Bioactivities of Mealworm (Alphitobius diaperinus L.) Larvae Hydrolysates Obtained from Artichoke (Cynara scolymus L.) Proteases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of C. scolymus L. Extract
2.2. A. diaperinus L. larvae Flour and Protein Extract Preparation
2.3. Obtaining Hydrolysates
2.4. Peptide Concentration of Hydrolysates
2.5. Antioxidant Activity
2.6. Angiotensin-I-Converting Enzyme Inhibitory Activity
2.7. Peptide Sequence Identification
2.8. Statistical Analysis
3. Results
3.1. Effect of Hydrolysis Substrate on the Peptide Concentration
3.2. Antioxidant Activity
3.3. ACE-Inhibitory Activity
3.4. Peptide Sequence Identification
4. Discussion
4.1. DPPH Antioxidant Activity
4.2. ACE-Inhibitory Activity
4.3. Identification of Bioactive Peptides
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernández-Ledesma, B.; del Mar Contreras, M.; Recio, I. Antihypertensive Peptides: Production, Bioavailability and Incorporation into Foods. Adv. Colloid Interface Sci. 2011, 165, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzoor, M.; Singh, J.; Gani, A. Exploration of Bioactive Peptides from Various Origin as Promising Nutraceutical Treasures: In Vitro, in Silico and in Vivo Studies. Food Chem. 2022, 373, 131395. [Google Scholar] [CrossRef] [PubMed]
- Vercruysse, L.; Smagghe, G.; Beckers, T.; Camp, J.V. Antioxidative and ACE Inhibitory Activities in Enzymatic Hydrolysates of the Cotton Leafworm, Spodoptera littoralis. Food Chem. 2009, 114, 38–43. [Google Scholar] [CrossRef]
- Luna-Vital, D.A.; Mojica, L.; de Mejía, E.G.; Mendoza, S.; Loarca-Piña, G. Biological Potential of Protein Hydrolysates and Peptides from Common Bean (Phaseolus vulgaris L.): A Review. Food Res. Int. 2015, 76, 39–50. [Google Scholar] [CrossRef]
- Bueno-Gavilá, E.; Abellán, A.; Bermejo, M.S.; Salazar, E.; Cayuela, J.M.; Prieto-Merino, D.; Tejada, L. Characterization of Proteolytic Activity of Artichoke (Cynara scolymus L.) Flower Extracts on Bovine Casein to Obtain Bioactive Peptides. Animals 2020, 10, 914. [Google Scholar] [CrossRef]
- FitzGerald, R.J.; Murray, B.A.; Walsh, D.J. Hypotensive Peptides from Milk Proteins. J. Nutr. 2004, 134, 980S–988S. [Google Scholar] [CrossRef] [Green Version]
- Gobbetti, M.; Stepaniak, L.; De Angelis, M.; Corsetti, A.; Di Cagno, R. Latent Bioactive Peptides in Milk Proteins: Proteolytic Activation and Significance in Dairy Processing. Crit. Rev. Food Sci. Nutr. 2002, 42, 223–239. [Google Scholar] [CrossRef]
- Bueno-Gavilá, E.; Abellán, A.; Girón-Rodríguez, F.; Cayuela, J.M.; Tejada, L. Bioactivity of Hydrolysates Obtained from Chicken Egg Ovalbumin Using Artichoke (Cynara scolymus L.) Proteases. Foods 2021, 10, 246. [Google Scholar] [CrossRef]
- Suetsuna, K.; Chen, J.-R. Identification of Antihypertensive Peptides from Peptic Digest of Two Microalgae, Chlorella vulgaris and Spirulina platensis. Mar. Biotechnol. 2001, 3, 305–309. [Google Scholar] [CrossRef]
- Yust, M.M.; Pedroche, J.; Giron-Calle, J.; Alaiz, M.; Millán, F.; Vioque, J. Production of ACE Inhibitory Peptides by Digestion of Chickpea Legumin with Alcalase. Food Chem. 2003, 81, 363–369. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Bednářová, M.; Borkovcová, M.; Mlček, J.; Rop, O.; Zeman, L. Edible Insects-Species Suitable for Entomophagy under Condition of Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Testa, M.; Stillo, M.; Maffei, G.; Andriolo, V.; Gardois, P.; Zotti, C.M. Ugly but Tasty: A Systematic Review of Possible Human and Animal Health Risks Related to Entomophagy. Crit. Rev. Food Sci. Nutr. 2017, 57, 3747–3759. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 2017/893 24 May 2017 Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on Processed Animal Protein (Text with EEA Relevance). Off. J. Eur. Union 2017, 138, 92–116.
- Regulation (EU) 2015/2283 the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001 (Text with EEA Relevance). Off. J. Eur. Union 2015, 327, 1–12.
- Nongonierma, A.B.; FitzGerald, R.J. Unlocking the Biological Potential of Proteins from Edible Insects through Enzymatic Hydrolysis: A Review. Innov. Food Sci. Emerg. Technol. 2017, 43, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Kumar, Y.; Shukla, P.; Singh, P.; Prabhakaran, P.P.; Tanwar, V.K. Bio-Plastics. A Perfect Tool for Eco-Friendly Food Packaging: A Review. J. Food Prod. Dev. Packag. 2014, 1, 1–6. [Google Scholar]
- Xia, L.; Zhang, F.; Liu, Z.; Ma, J.I.; Yang, J. Expression and Characterization of CecropinXJ, a Bioactive Antimicrobial Peptide from Bombyx mori (Bombycidae, Lepidoptera) in Escherichia coli. Exp. Ther. Med. 2013, 5, 1745–1751. [Google Scholar] [CrossRef] [Green Version]
- Vercruysse, L.; Smagghe, G.; Herregods, G.; Van Camp, J. ACE Inhibitory Activity in Enzymatic Hydrolysates of Insect Protein. J. Agric. Food Chem. 2005, 53, 5207–5211. [Google Scholar] [CrossRef]
- Hall, F.; Johnson, P.E.; Liceaga, A. Effect of Enzymatic Hydrolysis on Bioactive Properties and Allergenicity of Cricket (Gryllodes sigillatus) Protein. Food Chem. 2018, 262, 39–47. [Google Scholar] [CrossRef]
- Leni, G.; Soetemans, L.; Jacobs, J.; Depraetere, S.; Gianotten, N.; Bastiaens, L.; Caligiani, A.; Sforza, S. Protein Hydrolysates from Alphitobius diaperinus and Hermetia illucens Larvae Treated with Commercial Proteases. J. Insects Food Feed 2020, 6, 393–404. [Google Scholar] [CrossRef]
- Yang, R.; Zhao, X.; Kuang, Z.; Ye, M.; Luo, G.; Xiao, G.; Liao, S.; Li, L.; Xiong, Z. Optimization of Antioxidant Peptide Production in the Hydrolysis of Silkworm (Bombyx mori L.) Pupa Protein Using Response Surface Methodology. J. Food Agric. Environ. 2013, 11, 952–956. [Google Scholar]
- Zielińska, E.; Karaś, M.; Jakubczyk, A. Antioxidant Activity of Predigested Protein Obtained from a Range of Farmed Edible Insects. Int. J. Food Sci. Technol. 2017, 52, 306–312. [Google Scholar] [CrossRef]
- Vieira, M.; Pissarra, J.; Veríssimo, P.; Castanheira, P.; Costa, Y.; Pires, E.; Faro, C. Molecular Cloning and Characterization of CDNA Encoding Cardosin B, an Aspartic Proteinase Accumulating Extracellularly in the Transmitting Tissue of Cynara cardunculus L. Plant Mol. Biol. 2001, 45, 529–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejada, L.; Abellán, A.; Cayuela, J.M.; Martínez-Cacha, A.; Fernández-Salguero, J. Proteolysis in Goats’ Milk Cheese Made with Calf Rennet and Plant Coagulant. Int. Dairy J. 2008, 18, 139–146. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Dziuba, J.; Iwaniak, A.; Dziuba, M.; Darewicz, M. BIOPEP Database and Other Programs for Processing Bioactive Peptide Sequences. J. AOAC Int. 2008, 91, 965–980. [Google Scholar] [CrossRef] [Green Version]
- Tejada, L.; Fernandez-Salguero, J. Chemical and Microbiological Characteristics of Ewe Milk Cheese (Los Pedroches) Made with a Powdered Vegetable Coagulant or Calf Rennet. Ital. J. Food Sci. 2003, 15, 125–132. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Jia, J.Q.; Tan, G.X.; Xu, J.L.; Gui, Z.Z. Physicochemical Properties of Silkworm Larvae Protein Isolate and Gastrointestinal Hydrolysate Bioactivities. Afr. J. Biotechnol. 2011, 10, 6145–6153. [Google Scholar] [CrossRef]
- Official Methods of Analysis, 21st Edition. 2019. Available online: https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/ (accessed on 19 January 2021).
- Timón, M.L.; Parra, V.; Otte, J.; Broncano, J.M.; Petrón, M.J. Identification of Radical Scavenging Peptides (<3 kDa) from Burgos-Type Cheese. LWT-Food Sci. Technol. 2014, 57, 359–365. [Google Scholar] [CrossRef]
- Bersuder, P.; Hole, M.; Smith, G. Antioxidants from Heated Histidine-Glucose Model System. I: Investigation of the Antioxidant Role of Histidine and Isolation of Antioxidants by High-Performance Liquid Chromatography. J. Am. Oil Chem. Soc. 1998, 75, 181–187. [Google Scholar] [CrossRef]
- Miguel, M.; Recio, I.; Gómez-Ruiz, J.A.; Ramos, M.; López-Fandiño, R. Angiotensin I-Converting Enzyme Inhibitory Activity of Peptides Derived from Egg White Proteins by Enzymatic Hydrolysis. J. Food Prot. 2004, 67, 1914–1920. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Gavilá, E.; Abellán, A.; Girón-Rodríguez, F.; Cayuela, J.M.; Salazar, E.; Gómez, R.; Tejada, L. Bioactivity of Hydrolysates Obtained from Bovine Casein Using Artichoke (Cynara scolymus L.) Proteases. J. Dairy Sci. 2019, 102, 10711–10723. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Debnath, T.; Choi, E.-J.; Kim, Y.W.; Ryu, J.P.; Jang, S.; Chung, S.U.; Choi, Y.-J.; Kim, E.-K. Changes in the Amino Acid Profiles and Free Radical Scavenging Activities of Tenebrio molitor Larvae Following Enzymatic Hydrolysis. PLoS ONE 2018, 13, e0196218. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, J.; Yan, H.; Du, J.; Gui, Z. A Novel Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptide from Gastrointestinal Protease Hydrolysate of Silkworm Pupa (Bombyx mori) Protein: Biochemical Characterization and Molecular Docking Study. Peptides 2015, 68, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.; Borges, S.; Pintado, M. Enzymatic Hydrolysis of Insect Alphitobius diaperinus towards the Development of Bioactive Peptide Hydrolysates. Food Funct. 2020, 11, 3539–3548. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.-J.; Jung, W.-K.; Kim, S.-K. Free Radical Scavenging Activity of a Novel Antioxidative Peptide Purified from Hydrolysate of Bullfrog Skin, Rana Catesbeiana Shaw. Bioresour. Technol. 2008, 99, 1690–1698. [Google Scholar] [CrossRef] [PubMed]
- Natesh, R.; Schwager, S.L.U.; Sturrock, E.D.; Acharya, K.R. Crystal Structure of the Human Angiotensin-Converting Enzyme–Lisinopril Complex. Nature 2003, 421, 551–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Ruan, G.; Qin, Z.; Li, H.; Zheng, Y. Antioxidant Activity Measurement and Potential Antioxidant Peptides Exploration from Hydrolysates of Novel Continuous Microwave-Assisted Enzymolysis of the Scomberomorus Niphonius Protein. Food Chem. 2017, 223, 89–95. [Google Scholar] [CrossRef]
- Wattanasiritham, L.; Theerakulkait, C.; Wickramasekara, S.; Maier, C.S.; Stevens, J.F. Isolation and Identification of Antioxidant Peptides from Enzymatically Hydrolyzed Rice Bran Protein. Food Chem. 2016, 192, 156–162. [Google Scholar] [CrossRef]
- Tanzadehpanah, H.; Asoodeh, A.; Chamani, J. An Antioxidant Peptide Derived from Ostrich (Struthio Camelus) Egg White Protein Hydrolysates. Food Res. Int. 2012, 49, 105–111. [Google Scholar] [CrossRef]
- Li, Y.-W.; Li, B. Characterization of Structure–Antioxidant Activity Relationship of Peptides in Free Radical Systems Using QSAR Models: Key Sequence Positions and Their Amino Acid Properties. J. Theor. Biol. 2013, 318, 29–43. [Google Scholar] [CrossRef]
- Saito, K.; Jin, D.-H.; Ogawa, T.; Muramoto, K.; Hatakeyama, E.; Yasuhara, T.; Nokihara, K. Antioxidative Properties of Tripeptide Libraries Prepared by the Combinatorial Chemistry. J. Agric. Food Chem. 2003, 51, 3668–3674. [Google Scholar] [CrossRef] [PubMed]
- Saiga, A.; Tanabe, S.; Nishimura, T. Antioxidant Activity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment. J. Agric. Food Chem. 2003, 51, 3661–3667. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Huang, X.; Tu, F.; Wang, C.; Yang, F. Preparation, Antioxidant Activity Evaluation, and Identification of Antioxidant Peptide from Black Soldier Fly (Hermetia illucens L.) Larvae. J. Food Biochem. 2020, 44, e13186. [Google Scholar] [CrossRef] [PubMed]
- Pattarayingsakul, W.; Nilavongse, A.; Reamtong, O.; Chittavanich, P.; Mungsantisuk, I.; Mathong, Y.; Prasitwuttisak, W.; Panbangred, W. Angiotensin-Converting Enzyme Inhibitory and Antioxidant Peptides from Digestion of Larvae and Pupae of Asian Weaver Ant, Oecophylla smaragdina, Fabricius. J. Sci. Food Agric. 2017, 97, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
No. | Peptide Sequence | Experimental Mass | Protein Source | Acc. |
---|---|---|---|---|
1 | GLIGAPIAAPI | 991.61 | Larval cuticle protein F1 | Q9TXD9 |
2 | AYVGPDGVTY | 1040.49 | Cuticle protein CP14.6 | Q94984 |
3 | SIGDGIARVY | 1049.56 | Uncharacterized protein | − |
4 | TVGDGIARVY | 1049.56 | ATP synthase subunit alpha | Q3AHK5 |
5 | AESEVAALNR | 1058.54 | Tropomyosin | P31816 |
Tropomyosin-2 | Q1HPQ0 | |||
6 | GLIGAPIAAPIA | 1062.65 | Larval cuticle protein F1 | Q9TXD9 |
7 | WDDMEKIW | 1121.49 | Actin | P6855/Q39758 |
Actin-1 | P49128 | |||
Actin-2 | P10984/Q9Y707 | |||
8 | VDAAVLEKLE | 1127.61 | Arginine kinase | P91798 |
9 | ASVVEKLGDYL | 1192.64 | Profilin | P25843 |
10 | VDAAVLEKLEA | 1198.65 | Arginine kinase | P91798 |
11 | AGFAGDDAPRAVF | 1292.62 | Actin | P68555 |
Actin-2 | P10984/Q9Y707 | |||
12 | GLIGAPIAAPIAAPL | 1343.82 | Larval cuticle protein F1 | Q9TXD9 |
13 | ASLEAEAKGKAEAL | 1386.74 | Myosin heavy chain, muscle | P05661 |
14 | AIANAAEKKQKAF | 1388.78 | Myosin heavy chain, muscle | P05661 |
15 | FSLPHAILRLDL | 1393.82 | Actin-2 | Q9Y707 |
16 | YALPHAILRIDL | 1393.82 | Actin | P68555 |
Actin-1 | P49128 | |||
Actin-2 | P10984 | |||
17 | VDAAVLEKLEAGF | 1402.74 | Arginine kinase | P91798 |
18 | GLIGAPIAAPIAAPLA | 1414.86 | Larval cuticle protein F1 | Q9TXD9 |
19 | PADTPEVAAAKVAHA | 1446.75 | Cuticle protein 18.7 | P82165 |
20 | LKVDDLAAELDASQ | 1486.76 | Myosin heavy chain, muscle | P05661 |
No. | Peptide Sequence | Experimental Mass | Protein Source | Acc. |
---|---|---|---|---|
1 | APVAVAHAAVPA | 1072.61 | Cuticle protein 38 | P04375 |
2 | VAYSPAAVVSH | 1099.57 | Larval/pupal cuticle protein H1C | P80686 |
3 | ASVVEKLGDY | 1079.56 | Profilin | P25843 |
4 | GLIGAPIAAPIAA | 1133.69 | Larval cuticle protein F1 | Q9TXD9 |
5 | LEKDNALDRAAM | 1361.67 | Tropomyosin-2 | Q1HPQ0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejada, L.; Buendía-Moreno, L.; Hernández, I.; Abellán, A.; Cayuela, J.M.; Salazar, E.; Bueno-Gavilá, E. Bioactivities of Mealworm (Alphitobius diaperinus L.) Larvae Hydrolysates Obtained from Artichoke (Cynara scolymus L.) Proteases. Biology 2022, 11, 631. https://doi.org/10.3390/biology11050631
Tejada L, Buendía-Moreno L, Hernández I, Abellán A, Cayuela JM, Salazar E, Bueno-Gavilá E. Bioactivities of Mealworm (Alphitobius diaperinus L.) Larvae Hydrolysates Obtained from Artichoke (Cynara scolymus L.) Proteases. Biology. 2022; 11(5):631. https://doi.org/10.3390/biology11050631
Chicago/Turabian StyleTejada, Luis, Laura Buendía-Moreno, Irene Hernández, Adela Abellán, José María Cayuela, Eva Salazar, and Estefanía Bueno-Gavilá. 2022. "Bioactivities of Mealworm (Alphitobius diaperinus L.) Larvae Hydrolysates Obtained from Artichoke (Cynara scolymus L.) Proteases" Biology 11, no. 5: 631. https://doi.org/10.3390/biology11050631
APA StyleTejada, L., Buendía-Moreno, L., Hernández, I., Abellán, A., Cayuela, J. M., Salazar, E., & Bueno-Gavilá, E. (2022). Bioactivities of Mealworm (Alphitobius diaperinus L.) Larvae Hydrolysates Obtained from Artichoke (Cynara scolymus L.) Proteases. Biology, 11(5), 631. https://doi.org/10.3390/biology11050631