016, 220, 103–116. [Google Scholar] [CrossRef]
- Belnap, J.; Eldridge, D.J. Disturbance and recovery of biological soil crusts. In Biological Soil Crusts: Structure, Function, and Management, 1st ed.; Belnap, J., Lange, O.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 150, pp. 363–383. [Google Scholar] [CrossRef]
- Kidron, G.J.; Xiao, B.; Benenson, I. Data variability or paradigm shift? Slow versus fast recovery of biological soil crusts-a review. Sci. Total Environ. 2020, 721, 137683. [Google Scholar] [CrossRef]
- Büdel, B.; Darienko, T.; Deutschewitz, K.; Dojani, S.; Friedl, T.; Mohr, K.I.; Salisch, M.; Reisser, W.; Weber, B. Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb. Ecol. 2009, 57, 229–247. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.; Borchhardt, N.; Colesie, C.; Baum, C.; Komsic-Buchmann, K.; Rippin, M.; Becker, B.; Karsten, U.; Büdel, B. Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biol. 2017, 40, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hu, C. Biogeographical patterns and mechanisms of microbial community assembly that underlie successional biocrusts across northern China. Npj Biofilms Microbiomes 2021, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Samolov, E.; Baumann, K.; Büdel, B.; Jung, P.; Leinweber, P.; Mikhailyuk, T.; Karsten, U.; Glaser, K. Biodiversity of algae and cyanobacteria in biological soil crusts collected along a climatic gradient in chile using an integrative approach. Microorganisms 2020, 8, 1047. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Alonso, M.J.; Rodríguez, A.; García-Velázquez, L.; Dos Santos, E.; de Almeida, L.; Lafuente, A.; Wang, J.T.; Singh, B.; Fangueiro, D.; Durán, J. Integrative effects of increasing aridity and biotic cover on soil attributes and functioning in coastal dune ecosystems. Geoderma 2021, 390, 114952. [Google Scholar] [CrossRef]
- Schulz, K.; Mikhailyuk, T.; Dreßler, M.; Leinweber, P.; Karsten, U. Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties. Microb. Ecol. 2015, 71, 178–193. [Google Scholar] [CrossRef]
- Schaub, I.; Baum, C.; Schumann, R.; Karsten, U. Effects of an Early Successional Biological Soil Crust from a Temperate Coastal Sand Dune (NE Germany) on Soil Elemental Stoichiometry and Phosphatase Activity. Microb. Ecol. 2019, 77, 217–222. [Google Scholar] [CrossRef]
- Levy, E.; Madden, E. The point method of pasture analysis. New Zeal. J. Agric. Res. 1933, 46, 267–279. [Google Scholar]
- Ritchie, R.J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 2008, 46, 115–126. [Google Scholar] [CrossRef]
- Bischoff, H.W.; Bold, H.C. Some Soil Algae from Enchanted Rock and Related Algal Species, 1st ed.; University of Texas: Austin, TX, USA, 1963; pp. 1–95. [Google Scholar]
- Ettl, H.; Gärtner, G. Syllabus der Boden-, Luft- und Flechtenalgen, 2nd ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2014; pp. 1–773. [Google Scholar]
- Komárek, J. Cyanoprokaryota. 3rd pt: Heterocytous genera. In Süßwasserflora von Mitteleuropa, 1st ed.; Büdel, B., Gärtner, G., Krienitz, L., Schagerl, M., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2013; Volume 19, pp. 1–1130. [Google Scholar]
- Darienko, T.; Pröschold, T. Reevaluation and discovery of new species of the rare genus Watanabea and establishment of Massjukichlorella gen. nov. (Trebouxiophyceae, Chlorophyta) using an integrative approach. J. Phycol. 2019, 55, 493–499. [Google Scholar] [CrossRef]
- Frahm, J.-P.; Frey, W. Moosflora, 4th ed.; Eugen Ulmer UTB: Stuttgart, Germany, 2004; pp. 1–538. [Google Scholar]
- Hodgetts, N.G.; Söderström, L.; Blockeel, T.L.; Caspari, S.; Ignatov, M.S.; Konstantinova, N.A.; Lockhart, N.; Papp, B.; Schröck, C.; Sim-Sim, M.; et al. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. J. Bryol. 2020, 42, 1–116. [Google Scholar] [CrossRef]
- Wirth, V.; Hauck, M.; Schultz, M. Die Flechten Deutschlands; Eugen Ulmer UTB: Stuttgart, Germany, 2013; pp. 1–1244. [Google Scholar]
- Printzen, C.; von Brackel, W.; Bültmann, H.; Cezanne, R.; Dolnik, C.; Dornes, P.; Eckstein, J.; Eichler, M.; John, V.; Killmann, D.; et al. Die Flechten, flechtenbewohnenden und flechtenähnlichen Pilze Deutschlands—Eine überarbeitete Checkliste. Herzogia 2022, 35, 193–393. [Google Scholar] [CrossRef]
- Culberson, C.F.; Ammann, K. Standardmethode zur Dünnschichtchromatographie von Flechtensubstanzen. Herzogia 1979, 5, 1–24. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package: Ordination, Diversity and Dissimilarities. Version 2.6-2. 2022. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 23 March 2022).
- Lane, C.; Wright, S.J.; Roncal, J.; Maschinski, J. Characterizing environmental gradients and their influence on vegetation zonation in a subtropical coastal sand dune system. J. Coast. Res. 2008, 24, 213–224. [Google Scholar] [CrossRef]
- Belnap, J. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. 2006, 20, 3159–3178. [Google Scholar] [CrossRef]
- Zhang, Y. The microstructure and formation of biological soil crusts in their early developmental stage. Chin. Sci. Bull. 2005, 50, 117–121. [Google Scholar] [CrossRef]
- Martínez, M.L.; Vázquez, G.; Sánchez Colón, S. Species composition and sand movement during primary succession on tropical dunes. J. Veg. Sci. 2001, 12, 361–372. [Google Scholar] [CrossRef]
- Kaviya, N.; Upadhayay, V.K.; Singh, J.; Khan, A.; Panwar, M.; Singh, A.V. Role of Microorganisms in Soil Genesis and Functions. In Mycorrhizosphere and Pedogenesis, 1st ed.; Varma, A., Choudhary, D., Eds.; Springer: Singapore, 2019; pp. 25–52. [Google Scholar] [CrossRef]
- Šourková, M.; Frouz, J.; Fettweis, U.; Bens, O.; Hüttl, R.F.; Šantrůčková, H. Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma 2005, 129, 73–80. [Google Scholar] [CrossRef]
- Fox, T.R. The Influence of Low-Molecular-Weight Organic Acids on Properties and Processes in Forest Soils. In Carbon Forms and Functions in Forest Soils; McFee, W.W., Kelly, J.M., Eds.; Soil Science of America: Madison, WI, USA, 1995; pp. 43–61. [Google Scholar]
- Blume, H.-P.; Stahr, K.; Leinweber, P. Laboruntersuchungen. In Bodenkundliches Praktikum; Spektrum Akademischer Verlag: Heidelberg, Germany, 2010; pp. 77–154. [Google Scholar]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of Phosphatase Enzymes in Soil. In Phosphorus in Action, 26th ed.; Bünemann, E.K., Oberson, A., Fossard, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 215–244. [Google Scholar]
- Vázquez, G. The Role of Algal Mats on Community Succession in Slacks Within Coastal Dune. In Coastal Dunes: Ecology and Conservation, 1st ed.; Martínez, M.L., Psuty, N.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 171, pp. 189–203. [Google Scholar]
- Martin, W.E. The vegetation of Island Beach State Park, New Jersey. Ecol Monogr. 1959, 29, 2–46. [Google Scholar] [CrossRef]
- Isermann, M. Patterns in species diversity during succession of coastal dunes. J. Coast. Res. 2011, 27, 661–671. [Google Scholar]
- Dümig, A.; Veste, M.; Hagedorn, F.; Fischer, T.; Lange, P.; Spröte, R.; Kögel-Knabner, I. Organic matter from biological soil crusts induces the initial formation of sandy temperate soils. Catena 2014, 122, 196–208. [Google Scholar] [CrossRef]
- Belnap, J.; Wilcox, B.P.; Van Scoyoc, M.W.; Phillips, S.L. Successional stage of biological soil crusts: An accurate indicator of ecohydrological condition. Ecohydrology 2013, 6, 474–482. [Google Scholar] [CrossRef]
- Sun, F.; Xiao, B.; Kidron, G.J. Towards the influences of three types of biocrusts on soil water in drylands: Insights from horizontal infiltration and soil water retention. Geoderma 2022, 428, 116136. [Google Scholar] [CrossRef]
- Hoffmann, L. Algae of Terrestrial Habitats. Bot. Rev. 1989, 55, 77–105. [Google Scholar] [CrossRef]
- Garcia-Pichel, F.; López-Cortés, A.; Nübel, U. Phylogenetic and Morphological Diversity of Cyanobacteria in Soil Desert Crusts from the Colorado Plateau. Appl. Environ. Microbiol. 2001, 67, 1902–1910. [Google Scholar] [CrossRef] [Green Version]
- Lange, O.L.; Kidron, G.J.; Büdel, B.; Meyer, A.; Kilian, E.; Abeliovich, A. Taxonomic Composition and Photosynthetic Characteristics of the `Biological Soil Crusts’ Covering Sand Dunes in the Western Negev Desert. Funct. Ecol. 1992, 6, 519–527. [Google Scholar] [CrossRef]
- Glaser, K.; Baumann, K.; Leinweber, P.; Mikhailyuk, T.; Karsten, U. Algal richness in BSCs in forests under different management intensity with some implications for P cycling. Biogeosciences 2018, 15, 4181–4192. [Google Scholar] [CrossRef] [Green Version]
- Pluis, J.L.A. Algal crust formation in the inland dune area, Laarder Wasmeer, the Netherlands. Vegetatio 1994, 113, 41–51. [Google Scholar] [CrossRef]
- Glaser, K.; Baumannn, K.; Leinweber, P.; Mikhailyuk, T.; Karsten, U. Algal diversity of temperate biological soil crusts depends on land use intensity and affects phosphorus biogeochemical cycling. Biogeosciences Discuss. 2017, 1–24. [Google Scholar] [CrossRef]
- Langhans, T.M.; Storm, C.; Schwabe, A. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb. Ecol. 2009, 58, 394–407. [Google Scholar] [CrossRef]
- Singh, S.S.; Kunui, K.; Minj, R.A.; Singh, P. Diversity and distribution pattern analysis of cyanobacteria isolated from paddy fields of Chhattisgarh, India. J. Asia-Pac. Biodivers. 2014, 7, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Brock, T.D. Lower pH limit for the existence of blue-green algae: Evolutionary and ecological implications. Science 1973, 179, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Mikhailyuk, T.; Glaser, K.; Tsarenko, P.; Demchenko, E.; Karsten, U. Composition of biological soil crusts from sand dunes of the Baltic Sea coast in the context of an integrative approach to the taxonomy of microalgae and cyanobacteria. Eur. J. Phycol. 2019, 54, 263–290. [Google Scholar] [CrossRef]
- Rippin, M.; Borchhardt, N.; Williams, L.; Colesie, C.; Jung, P.; Büdel, B.; Karsten, U.; Becker, B. Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: Morphological versus molecular approaches. Polar Biol. 2018, 41, 909–923. [Google Scholar] [CrossRef]
- Holzinger, A.; Karsten, U. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological, and molecular mechanisms. Front. Plant Sci. 2013, 4, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karsten, U.; Rindi, F. Ecophysiological performance of an urban strain of the aeroterrestrial green alga klebsormidium sp. (Klebsormidiales, Klebsormidiophyceae). Eur. J. Phycol. 2010, 45, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Kitzing, C.; Pröschold, T.; Karsten, U. UV-Induced Effects on Growth, Photosynthetic Performance and Sunscreen Contents in Different Populations of the Green Alga Klebsormidium fluitans (Streptophyta) from Alpine Soil Crusts. Microb. Ecol. 2014, 67, 327–340. [Google Scholar] [CrossRef]
- Donner, A.; Glaser, K.; Borchhardt, N.; Karsten, U. Ecophysiological Response on Dehydration and Temperature in Terrestrial Klebsormidium (Streptophyta) Isolated from Biological Soil Crusts in Central European Grasslands and Forests. Microb. Ecol. 2017, 73, 850–864. [Google Scholar] [CrossRef]
- Ellenberg, H.; Leuschner, H. Vegetation Mitteleuropas mit den Alpen in Ökologischer, Dynamischer und Historischer Sicht, 6th ed.; Eugen Ulmer UTB: Stuttgart, Germany, 2010; pp. 1–1357. [Google Scholar]
- Martínez, M.L.; Maun, M.A. Responses of dune mosses to experimental burial by sand under natural and greenhouse conditions. Plant Ecol. 1999, 145, 209–219. [Google Scholar] [CrossRef]
- Mishler, B.D.; Oliver, M.J. Gametophytic phenology of Tortula ruralis, a desiccation-tolerant moss, in the Organ Mountains of southern New Mexico. Bryologist 1991, 94, 143–153. [Google Scholar] [CrossRef]
- Stark, L.R.; Greenwood, J.L.; Brinda, J.C. Desiccated Syntrichia ruralis shoots regenerate after 20 years in the herbarium. J. Bryol. 2017, 39, 85–93. [Google Scholar] [CrossRef]
- Meinunger, L.; Schröder, W. Verbreitungsatlas der Moose Deutschlands; Dürhammer for the Botanical Society Regensburg e. V. 1970: Regensburg, Germany, 2007; pp. 1–2044. [Google Scholar]
- Jukonienė, I.; Subkaitė, M. Bryophytes and Their Distribution Pattern in the Nagliai Strict Nature Reserve (Curonian Spit, Lithuania). Herzogia 2017, 30, 16–35. [Google Scholar] [CrossRef]
- Evans, R.D.; Johansen, J.R. Microbiotic Crusts and Ecosystem Processes. Crit. Rev. Plant Sci. 1999, 18, 183–225. [Google Scholar] [CrossRef]
- Chamizo, S.; Cantón, Y.; Miralles, I.; Domingo, F. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol. Biochem. 2012, 49, 96–105. [Google Scholar] [CrossRef]
- Dümig, A.; Veste, M.; Hagedorn, F.; Fischer, T.; Lange, P.; Spröte, R.; Kögel-Knabner, I. Biological soil crusts on initial soils: Organic carbon dynamics and chemistry under temperate climatic conditions. Biogeosciences Discuss. 2013, 10, 851–894. [Google Scholar] [CrossRef] [Green Version]
- Kheirfam, H. Increasing soil potential for carbon sequestration using microbes from biological soil crusts. J. Arid Environ. 2020, 172, 104022. [Google Scholar] [CrossRef]
- Duran, P.; de la Luz Mora, M.; Matus, F.; Barra, P.J.; Jofré, I.; Kuzyakov, Y.; Merino, C. Biological Crusts to Increase Soil Carbon Sequestration: New Challenges in a New Environment. MDPI Biol. 2021, 10, 1190. [Google Scholar] [CrossRef]
Study Site | Dune Area | Sampling Plot | Water Content | OM | pH |
---|---|---|---|---|---|
(% FW) | (% DW) | (CaCO3) | |||
Schaabe (Rügen) | Coastal dune | FD | 0.52 ± 0.83 * | 0.11 ± 0.01 * | 6.39 * |
ID | 0.16 ± 0.05 | 1.38 ± 0.3 | 6.13 * | ||
GD | 0.39 ± 0.04 | 7.14 ± 0.89 | 5.58 * | ||
MD | 1.22 ± 0.56 | 25.19 ± 7.7 | 3.98 * | ||
Verden (Aller) | Inland dune | DC | 0.02 ± 0.01 * | <0.1 * | 4.49 * |
DS | 0.16 ± 0.04 | 3.3 ± 0.72 | 3.68 * | ||
DF | 1.73 ± 0.05 | 24.03 ± 2.66 | 3.35 * |
Study Site | Dune Area | Sampling Plot | Ct (g kg−1 DW) | Nt (g kg−1 DW) | Pt (mg kg −1 DW) |
---|---|---|---|---|---|
Schaabe (Rügen) | Coastal dune | FD | 0.57 ± 0.09 * | 0.1 ± 0 * | 113.90 ± 12.61 * |
ID | 6.63 ± 0.68 | 0.42 ± 0.11 | 148.92 ± 22.85 | ||
GD | 35.54 ± 10.39 | 1.3 ± 0.1 | 173.16 ± 16.34 | ||
MD | 84.32 ± 40.69 | 3.3 ± 1.51 | 172.23 ± 69.04 | ||
Verden (Aller) | Inland dune | DC | 1.16 ± 0.36 * | 0.2 ± 0 * | 29.89 ± 2.29 * |
DS | 15.34 ± 3.02 | 0.81 ± 0.25 | 71.85 ± 11.44 | ||
DF | 99.63 ± 4.59 | 4.72 ± 0.24 | 291.25 ± 58.11 |
Phylum, Class | Species | Inland Dune | Coastal Dune | ||||
---|---|---|---|---|---|---|---|
DC | DS | DF | ID | GD | MD | ||
Cyanobacteria | |||||||
Cyanophyceae | Nostoc cf. edaphicum | ||||||
Chlorophyta | |||||||
Chlorophyceae | Bracteacoccus sp. | ||||||
Chlorolobion sp. | |||||||
Coelastrella sp. | |||||||
Trebouxiophyceae | Chloroidium ellipsoideum | ||||||
Chloroidium sp. | |||||||
Diplosphaera chodatii | |||||||
Elliptochloris subsphaerica | |||||||
Myrmecia cf. irregularis | |||||||
Parietochloris alveolaris | |||||||
Stichococcus allas | |||||||
Stichococcus cf. bacillaris | |||||||
Watanabea cf. acidophila | |||||||
Charophyta | |||||||
Klebsormidiophyceae | Klebsormidium cf. subtile |
Phylum, Class | Species | Inland Dune | Coastal Dune | |||
---|---|---|---|---|---|---|
DS | DF | ID | GD | MD | ||
Bryophyta | ||||||
Bryopsida | Brachythecium albicans | |||||
Bryum capillare | ||||||
Campylopus introflexus | ||||||
Ceratodon purpureus | ||||||
Dicranum scoparium | ||||||
Hypnum cupressiforme | ||||||
Hypnum cupressiforme var. lacunosum | ||||||
Hypnum jutlandicum | ||||||
Pohlia nutans | ||||||
Ptychostomum capillare | ||||||
Ptychostomum imbrictulum | ||||||
Racomitrium elongatum | ||||||
Syntrichia ruraliformis | ||||||
Polytrichopsida | Polytrichum piliferum | |||||
Marchantiophyta | ||||||
Jungermanniopsida | Cephaloziella divaricata | |||||
Ptilidium ciliatum |
Phylum, Class, and Order (Mycobiont) | Species | Inland Dune | Coastal Dune | |||
---|---|---|---|---|---|---|
DF | ID | GD | MD | |||
Ascomycota | ||||||
Lecanoromycetes | ||||||
Baeomycetales | Placynthiella uliginosa | |||||
Lecanorales | Bacidina etayana | |||||
Cladonia arbuscula | ||||||
Cladonia chlorophaea | ||||||
Cladonia conista | ||||||
Cladonia fimbriata | ||||||
Cladonia foliacea | ||||||
Cladonia furcata | ||||||
Cladonia gracilis | ||||||
Cladonia humilis | ||||||
Cladonia phyllophora | ||||||
Cladonia portentosa | ||||||
Cladonia ramulosa | ||||||
Cladonia rei | ||||||
Cladonia scabriuscula | ||||||
Cladonia uncialis ssp. biuncialis | ||||||
Evernia prunastri | ||||||
Hypogymnia physodes | ||||||
Lecania cyrtella | ||||||
Myriolecis hagenii | ||||||
Myriolecis persimilis | ||||||
Micarea misella | ||||||
Parmelia sulcata | ||||||
Peltigerales | Peltigera extenuata | |||||
Teloschistales | Athallia cerinella | |||||
Physcia tenella | ||||||
Xanthoria parietina |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kammann, S.; Schiefelbein, U.; Dolnik, C.; Mikhailyuk, T.; Demchenko, E.; Karsten, U.; Glaser, K. Successional Development of the Phototrophic Community in Biological Soil Crusts on Coastal and Inland Dunes. Biology 2023, 12, 58. https://doi.org/10.3390/biology12010058
Kammann S, Schiefelbein U, Dolnik C, Mikhailyuk T, Demchenko E, Karsten U, Glaser K. Successional Development of the Phototrophic Community in Biological Soil Crusts on Coastal and Inland Dunes. Biology. 2023; 12(1):58. https://doi.org/10.3390/biology12010058
Chicago/Turabian StyleKammann, Sandra, Ulf Schiefelbein, Christian Dolnik, Tatiana Mikhailyuk, Eduard Demchenko, Ulf Karsten, and Karin Glaser. 2023. "Successional Development of the Phototrophic Community in Biological Soil Crusts on Coastal and Inland Dunes" Biology 12, no. 1: 58. https://doi.org/10.3390/biology12010058
APA StyleKammann, S., Schiefelbein, U., Dolnik, C., Mikhailyuk, T., Demchenko, E., Karsten, U., & Glaser, K. (2023). Successional Development of the Phototrophic Community in Biological Soil Crusts on Coastal and Inland Dunes. Biology, 12(1), 58. https://doi.org/10.3390/biology12010058