Extracts from Cabbage Leaves: Preliminary Results towards a “Universal” Highly-Performant Antibacterial and Antifungal Natural Mixture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Extract Production
2.1.1. Materials
2.1.2. Extraction Procedures
2.2. Antifungal and Antibacterial Assays
2.3. FT-IR Analyses
2.4. GC-MS
2.5. Statistical Analysis
3. Results and Discussion
3.1. Biological Activity
3.2. FT-IR
3.3. Cabbage Extract GC-MS Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, X.; Lundborg, C.S.; Sun, X.; Hu, X.; Dong, H. Economic Burden of Antibiotic Resistance in ESKAPE Organisms: A Systematic Review. Antimicrob. Resist. Infect. Control 2019, 8, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasciana, T.; Cortegiani, A.; Ippolito, M.; Giarratano, A.; Di Quattro, O.; Lipari, D.; Graceffa, D.; Giammanco, A. Candida auris: An Overview of How to Screen, Detect, Test and Control This Emerging Pathogen. Antibiotics 2020, 9, 778. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.R.; Jo, J.; Lee, J. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops. Molecules 2015, 20, 15827–15841. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Kwak, J.H. Chemical Composition and Antioxidant Activity in Different Tissues of Brassica Vegetables. Molecules 2015, 20, 1228–1243. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Upadhyay, A.K.; Trasad, K.; Bahadur, A.; Rai, M. Variability of Carotenes, Vitamin C, E and Phenolics in Brassica Vegetables. J. Food Compos. Anal. 2007, 20, 106–112. [Google Scholar] [CrossRef]
- Li, X.; Pang, W.; Piao, Z. Omics Meets Phytonutrients in Vegetable Brassicas: For Nutritional Quality Breeding. Hortic. Plant J. 2017, 3, 247–254. [Google Scholar] [CrossRef]
- Le, T.N.; Chiu, C.-H.; Hsieh, P.-C. Bioactive Compounds and Bioactivities of Brassica oleracea L. var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. Plants 2020, 9, 946. [Google Scholar] [CrossRef]
- Singh, J.; Upadhyay, A.K.; Bahadur, A.; Singh, B.; Singh, K.P.; Rai, M. Antioxidant Phytochemicals in Cabbage (Brassica oleracea L. Var. Capitata). Sci. Hortic. 2006, 108, 233–237. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Rajauria, G.; Abu-Ghannam, N.; Gupta, S. Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of Selected Irish Brassica Vegetables. Nat. Prod. Commun. 2011, 6, 1299–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco-Cano, R.D.; Salcedo-Hernández, R.; López-Meza, J.E.; Bideshi, D.K.; Barboza-Corona, J.E. Antimicrobial Activity of Broccoli (Brassica oleracea Var. Italica) Cultivar Avenger against Pathogenic Bacteria, Phytopathogenic Filamentous Fungi and Yeast. J. Appl. Microbiol. 2018, 124, 126–135. [Google Scholar] [CrossRef]
- Andini, S. Antimicrobial Isothiocyanates from Brassicaceae Glucosinolates: Analysis, Reactivity, and Quantitative Structure-Activity Relationships; Wageningen University: Wageningen, The Netherlands, 2020; ISBN 978-94-6395-454-9. [Google Scholar]
- Bona, E.; Cantamessa, S.; Pavan, M.; Novello, G.; Massa, N.; Rocchetti, A.; Berta, G.; Gamalero, E. Sensitivity of Candida albicans to Essential Oils: Are They an Alternative to Antifungal Agents? J. Appl. Microbiol. 2016, 121, 1530–1545. [Google Scholar] [CrossRef] [PubMed]
- Massa, N.; Cantamessa, S.; Novello, G.; Ranzato, E.; Martinotti, S.; Pavan, M.; Rocchetti, A.; Berta, G.; Gamalero, E.; Bona, E. Antifungal Activity of Essential Oils against Azole-Resistant and Azole-Susceptible Vaginal Candida glabrata Strains. Can. J. Microbiol. 2018, 64, 647–663. [Google Scholar] [CrossRef]
- Bona, E.; Arrais, A.; Gema, L.; Perotti, V.; Birti, B.; Massa, N.; Novello, G.; Gamalero, E. Chemical Composition and Antimycotic Activity of Six Essential Oils (Cumin, Fennel, Manuka, Sweet Orange, Cedar and Juniper) against Different Candida spp. Nat. Prod. Res. 2019, 35, 4600–4605. [Google Scholar] [CrossRef]
- Bona, E.; Massa, N.; Novello, G.; Pavan, M.; Rocchetti, A.; Berta, G.; Gamalero, E. Essential Oil Antibacterial Activity against Methicillin-Resistant and -Susceptible Staphylococcus aureus Strains. Microbiol. Res. 2019, 10, 8331. [Google Scholar] [CrossRef] [Green Version]
- Patle, T.K.; Shrivas, K.; Kurrey, R.; Upadhyay, S.; Jangde, R.; Chauhan, R. Phytochemical Screening and Determination of Phenolics and Flavonoids in Dillenia pentagyna Using UV–Vis and FTIR Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118717. [Google Scholar] [CrossRef]
- Arrais, A.; Diana, E.; Gervasio, G.; Gobetto, R.; Marabello, D.; Stanghellini, P.L. Synthesis, Structural and Spectroscopic Characterization of Four [(η6-PAH)Cr(CO)3] Complexes (PAH = Pyrene, Perylene, Chrysene, 1,2-Benzanthracene). Eur. J. Inorg. Chem. 2004, 2004, 1505–1513. [Google Scholar] [CrossRef]
- Arrais, A.; Diana, E.; Marabello, D.; Gervasio, G.; Stanghellini, P.L. Syntheses of Chromium Tricarbonyl Organometals of 1-Methyl-Naphthalene and Different Polycyclic Aromatic Hydrocarbons, Characterisation of the (C11H10)Cr(CO)3 Isomers and the Crystal Structure of the [(η6-5,6,7,8,9,10-C11H10)Cr(CO)3] Complex. J. Organomet. Chem. 2011, 696, 2299–2305. [Google Scholar] [CrossRef]
- Kyung, K.H.; Fleming, H.P. Antimicrobial Activity-of Sulfur Compounds Derived from Cabbage. J. Food Prot. 1997, 60, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J. Sulphur- and Nitrogen-Containing Volatile Components of Kohlrabi (Brassica oleracea Var. Gongylodes L.). Z. Lebensm. Unters. Forsch. 1992, 194, 259–262. [Google Scholar] [CrossRef]
- Laribi, B.; Kouki, K.; M’Hamdi, M.; Bettaieb, T. Coriander (Coriandrum sativum L.) and Its Bioactive Constituents. Fitoterapia 2015, 103, 9–26. [Google Scholar] [CrossRef]
- Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Mighri, Z.; Mahjoub, A.; Verschaeve, L. Antibacterial, Antifungal and Cytotoxic Activities of Two Flavonoids from Retama raetam Flowers. Molecules 2012, 17, 7284–7293. [Google Scholar] [CrossRef] [Green Version]
- Ihsan, S.A.; Ali, Z.; Zaki, A.A.; Khan, S.I.; Khan, I.A. Chemical Analysis and Biological Activities of Salvia lavandulifolia Vahl. Essential Oil. J. Biol. 2017, 7, 71–78. [Google Scholar]
- Politowicz, J.; Lech, K.; Lipan, L.; Figiel, A.; Carbonell-Barrachina, Á.A. Volatile Composition and Sensory Profile of Shiitake Mushrooms as Affected by Drying Method: Aroma Profile of Fresh and Dried Lentinula Edodes. J. Sci. Food Agric. 2018, 98, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Cho, I.H. The Aroma Profile and Aroma-Active Compounds of Brassica oleracea (Kale) Tea. Food Sci. Biotechnol. 2021, 30, 1205–1211. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Xu, Y.-H.; Wei, L.-N.; Bi, J.-R.; Hou, H.-M.; Hao, H.-S.; Zhang, G.-L. Inhibitory Effects of 3-(Methylthio) Propyl Isothiocyanate in Comparison with Benzyl Isothiocyanate on Listeria monocytogenes. Food Meas. 2022, 16, 1768–1775. [Google Scholar] [CrossRef]
- Wang, N.; Shen, L.; Qiu, S.; Wang, X.; Wang, K.; Hao, J.; Xu, M. Analysis of the Isothiocyanates Present in Three Chinese Brassica Vegetable Seeds and Their Potential Anticancer Bioactivities. Eur. Food Res. Technol. 2010, 231, 951–958. [Google Scholar] [CrossRef]
- Kyung, K.H.; Han, D.C.; Fleming, H.P. Antibacterial Activity of Heated Cabbage Juice, S-Methyl-L-Cysteine Sulfoxide and Methyl Methanethiosulfonate. J. Food Sci. 1997, 62, 406–409. [Google Scholar] [CrossRef]
- Kouokam, J.C.; Jahns, T.; Becker, H. Antimicrobial Activity of the Essential Oil and Some Isolated Sulphur Rich Compounds from Scorodophloeus zenkeri. Planta Med. 2002, 68, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Casiglia, S.; Bruno, M.; Rosselli, S.; Senatore, F. Chemical Composition and Antimicrobial Activity of the Essential Oil from Flowers of Eryngium triquetrum (Apiaceae) Collected Wild in Sicily. Nat. Prod. Commun. 2016, 11, 1019–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadek, B.; Al-Tabakha, M.M.; Fahelelbom, K.M.S. Antimicrobial Prospect of Newly Synthesized 1,3-Thiazole Derivatives. Molecules 2011, 16, 9386–9396. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.H.; Jatau, A.I.; Khalid, G.M.; Alshargi, O.Y. Traditional Uses, Phytochemistry, and Pharmacological Activities of Cochlospermum tinctorium A. Rich (Cochlospermaceae): A Review. Futur. J. Pharm. Sci. 2021, 7, 20. [Google Scholar] [CrossRef]
- Abdulaziz, R.; Usman, M.H.; Ibrahim, U.B.; Tambari, B.M.; Nafiu, A.; Jumare, I.F.; Said, M.A.; Ibrahim, A.D. Studies on the Antibacterial Activity and Chemical Composition of Methanol Extract of Cochlospermum tinctorium Root. Asian Plant Res. J. 2019, 2, 1–11. [Google Scholar] [CrossRef]
- Onyenekwe, P.C.; Hashimoto, S. The Composition of the Essential Oil of Dried Nigerian Ginger (Zingiber officinale Roscoe). Eur. Food Res. Technol. 1999, 209, 407–410. [Google Scholar] [CrossRef]
- Ozek, G.; Ozek, T.; Baser, K.H.C.; Hamzaoglu, E.; Duran, A. Composition of Essential Oils from Salvia Anatolica, a New Species Endemic from Turkey. Chem. Nat. Compd. 2007, 43, 667–671. [Google Scholar] [CrossRef]
- Amudha, P.; Jayalakshmi, M.; Pushpabharathi, N.; Vanitha, V. Identification Of Bioactive Components In Enhalus Acoroides Seagrass Extract By Gas Chromatography–Mass Spectrometry. Asian J. Pharm. Clin. Res. 2018, 11, 313. [Google Scholar] [CrossRef]
- Tanapichatsakul, C.; Khruengsai, S.; Monggoot, S.; Pripdeevech, P. Production of Eugenol from Fungal Endophytes Neopestalotiopsis sp. and Diaporthe sp. Isolated from Cinnamomum loureiroi Leaves. PeerJ 2019, 7, e6427. [Google Scholar] [CrossRef] [Green Version]
- Xiangwei, Z.; Xiaodong, W.; Teng, N.; Yang, Z.; Jiakuan, C. Chemical Composition and Antimicrobial Activity of the Essential Oil of Sagittaria trifolia. In Chemistry of Natural Compounds; Springer: New York, NY, USA, 2006; pp. 520–522. [Google Scholar]
- Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Composition and Antimicrobial Activity of the Essential Oil, Distilled Aromatic Water and Herbal Infusion from Epilobium parviflorum Schreb. Ind. Crops Prod. 2017, 100, 95–105. [Google Scholar] [CrossRef]
- Sharma, A.; Rai, P.K.; Prasad, S. GC–MS Detection and Determination of Major Volatile Compounds in Brassica juncea L. Leaves and Seeds. Microchem. J. 2018, 138, 488–493. [Google Scholar] [CrossRef]
- Narasimhan, B.; Dhake, A.S. Antibacterial Principles from Myristica fragrans Seeds. J. Med. Food 2006, 9, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Badar, N.; Arshad, M.; Farooq, U. Characteristics of Anethum graveolens (Umbelliferae) Seed Oil: Extraction, Composition and Antimicrobial Activity. Int. J. Agric. Biol. 2008, 10, 329–332. [Google Scholar]
- Formisano, C.; Mignola, E.; Rigano, D.; Senatore, F.; Nelly Apostolides, A.; Bruno, M.; Rosselli, S. Constituents of Leaves and Flowers Essential Oils of Helichrysum pallasii (Spreng.) Ledeb. Growing Wild in Lebanon. J. Med. Food 2009, 12, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Lomarat, P.; Chancharunee, S.; Anantachoke, N.; Kitphati, W.; Sripha, K.; Bunyapraphatsara, N. Bioactivity-Guided Separation of the Active Compounds in Acacia pennata Responsible for the Prevention of Alzheimer’s Disease. Nat. Prod. Commun. 2015, 10, 1934578X1501000. [Google Scholar] [CrossRef] [Green Version]
- Jayalakshmi, M.; Vanitha, V.; Sangeetha, V. Determination Of Phytocomponents In Ethanol Extract Of Brassica Oleracea—Using Gas Chromatography–Mass Spectroscopy Technique. Asian J. Pharm. Clin. Res. 2018, 11, 133. [Google Scholar] [CrossRef]
- Khatua, S.; Pandey, A.; Biswas, S.J. Phytochemical Evaluation and Antimicrobial Properties of Trichosanthes dioica Root Extract. J. Pharmacogn. Phytochem. 2016, 5, 410. [Google Scholar]
- Akpuaka, A.; Ekwenchi, M.M.; Dashak, D.A.; Dildar, A. Biological Activities of Characterized Isolates of N-Hexane Extract of Azadirachta Indica A.Juss (Neem) Leaves. Nat. Sci. 2013, 11, 141–147. [Google Scholar]
- Krishnaveni, M.; Dhanalakshmi, R.; Nandhini, N. GC-MS Analysis of Phytochemicals, Fatty Acid Profile, Antimicrobial Activity of Gossypium Seeds. Int. J. Pharm. Sci. Rev. Res. 2014, 27, 273–276. [Google Scholar]
- Igwe, O.U.; Okwu, D.E. GC-MS Evaluation of Bioactive Compounds and Antibacterial Activity of the Oil Fraction from the Seeds of Brachystegia Eurycoma (HARMS). Asian J. Plant Sci. Res. 2013, 3, 47–54. [Google Scholar]
- Dinesh Kumar, G.; Karthik, M.; Rajakumar, R. GC-MS Analysis of Bioactive Compounds from Ethanolic Leaves Extract of Eichhornia Crassipes (Mart) Solms. and Their Pharmacological Activities. Pharma Innov. J. 2018, 7, 459–462. [Google Scholar]
- Kekuda, T.R.P.; Mukunda, S.; Sudharshan, S.J.; Murthuza, S.; Rakesh, G.M. Studies on Phytochemical and Antimicrobial Activity of Ethanol Extract of Curcuma Aromatica and Coscinium fenestratum. Nat. Prod. Indian J. 2008, 4, 77–80. [Google Scholar]
- Nair, N.M.; Kanthasamy, R.; Mahesh, R.; Selvam, S.I.K.; Ramalakshmi, S. Production and Characterization of Antimicrobials from Isolate Pantoea agglomerans of Medicago sativa Plant Rhizosphere Soil. J. Appl. Nat. 2019, 11, 267–272. [Google Scholar] [CrossRef]
- Wetwitayaklung, P.; Thavanapong, N.; Charoenteeraboon, J. Chemical Constituents and Antimicrobial Activity of Essential Oil and Extracts of Heartwood of Aquilaria crassna Obtained from Water Distillation and Supercritical Fluid Carbon Dioxide Extraction. Sci. Eng. Health Stud. 2009, 10, 25–33. [Google Scholar]
- Tzakou, O.; Loukis, A.; Said, A. Essential Oil from the Flowers and Leaves of Cassia fistula L. J. Essent. Oil Res. 2007, 19, 360–361. [Google Scholar] [CrossRef]
- Adebayo, M.A.; Lawal, O.A.; Sikiru, A.A.; Ogunwande, I.A.; Avoseh, O.N. Chemical Constituents and Antimicrobial Activity of Essential Oil of Senna Podocarpa (Guill. et Perr.) Lock. Am. J. Plant Sci. 2014, 5, 2448–2453. [Google Scholar] [CrossRef] [Green Version]
Rate (°C/min) | Temperature (°C) | Hold Time (min) | |
---|---|---|---|
Initial | 45.0 | 2.0 | |
Ramp 1 | 3.0 | 100.0 | 0.1 |
Ramp 2 | 5.0 | 135.0 | 0.1 |
Ramp 3 | 8.0 | 250.0 | 12.0 |
Microorganisms 1 | Savoy Cabbage (VCE) | White Cabbage (WCE) |
---|---|---|
C. albicans ATCC14053 | 0.062% | 0.062% |
C. glabrata ATCC15126 | 0.062% | 0.062% |
S. aureus NCTC16571 | 0.125% | 0.062% |
P. aeruginosa ATCC27853 | 0.25% | >4% |
K. pneumoniae ATCC13883 | 0.25% | >4% |
CAS n° | Retention Time (min) | Compound | Chemical Class | Savoy Cabbage Peak Area/105 | White Cabbage Peak Area/105 | Info | Ref. |
---|---|---|---|---|---|---|---|
541-58-2 | 17.2 | 2,4-Dimethyl -thiazole | Aromatic heterocycle | 0 | 88 | ----------- | -------- |
3658-80-8 | 20.7 | Dimethyl trisulfide | Thioether | 154 | 612 | Antimicrobial activity | [22] |
59121-24-3 | 27.5 | 4-(Methylsulfanyl) butanenitrile | Nitrile | 0 | 320 | Sulfur compound present in Brassica oleracea var. gongylodes L. and other Brassicaceae/antimicrobial activity | [14,23] |
10486-19-8 | 28.3 | 1-Tridecanal | Aldehyde | 0 | 284 | Component of essential oil from leaves and seeds of Coriandrum sativum L./oil from flower of Retama raetam (Forssk.)–Antibacterial and antifungal activity | [24,25] |
117461-22-0 | 30.3 | 1,4-Dihydro-9,9-dimethyl-1,4-methanonaphtalene-2,3-dicarbonitrile | 0 | Dicarbonitrile | 75 | ---------- | ----- |
121013-28-3 | 30.3 | Methyl-4,4,7-trimethyl-4,7-dihydroindan-6-carboxylate | Ester | 0 | 75 | Component of Salvia lavandulifolia Vahl. essential oil/anticancer, antimalaric and anti-inflammatory activity | [26] |
105643-80-9 | 30.7 | (Allylsulfanyl) acetonitrile | Nitrile | 0 | 222 | ------------ | -------- |
289-16-7 | 31.2 | 1,2,4-Trithiolane | Heterocyclic sulfur | 34 | 0 | Component of fresh mushroom flavor | [27] |
505-79-3 | 31.39 | 1-Isothiocyanato-3-(methylthio)-propane | Thiocyanate | 0 | 671 | Component of Brassica oleracea (Kale)tea/Component of Chinese kale (Brassica oleracea var. alboglabra) and Green Broccoli 90 (B. oleracea Linnaeus var. botrytis Linnaeus)/ Antibacterial and anticancer activity | [28,29,30] |
2949-92-0 | 31.40 | S-methylmethanethiosulfonate | Thiosulfonate | 0 | 663 | Component of cabbage (Brassica sp.) extracts/Component of the essential oil from Scorodophloeus zenkeri/ Antimicrobial and antifungal activity | [22,31,32] |
112-54-9 | 32.16 | Lauraldehyde | Aldehyde | 26 | 0 | Component of essential oil from Eryngium triquetrum (Apiaceae)/Antimicrobial activity | [33] |
3581-89-3 | 32.61 | 5-Methyl-1,3-thiazole | Aromatic heterocycle | 387 | 901 | Antibacterial activity | [34] |
18787-63-8 | 33.49 | 2-Hexadecanone | Ketone | 62 | 447 | Component of essential oil from Cochlospermum tinctorium A. Rich, Zingiber officinale Roscoe, Salvia anatolica/Anticancer and antiplasmodial activity | [35,36,37,38] |
114087-07-9 | 33.58 | [1-(Mercaptomethyl)-2-propenyl] carbamic acid methyl ester | Ester | 0 | 19 | ------------ | ----------- |
128-37-0 | 33.72 | 1-Hydroxy-4-methyl-2,6-di-tert-butylbenzene (BHT) | Alkylated phenol | 435 | 98 | Antioxidant activity | [39] |
124-25-4 | 33.83 | Myristaldehyde | Aldehyde | 35 | 607 | Component of Sagittaria trifolia and Cinnamomum loureiroi essential oil/Antimicrobial and antibacterial activities | [40,41] |
116228-46-7 | 34.39 | 2-Methyl-4-(1H-pyrazol-4-YL)- 3-butyn-2-ol | Aromatic heterocycle | 0 | 637 | ------------- | ----------- |
56666-96-7 | 34.87 | N,N-Dimethyl-N,N-dimethoxysulfinyl-hydrazine | Hydrazine | 58 | 0 | ------------ | ------------ |
2345-28-0 | 35.20 | Methyl tridecyl ketone | Ketone | 77 | 795 | Component of essential oil from Epilobium parviflorum Schreb | [42] |
10396-80-2 | 36.20 | 2,6-Di(t-butyl)-4-hydroxy-4-methyl-2,5-cyclohexadien-1-one | Ketone | 89 | 0 | ------------- | ----------- |
32278-16-3 | 38.69 | 3-(tert-Butyl)-3,4-dihydro-2H-1,4-benzoxazine | Heterocyclic bicycle | 39 | 0 | ------------- | ---------- |
544-63-8 | 39.91 | Myristic acid | Saturated long-chain fatty acid | 0 | 3220 | Extracts from leaves and seeds of Brassica juncea/Component of seeds from Myristica fragrans and Anethum graveolens; component of essential oil from leaves and flower of Helicrisum pallasii (Streng)/ antibacterial activity | [43,44,45,46] |
18756-03-1 | 40.42 | (E)-1-Azido-2- phenylethene | Azide | 101 | 0 | ------------ | ----------- |
614-96-0 | 40.90 | 5-Methyl-1H-indole | Aromatic heterocycle | 39 | 0 | ----------- | ----------- |
103-23-1 | 41.06 | Bis(2-ethylhexyl) adipate | Ester | 0 | 205 | ----------- | ------------ |
133778-59-3 | 42.31 | 2,3-Dihydro-1,3-methano-1H-cyclopenta[B]quinoxaline | Aromatic heterocycle | 0 | 376 | ----------- | ----------- |
1731-88-0 | 42.60 | Methyl tridecanoate | Ester | 44 | 0 | Extracts from Acacia pennata Willd./biological activity as drug against Alzheimer’s disease | [47] |
7098-22-8 | 43.85 | Tetratetracontane | Long chain alkane | 321 | 6984 | Antioxidant and cytoprotective activities | [48] |
629-80-1 | 44.98 | Hexadecanal | Aldehyde | 0 | 386 | ------------ | ------------ |
630-02-4 | 45.07 | Octacosane | Straight-chain alkane | 2565 | 15,364 | Antimicrobial activity | [49] |
83-46-5 | 46.33 | β-Sitosterol | Sterol | 0 | 1219 | Antimicrobial, anticancer, anti-inflammatory, anti-asthma, diuretic antiarthritic. | [39,49] |
2764-73-0 | 48.68 | 15-Nonacosanone | Ketone | 0 | 30,507 | Antimicrobial activity | [49] |
57-11-4 | 48.71 | Octadecanoic acid | Carboxylic acid | 138 | 0 | Component of Azadirachta indica A.Juss (Neem) leaves/ antifungal, antitumor and antibacterial activities | [50] |
60-33-3 | 50.74 | (Z,Z)-9,12-Octadecadienoic acid | Carboxylic acid | 112 | 0 | Extracts from Gossypium barbadense seeds; component of extracts from Brachystegia eurycoma/antimicrobial activity | [51,52] |
6971-40-0 | 50.78 | 17-Pentatriacontene | Alkene | 0 | 2189 | Antinflammatory, anticancer, antibacterial, antiarthritic | [53] |
6920-24-7 | 51.03 | 1,2-Hexadecanediol | Diol | 0 | 4718 | Extracts from Curcuma aromatica and Coscinium fenestratum/Antibacterial and antifungal activity | [54] |
77899-03-7 | 51.59 | 1-Heneicosyl formate | Ester | 0 | 567 | Biocontrol activity | [55] |
463-40-1 | 52.72 | Linolenic acid | 593 | 0 | ------ | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrais, A.; Testori, F.; Calligari, R.; Gianotti, V.; Roncoli, M.; Caramaschi, A.; Todeschini, V.; Massa, N.; Bona, E. Extracts from Cabbage Leaves: Preliminary Results towards a “Universal” Highly-Performant Antibacterial and Antifungal Natural Mixture. Biology 2022, 11, 1080. https://doi.org/10.3390/biology11071080
Arrais A, Testori F, Calligari R, Gianotti V, Roncoli M, Caramaschi A, Todeschini V, Massa N, Bona E. Extracts from Cabbage Leaves: Preliminary Results towards a “Universal” Highly-Performant Antibacterial and Antifungal Natural Mixture. Biology. 2022; 11(7):1080. https://doi.org/10.3390/biology11071080
Chicago/Turabian StyleArrais, Aldo, Fabio Testori, Roberta Calligari, Valentina Gianotti, Maddalena Roncoli, Alice Caramaschi, Valeria Todeschini, Nadia Massa, and Elisa Bona. 2022. "Extracts from Cabbage Leaves: Preliminary Results towards a “Universal” Highly-Performant Antibacterial and Antifungal Natural Mixture" Biology 11, no. 7: 1080. https://doi.org/10.3390/biology11071080
APA StyleArrais, A., Testori, F., Calligari, R., Gianotti, V., Roncoli, M., Caramaschi, A., Todeschini, V., Massa, N., & Bona, E. (2022). Extracts from Cabbage Leaves: Preliminary Results towards a “Universal” Highly-Performant Antibacterial and Antifungal Natural Mixture. Biology, 11(7), 1080. https://doi.org/10.3390/biology11071080