Effects of Surface-Type Plyometric Training on Physical Fitness in Schoolchildren of Both Sexes: A Randomized Controlled Intervention
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. Assessment of Muscular Power
2.3.2. Assessment of Linear Running Speed and Agility
2.3.3. Assessment of Dynamic Balance
2.3.4. Assessment of Endurance-Intensive Performance
2.4. Plyometric Training
2.5. Statistical Analysis
3. Results
3.1. Muscular Power
3.2. Linear Running Speed
3.3. Dynamic Balance
3.4. Agility and VO2max
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marta, C.C.; Marinho, D.A.; Izquierdo, M.; Marques, M.C. Differentiating maturational influence on training-induced strength and endurance adaptations in prepubescent children. Am. J. Hum. Biol. 2014, 26, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Álvarez, C.; García-Hermoso, A.; Ramírez-Vélez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; García-de-Alcaraz, A.; et al. Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sports Med. 2018, 48, 1059–1081. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Prieske, O.; Majewski, M.; Büsch, D.; Muehlbauer, T. The role of instability with plyometric training in sub-elite adolescent soccer players. Int. J. Sports Med. 2015, 36, 386–394. [Google Scholar] [CrossRef]
- Peitz, M.; Behringer, M.; Granacher, U. A systematic review on the effects of resistance and plyometric training on physical fitness in youth- What do comparative studies tell us? PLoS ONE 2018, 13, 0205525. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Young, J.D.; Whitten, J.H.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; de Lima, C.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of traditional strength versus power training on muscle strength, power and speed with youth: A systematic review and meta-analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Faigenbaum, A.D.; Kraemer, W.J.; Blimkie, C.J.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth resistance training: Updated position statement paper from the National Strength and Conditioning Association. J. Strength Cond. Res. 2009, 23, 60–79. [Google Scholar] [CrossRef]
- Kotzamanidis, C. Effect of plyometric training on running performance and vertical jumping in prepubertal boys. J. Strength Cond. Res. 2006, 20, 441–445. [Google Scholar]
- Almeida, M.B.; Leandro, C.G.; Queiroz, D.D.R.; José-da-Silva, M.; Pessôa Dos Prazeres, T.M.; Pereira, G.M.; das-Neves, G.S.; Carneiro, R.C.; Figueredo-Alves, A.D.; Nakamura, F.Y.; et al. Plyometric training increases gross motor coordination and associated components of physical fitness in children. Eur. J. Sport Sci. 2021, 21, 1263–1272. [Google Scholar] [CrossRef]
- Michailidis, Y.; Fatouros, I.G.; Primpa, E.; Michailidis, C.; Avloniti, A.; Chatzinikolaou, A.; Barbero-Álvarez, J.C.; Tsoukas, D.; Douroudos, I.I.; Draganidis, D.; et al. Plyometrics’ trainability in preadolescent soccer athletes. J. Strength Cond. Res. 2013, 27, 38–49. [Google Scholar] [CrossRef]
- Johnson, B.A.; Salzberg, C.L.; Stevenson, D.A. A systematic review: Plyometric training programs for young children. J. Strength Cond. Res. 2011, 25, 2623–2633. [Google Scholar]
- De Villarreal, E.S.; Kellis, E.; Kraemer, W.J.; Izquierdo, M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. 2009, 23, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Martino, F.; Fiorini, S.; Wisloff, U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br. J. Sports Med. 2008, 42, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D. A comparison between land and sand-based tests for beach volleyball assessment. J. Sports Med. Phys. Fit. 2003, 43, 418–423. [Google Scholar]
- Pereira, L.A.; Freitas, T.T.; Marín-Cascales, E.; Bishop, C.; McGuigan, M.R.; Loturco, I. Effects of training on sand or hard surfaces on sprint and jump performance of team-sport players: A systematic review with meta-analysis. Strength Cond. J. 2021, 43, 56–66. [Google Scholar] [CrossRef]
- Trajkovic, N.; Sporis, G.; Kristicevic, T. Does training on sand during off-season improves physical performance in indoor volleyball players? Acta Kinesiol. 2016, 10, 107–111. [Google Scholar]
- Miyama, M.; Nosaka, K. Influence of surface on muscle damage and soreness induced by consecutive drop jumps. J. Strength Cond. Res. 2004, 18, 206–211. [Google Scholar]
- Arazi, H.; Mohammadi, M.; Asadi, A. Muscular adaptations to depth jump plyometric training: Comparison of sand vs. land surface. Interv. Med. Appl. Sci. 2014, 6, 125–130. [Google Scholar] [CrossRef]
- Ozen, G.; Atar, O.; Koc, H. The effects of a 6-week plyometric training programme on sand versus wooden parquet surfaces on the physical performance parameters of well-trained young basketball players. Montenegrin J. Sports Sci. Med. 2020, 9, 27. [Google Scholar] [CrossRef]
- Hammami, M.; Bragazzi, N.L.; Hermassi, S.; Gaamouri, N.; Aouadi, R.; Shephard, R.J.; Chelly, M.S. The effect of a sand surface on physical performance responses of junior male handball players to plyometric training. BMC Sports Sci. Med. Rehabil. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Vergara-Pedreros, M.; Henriquez-Olguin, C.; Martinez-Salazar, C.; Alvarez, C.; Nakamura, F.Y.; De La Fuente, C.I.; Caniuquero, A.; Alonso-Martinez, A.M.; Izquierdo, M. Effects of plyometric training on maximal-intensity exercise and endurance in male and female soccer players. J. Sports Sci. 2016, 34, 687–693. [Google Scholar] [CrossRef]
- Degache, F.; Richard, R.; Edouard, P.; Oullion, R.; Calmels, P. The relationship between muscle strength and physiological age: A crosssectional study in boys aged from 11 to 15. Ann. Phys. Rehabil. Med. 2010, 53, 180–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duzgun, I.; Kanbur, N.O.; Baltaci, G.; Aydin, T. The effect of tanner stage on proprioception accuracy. J. Foot. Ankle Surg. 2011, 50, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Sunnegardh, J.; Bratteby, L.E.; Nordesjo, L.O.; Nordgren, B. Isometric and isokinetic muscle strength, anthropometry and physical activity in 8 and 13 years old Swedish children. Eur. J. Appl. Physiol. 1988, 58, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Skurvydas, A.; Brazaitis, M. Plyometric training does not affect central and peripheral muscle fatigue differently in prepubertal girls and boys. Pediatr. Exerc. Sci. 2010, 22, 547–556. [Google Scholar] [CrossRef]
- Vom Heede, A.; Kleinöder, H.; Mester, J. Kindgemäßes Krafttraining im Schulsport-Untersuchungsergebnisse. Haltung und Bewegung 2007, 27, 11–19. [Google Scholar]
- World Medical Association. Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Harman, E.; Garhammer, J.; Pandorf, C. Administration, scoring and interpretation of selected tests. In Essentials of Strength and Conditioning; Baechle, T.R., Earle, R.W., Eds.; Human Kinetics: Champaign, IL, USA, 2000; pp. 249–292. [Google Scholar]
- Chaouachi, M.; Granacher, U.; Makhlouf, I.; Hammami, R.; Behm, G.D.; Chaouachi, A. Within session sequence of balance and plyometric exercises does not affect training adaptations with youth soccer athletes. J. Sports Sci. Med. 2017, 16, 125–136. [Google Scholar]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20-metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. The effects of 4-weeks of plyometric training on reactive strength index and leg stiffness in male youths. J. Strength Cond. Res. 2012, 26, 2812–2819. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.; Meyers, R.W. The natural development and trainability of plyometric ability during childhood. J. Strength Cond. Res. 2011, 33, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Bogdanis, G.C.; Donti, O.; Papia, A.; Donti, A.; Apostolidis, N.; Sands, W.A. Effect of plyometric training on jumping, sprinting and change of direction speed in child female athletes. Sports 2019, 7, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, R.S.; Radnor, J.M.; De Ste Croix, M.B.A.; Cronin, J.B.; Oliver, J.L. Changes in sprint and jump performances after traditional, plyometric, and combined resistance training in male youth pre- and post-peak height velocity. J. Strength Cond. Res. 2016, 30, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef] [PubMed]
- Manolopoulos, E.; Papadopoulos, C.; Salonikidis, K.; Katartzi, E.; Poluha, S. Strength training effects on physical conditioning and instep kick knematics in young amateur soccer players during preseason. Percept. Mot. Ski. 2004, 99, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Baker, D. Improving vertical jump performance through general, special, and specific strength training. J. Strength Cond. Res. 1996, 10, 131–136. [Google Scholar] [CrossRef]
- Hutton, R.S.; Atwater, S.W. Acute and chronic adaptations of muscle proprioceptors in response to increased use. Sports Med. 1992, 14, 406–421. [Google Scholar] [CrossRef]
- Bosco, C.; Tihanyi, J.; Komi, P.V.; Fekete, G.; Apor, P. Store and recoil of elastic energy in slow and fast types of human skeletal muscles. Acta Physiol. Scand. 1982, 116, 343–349. [Google Scholar] [CrossRef]
- Meylan, C.; Malatesta, D. Effects of in-season plyometric training within soccer practice on explosive actions of young players. J. Strength Cond. Res. 2009, 23, 2605–2613. [Google Scholar] [CrossRef]
- Young, W.B.; Behm, D.G. Effects of running, static stretching and practice jumps on explosive force production and jumping performance. J. Sports Med. Phys. Fit. 2003, 43, 21–27. [Google Scholar]
- Rimmer, E.; Sleivert, G. Effects of a plyometrics intervention program on sprint performance. J. Strength Cond. Res. 2000, 14, 295–301. [Google Scholar]
- Mero, A.; Jaakkola, L.; Komi, P.V. Relationships between muscle fibre characteristics and physical performance capacity in trained athletic boys. J. Sports Sci. 1991, 9, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Häkkinen, K.; Alen, M.; Komi, P.V. Changes in isometric force-and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol. Scand. 1985, 125, 573–585. [Google Scholar] [CrossRef]
- Turgut, E.; Colakoglu, F.F.; Serbes, P.; Akarcesme, C.; Baltaci, G. Effects of 12-week in-season low-intensity plyometric training on dynamic balance of pre-pubertal female volleyball players. Turk. J. Sport Exerc. 2017, 19, 24–30. [Google Scholar]
- Ramírez-Campillo, R.; Gallardo, F.; Henriquez-Olguín, C.; Meylan, C.M.P.; Martínez, C.; Álvarez, C.; Caniuqueo, A.; Cadore, E.L.; Izquierdo, M. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1784–1795. [Google Scholar] [CrossRef] [Green Version]
- Asadi, A.; De Villarreal, E.S.; Arazi, H. The effects of plyometric type neuromuscular training on postural control performance of male team basketball players. J. Strength Cond. Res. 2015, 29, 1870–1875. [Google Scholar] [CrossRef]
- Paillard, T. Sport-specific balance develops specific postural skills. Sports Med. 2014, 44, 1019–1020. [Google Scholar] [CrossRef] [Green Version]
- Borghuis, J.; Hof, A.L.; Lemmink, K.A. The importance of sensory-motor control in providing core stability. Sports Med. 2008, 38, 893–916. [Google Scholar] [CrossRef]
- Paillard, T. Plasticity of the postural function to sport and/or motor experience. Neurosci. Biobehav. Rev. 2017, 72, 129–152. [Google Scholar] [CrossRef]
- Chimera, N.J.; Swanik, K.A.; Swanik, C.B.; Straub, S.J. Effects of plyometric training on muscle-activation strategies and performance in female athletes. J. Athl. Train. 2004, 39, 24. [Google Scholar] [PubMed]
- Marta, C.; Marinho, D.A.; Barbosa, T.M.; Izquierdo, M.; Marques, M.C. Effects of concurrent training on explosive strength and VO2max in prepubescent children. Int. J. Sports Med. 2013, 34, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Legerlotz, K.; Marzilger, R.; Bohm, S.; Arampatzis, A. Physiological adaptations following resistance training in youth athletes-A narrative review. Pediatr. Exerc. Sci. 2016, 28, 501–520. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.M.; Beam, N.W.; Fakhoury, J.D. Resistance training for children and adolescents. Transl. Pediatr. 2017, 6, 137. [Google Scholar] [CrossRef] [Green Version]
- Grosset, J.F.; Piscione, J.; Lambertz, D.; Pérot, C. Paired changes in electromechanical delay and musculo-tendinous stiffness after endurance or plyometric training. Eur. J. Appl. Physiol. 2009, 105, 131–139. [Google Scholar] [CrossRef]
- Nobre, G.G.; De Almeida, M.B.; Nobre, I.G.; Dos Santos, F.K.; Brinco, R.A.; Arruda-Lima, T.R.; Moura-dos-Santos, M.A. Twelve weeks of plyometric training improves motor performance of 7-to 9-year-old boys who were overweight/obese: A randomized controlled intervention. J. Strength Cond. Res. 2017, 31, 2091–2099. [Google Scholar] [CrossRef]
- Nicol, C.; Avela, J.; Komi, P.V. The stretchshortening cycle: A model to study naturally occurring neuromuscular fatigue. Sports Med. 2006, 36, 977–999. [Google Scholar] [CrossRef]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Binnie, M.J.; Dawson, B.; Arnot, M.A.; Pinnington, H.; Landers, G.; Peeling, P. Effect of sand versus grass training surfaces during an 8-week pre-season conditioning programme in team sport athletes. J. Sports Sci. 2014, 32, 1001–1012. [Google Scholar] [CrossRef]
- Mirzaei, B.; Norasteh, A.A.; Asadi, A. Neuromuscular adaptations to plyometric training: Depth jump vs. countermovement jump on sand. Sport Sci. Health 2013, 9, 145–149. [Google Scholar] [CrossRef]
- Marta, C.; Alves, A.R.; Casanova, N.; Neiva, H.P.; Marinho, D.A.; Izquierdo, M.; Nunes, C.; Marques, M.C. Suspension vs. plyometric training in children’s explosive strength. J. Strength Cond. Res. 2022, 36, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Tønnessen, E.; Svendsen, I.S.; Olsen, I.C.; Guttormsen, A.; Haugen, T. Performance development in adolescent track and field athletes according to age, sex and sport discipline. PLoS ONE 2015, 10, e0129014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, C.; Ramirez-Campillo, R.; Alvarez, C.; Moran, J.; Slimani, M.; Gonzalez, J.; Banzer, W.E. Effects of maturation on physical fitness adaptations to plyometric jump training in youth females. J. Strength Cond. Res. 2021, 35, 2870–2877. [Google Scholar] [CrossRef] [PubMed]
Groups | Sex (n) | Age (Years) | Height (cm) | LL (cm) | Weight (kg) | BMI (kg·m−2) |
---|---|---|---|---|---|---|
FG | Boys (20) | 10.1 ± 1.2 | 143.1 ± 10.6 | 70.9 ± 5.2 | 36.1 ± 9.8 | 17.3 ± 2.8 |
Girls (20) | 10.0 ± 1.1 | 143.3 ± 12.7 | 71.0 ± 6.3 | 38.1 ± 10.6 | 18.3 ± 3.3 | |
SG | Boys (20) | 10.0 ± 1.2 | 142.2 ± 9.86 | 70.2 ± 4.7 | 35.4 ± 7.8 | 17.3 ± 2.0 |
Girls (20) | 10.0 ± 1.1 | 143.0 ± 10.4 | 70.7 ± 5.2 | 37.4 ± 8.5 | 18.0 ± 2.1 | |
CG | Boys (20) | 10.0 ± 1.2 | 141.7 ± 11.0 | 70.0 ± 4.9 | 35.7 ± 8.4 | 17.5 ± 2.0 |
Girls (20) | 10.1 ± 1.1 | 143.5 ± 9.83 | 70.9 ± 5.6 | 38.8 ± 11.7 | 18.5 ± 3.4 |
Week 1 | Week 2 | Week 3 | Week 4 | |||||
---|---|---|---|---|---|---|---|---|
Type of Jumps | Session 1 | Session 2 | Session 1 | Session 2 | Session 1 | Session 2 | Session 1 | Session 2 |
Pogo jump | 2 × 6 | 2 × 6 | 2 × 8 | 2 × 10 | 2 × 10 | 4 × 8 | 4 × 8 | 4 × 10 |
Lateral jump | 2 × 6 | 4 × 6 | 2 × 8 | |||||
Hop scotch | 3 × 4 | |||||||
Bilateral power hops | 4 × 4 | 4 × 4 | 4 × 4 | |||||
Ankle hops | 2 × 6 | 3 × 5 | 3 × 5 | 3 × 5 | ||||
Power skipping | 2 × 6 | 2 × 8 | 3 × 8 | |||||
Unilateral pogo jump | 2 × 8 | 2 × 10 | 2 × 8 | 2 × 8 | 2 × 10 | |||
Max rebound hops | 3 × 5 | 3 × 5 | 3 × 5 | 4 × 5 | ||||
Drop jump | 2 × 5 | 2 × 5 | 2 × 5 | 2 × 6 | ||||
Hurdle power hops | 2 × 6 | 2 × 5 | 2 × 5 | |||||
Double tuck jumps | 2 × 5 | 2 × 6 | 2 × 6 | |||||
Alternating jump lunges | 2 × 5 | |||||||
Total foot contacts | 64 | 67 | 75 | 82 | 89 | 95 | 100 | 104 |
Variables | Group | Sex (n) | Pre-Test | Post-Test | Δ (%) | p-Value (ES) | 95% CI |
---|---|---|---|---|---|---|---|
S20 | Boys | FG (20) | 4.31 ± 0.41 | 4.14 ± 0.40 † | −4.0 ± 0.4 | FG vs. CG: <0.0001 (7.319) SG vs. CG: <0.0001 (6.789) | FG vs. CG: 2.552–3.335 SG vs. CG: 2.737–3.519 |
SG (20) | 4.32 ± 0.28 | 4.14 ± 0.27 † | −4.2 ± 0.5 | ||||
CG (20) | 4.33 ± 0.25 | 4.28 ± 0.25 † | −1.0 ± 0.4 | ||||
Girls | FG (20) | 4.57 ± 0.33 | 4.38 ± 0.33 † | −4.2 ± 0.5 | FG vs. CG: <0.0001 (5.996) SG vs. CG: <0.0001 (4.861) | FG vs. CG: 2.540–3.322 SG vs. CG: 2.485–3.267 | |
SG (20) | 4.60 ± 0.32 | 4.41 ± 0.32 † | −4.1 ± 0.7 | ||||
CG (20) | 4.64 ± 0.30 | 4.59 ± 0.30 † | −1.2 ± 0.5 | ||||
SJ | Boys | FG (20) | 14.6 ± 2.7 | 16.3 ± 2.9 † | 11.7 ± 2.4 | FG vs. CG: <0.0001 (3.652) SG vs. CG: <0.0001 (3.563) | FG vs. CG: 6.515–10.605 SG vs. CG: 6.604–10.694 |
SG (20) | 14.8 ± 2.5 | 16.5 ± 2.6 † | 11.8 ± 2.6 | ||||
CG (20) | 14.4 ± 2.1 | 14.9 ± 2.4 † | 3.1 ± 2.3 | ||||
Girls | FG (20) | 13.4 ± 2.6 | 14.8 ± 2.8 † | 11.5 ± 3.1 | FG vs. CG: <0.0001 (2.655) SG vs. CG: <0.0001 (3.028) | FG vs. CG: 5.946–10.037 SG vs. CG: 6.418–10.509 | |
SG (20) | 13.0 ± 2.3 | 14.6 ± 2.3 † | 11.9 ± 2.6 | ||||
CG (20) | 13.5 ± 2.3 | 13.9 ± 2.1 † | 3.5 ± 3.0 | ||||
SLJ | Boys | FG (20) | 81.9 ± 13.2 | 93.2 ± 14.4 † | 14.0 ± 3.0 | FG vs. CG: <0.0001 (3.631) SG vs. CG: <0.0001 (3.724) | FG vs. CG: 7.247–11.493 SG vs. CG: 7.287–11.534 |
SG (20) | 82.8 ± 14.3 | 94.3 ± 15.7 † | 14.1 ± 3.0 | ||||
CG (20) | 81.8 ± 13.0 | 85.5 ± 13.0 † | 4.6 ± 2.0 | ||||
Girls | FG (20) | 72.6 ± 13.4 | 82.0 ± 14.5 † | 13.2 ± 2.9 | FG vs. CG: <0.0001 (3.364) SG vs. CG: <0.0001 (3.285) | FG vs. CG: 6.858–11.105 SG vs. CG: 6.995–11.242 | |
SG (20) | 73.2 ± 11.3 | 82.7 ± 11.7 † | 13.3 ± 3.1 | ||||
CG (20) | 73.3 ± 8.9 | 76.4 ± 9.9 † | 4.2± 2.4 |
Variables | Group | Sex (n) | Pre-Test | Post-Test | Δ (%) | p-Value (ES) | 95% CI |
---|---|---|---|---|---|---|---|
Agility | Boys | FG (20) | 7.40 ± 0.46 | 6.89 ± 0.49 † | −7.0 ± 1.0 | FG vs. CG: 0.0001 (5.982) SG vs. CG: 0.0001 (5.982) | FG vs. CG: 4.660–6.005 SG vs. CG: 4.580–5.925 |
SG (20) | 7.29 ± 0.52 | 6.78 ± 0.53 † | −6.9 ± 1.0 | ||||
CG (20) | 7.29 ± 0.64 | 7.17 ± 0.63 † | −1.7 ± 0.8 | ||||
Girls | FG (20) | 7.78 ± 0.56 | 7.26 ± 0.48 † | −6.7 ± 0.9 | FG vs. CG: 0.0001 (5.698) SG vs. CG: 0.0001 (6.423) | FG vs. CG: 4.263–5.608 SG vs. CG: 4.392–5.736 | |
SG (20) | 7.72 ± 0.54 | 7.20 ± 0.52 † | −6.8 ± 0.8 | ||||
CG (20) | 7.73 ± 0.46 | 7.60 ± 0.45 † | −1.7 ± 0.8 | ||||
VO2max | Boys | FG (20) | 42.4 ± 2.8 | 46.0 ± 2.8 † | 8.5 ± 3.0 | FG vs. CG: 0.0001 (2.478) SG vs. CG: 0.0001 (2.632) | FG vs. CG: 4.714–9.377 SG vs. CG: 5.372–10.035 |
SG (20) | 42.1 ± 2.8 | 46.0 ± 2.6 † | 9.2 ± 3.2 | ||||
CG (20) | 42.0 ± 3.0 | 42.6 ± 3.0 † | 1.5 ± 2.6 | ||||
Girls | FG (20) | 42.4 ± 3.1 | 46.1 ± 3.4 † | 8.7 ± 2.9 | FG vs. CG: 0.0001 (2.170) SG vs. CG: 0.0001 (2.275) | FG vs. CG: 4.620–9.283 SG vs. CG: 4.958–9.621 | |
SG (20) | 42.3 ± 2.7 | 46.1 ± 3.0 † | 9.1 ± 2.9 | ||||
CG (20) | 42.0 ± 3.3 | 42.7 ± 3.2 † | 1.8 ± 3.5 | ||||
YBT | Boys | FG (20) | 87.8 ± 6.7 | 94.7 ± 6.4 † | 8.1 ± 2.3 | FG vs. CG: 0.0001 (2.624) SG vs. CG: 0.0001 (2.762) | FG vs. CG: 3.474–7.176 SG vs. CG: 3.552–7.255 |
SG (20) | 87.5 ± 5.2 | 94.5 ± 4.8 † | 8.1 ± 2.2 | ||||
CG (20) | 86.9 ± 6.1 | 89.2 ± 6.3 † | 2.7 ± 1.7 | ||||
Girls | FG (20) | 87.9 ± 4.6 | 94.8 ± 6.0 † | 7.7 ± 3.0 | FG vs. CG: 0.0001 (2.245) SG vs. CG: 0.0001 (2.371) | FG vs. CG: 3.696–7.398 SG vs. CG: 4.167–7.869 | |
SG (20) | 87.1 ± 4.4 | 94.3 ± 5.7 † | 8.2 ± 3.1 | ||||
CG (20) | 86.8 ± 3.1 | 88.7 ± 4.1 † | 2.2 ± 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzouki, H.; Dridi, R.; Ouergui, I.; Selmi, O.; Mbarki, R.; Klai, R.; Bouhlel, E.; Weiss, K.; Knechtle, B. Effects of Surface-Type Plyometric Training on Physical Fitness in Schoolchildren of Both Sexes: A Randomized Controlled Intervention. Biology 2022, 11, 1035. https://doi.org/10.3390/biology11071035
Marzouki H, Dridi R, Ouergui I, Selmi O, Mbarki R, Klai R, Bouhlel E, Weiss K, Knechtle B. Effects of Surface-Type Plyometric Training on Physical Fitness in Schoolchildren of Both Sexes: A Randomized Controlled Intervention. Biology. 2022; 11(7):1035. https://doi.org/10.3390/biology11071035
Chicago/Turabian StyleMarzouki, Hamza, Rached Dridi, Ibrahim Ouergui, Okba Selmi, Rania Mbarki, Roudaina Klai, Ezdine Bouhlel, Katja Weiss, and Beat Knechtle. 2022. "Effects of Surface-Type Plyometric Training on Physical Fitness in Schoolchildren of Both Sexes: A Randomized Controlled Intervention" Biology 11, no. 7: 1035. https://doi.org/10.3390/biology11071035
APA StyleMarzouki, H., Dridi, R., Ouergui, I., Selmi, O., Mbarki, R., Klai, R., Bouhlel, E., Weiss, K., & Knechtle, B. (2022). Effects of Surface-Type Plyometric Training on Physical Fitness in Schoolchildren of Both Sexes: A Randomized Controlled Intervention. Biology, 11(7), 1035. https://doi.org/10.3390/biology11071035